999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

一類廣義平均曲率Liénard方程周期解存在性與唯一性

2016-08-31 02:25:40蘭德新陳文斌
湖南師范大學自然科學學報 2016年3期
關鍵詞:計算機

蘭德新,陳文斌

(武夷學院數學與計算機學院,中國 武夷山 354300)

?

一類廣義平均曲率Liénard方程周期解存在性與唯一性

蘭德新*,陳文斌

(武夷學院數學與計算機學院,中國 武夷山354300)

運用Mawhin 重合度拓展定理研究了一類廣義平均曲率Liénard 方程

周期解存在性與唯一性問題,得到了周期解存在性與唯一性的相關新結果.

廣義平均曲率;Liénard 方程;周期解;重合度

1 Introduction

We consider the following Prescribed mean curvature Liénard equation:

(1)

wheref,e∈C(R,R),β,g,τ∈C1(R,R),e,τ,βare T-periodic,T>0,β(t)>0 andτ(t)≥0. As we all know, the dynamic behaviors of Liénard equation have been wide-ly investigated[1-5]due to the application in many fields such as physics, mechanics and the engineering technique fields. In such applications, it is important to know the existence of periodic solutions of Liénard equation. For example, see papers[1-5]. These papers were devoted mainly to study the following several types:

x″(t)+f(x(t))x′(t)+g(x(t-σ))=e(t),

x″(t)+f(x(t))x′(t)+g(x(t-τ(t,x(t))))=e(t),

(φp(x′(t)))′+f(x(t))x′(t)+β(t)g(x(t-τ(t)))=e(t).

(2)

2 Preliminaries

Throughout this paper, letXandYbe real Banach spaces and letL:D(L) ?X→Ybe a Fredholm operator with index zero; hereD(L) denotes the domain ofL.This means that ImLis closed inYand dim KerL=dim(Y/lmL)<+∞. Consider the supplementary subspacesX1andY1such thatX=KerL⊕X1andY=lmL⊕Y1and letP:X→KerLandQ:Y→Y1be the natural projections, Clearly, KerL∩(D(L)∩X1)=0; thus the restrictionLp: =L|D(L)∩X1is invertible. Denote the in-verse ofLpbyK.

(1)Lx≠λNx,?(x,λ)∈(D(L)∩?Ω)×(0,1);

(2)Nx?lmL,?x∈KerL∩?Ω;

(3) deg(JQN,Ω∩KerL,0)≠0,whereJ:lmQ→KerLis an isomorphism.

Lemma 2.2[10]Letα∈[0,+∞] be constants,S∈C(R,R) withs(t+T)≡s(t), ands(t)∈[-α,α],?t∈[0,T]. Then ?x∈C1(R,R) withx(t+T)≡x(t),we have

In order to use Mawhin’s continuation theorem to study the existence of T-periodic solutions for Eq.(1),we should consider the following system:

(3)

LetX=Y={x:x=(x1,x2)T∈C(R,R2),x(t)≡x(t+T)},‖x‖=max{|x1|0,|x2|0},

and letKrepresent the inverse ofLKer P∩D(L). Clearly, KerL=lmQ=R2and

where

For the sake of convenience, we list the following assumptions which will be used for us to study the existence and uniqueness of T-periodic solutions to Eqs.(3) in Section 3.

[H2] There existsl>0 such that |g(x1)-g(x2)|≤l|x1-x2|,?l∈R,x1,x2∈R.

[H4]g′(x)<0,|τ|0≤εandτ′(t)<1 (εbe sufficiently small constant ).

3 Main results

ProofWeconsiderLx=λNx,?λ∈(0,1).

LetΩ1={x∈X:Lx=λNx,λ∈(0,1)}.Ifx∈Ω1,thenwehave

(4)

Bythefirstformulaeof(4),wehave

Itfollowsthat

(5)

(6)

Thenfromtheassumption[H1],wemusthave

x1(t1-τ(t1))>-d,

(7)

and

x1(t2-τ(t2))

(8)

Now,webegintoprovethatthereisaconstantξ∈R such that |x1(ξ)|≤d.

Case1Ifx1(t2-τ(t2))∈(-d,d),then|x1(ξ)|≤dwhenξ=t2-τ(t2).

Case2Ifx1(t2-τ(t2))<-d,thenfrom(3.4)andthecontinuityofx1(t)onR,weseethatthereisaconstantξ∈(t1-τ(t1),t2-τ(t2))[or(t2-τ(t2),t1-τ(t1))]suchthat|x1(ξ)|=-d,i.e.,|x1(ξ)|≤d.

WeseeineitherCase1orCase2that|x1(ξ)|≤d.Sinceξ∈R is a constant, there must be an integer kand a pointt*∈[0,T] such thatξ=kT+t*.So|x1(ξ)|=|x1(t*)|≤d, which leads to

(9)

(10)

By |f(x)|≥σ, we know

(11)

(12)

By using Lemma 2.2, we see

(13)

Substituting (12) and (13) into (11). we get

(14)

Combining (9) and (14), we obtain

(15)

So by using (9), we get

Furthermore, from the first equation of (3.1), we have

Which implies that there is a constantζ∈[0,T] such thatx2(ζ)=0.So

By the second formulae of (4) and [H3], we have

Now, if we setΩ={x:x=(x1,x2)T∈X,|x1|00,equationQN(x)=(0,0)T,i.e.,

has no solution in (Ω∩KerL)/Δε, whereε∈(0,ε0) is an arbitrary constant. So deg {JQN,Ω∩KerL,0}=deg {JQN,Δε,0}. Let

Ifx∈?Δε. Then

which implies that ‖JQN(x)-JQN0(x)‖→0 asε→0. So ifε>0 is sufficiently small, then

deg {JQN,Δε,0}=deg {JQN0,Δε,0}.

Noting dimQN0=1, it follows that deg{JQN0,Δε,0}=deg{JQN0,Δ0,0}, where Δ0={x:x∈R,|x|0 is constant. By assumption [H1], we see that deg {JQN0,Δ0,0}≠0,i.e., deg {JQN,Ω∩KerL,0}=deg {JQN,Δ0,0}≠0. Then, the condition (3) of Lemma 2.1 is also satisfied. Therefore, by applying Lemma 2.1, we conclude that the equation

Lx=Nx,

Furthermore, letu(t)=x3(t)-x4(t) andv(t)=y3(t)-y4(t)v. Sincex′=ψ(y-h(x)), it follows from (1) that

we will show thatv(t)≤0,?t∈[0,T].

Suppose there exists at0∈[0,T] such thatv(t0)=maxt∈[0,T]v(t)>0 which together withβ(t)>0 implies that

(16)

It follows from [H4] and the first equation of Eq.(16) thatx3(t0-τ(t0))=x4(t0-τ(t0)), then from the second equation of Eq.(7), we get

-β(t)g′(x3(t0-τ(t0)))[ψ(y3(t0-τ(t0))-h(x3(t0-τ(t0)))-

ψ(y4(t0-τ(t0))-h(x4(t0-τ(t0)))](1-τ′(t0)).

In view ofβ(t0)>0,g′(x3(t0-τ(t0)))<0.v(t0)=y3(t0)-y4(t0)>0.τ′(t0)<1 and |τ|0<ε,εbe sufficiently small, then we haveψ(y3(t0-τ(t0)))>ψ(y4(t0-τ(t0))) andv″(t0)>0.

Which is a contradiction. Hence maxt∈[0,T]v(t)≤0. Similarly, exchanging the role ofx3andx4, we can show that maxt∈[0,T]v(t)≥0. This implies thatv(t)≡0,i.e.,y3(t)≡y4(t).Then fromg′(x)<0, we havex3(t-τ(t))≡x4(t-τ(t)).i.e.,x3(t)≡x4(t) Therefore, the Eq.(1) has at most one solution. The proof of Theorem 3.1 is now complete.

References:

[1]NGUYENPC.Periodicsolutionsofasecondordernonlinearsystem[J].JMathAnalAppl, 1997,214(1):219-232.

[2]LUSP,GEWG.PeriodicsolutionsforakindofLiénardequationwithadeviatingargument[J].JMathAnnaAppl, 2004,289(2):231-243.

[3]CHENGWS,RENJL.OntheexistenceofperiodicsolutionforP-LaplaciangeneralizedLiénardequation[J].NonlinearAnal, 2005,60(1):65-75.

[4]GAOFB,LUSP.NewresultsontheexistenceanduniquenessofpreiodicsolutionsforLiénardequationtypeP-Laplacianequation[J].JFranklinInstitute, 2008,345(2):374-381.

[5]GAOH,LIUBW.ExistenceanduniquenessofperiodicsolutionsforforcedRayleigh-typeequations[J].ApplMathComput, 2009,211(1):148-154.

[6]BONHEURED,HABETSP,OBERSNELF, et al.Classicalandnon-classicalsolutionsofaprescribedcurvatureequations[J].JDiffEqu, 2007,243(1):208-237.

[7]LOPEZR.Acomparisonresultforradialsolutionsofthemeancurvatureequation[J].ApplMathLett, 2009,22(4):860-864.

[8]PANH.One-dimensionalprescribedmeancurvatureequationwithexponentialnonlinearity[J].NonlinearAnnl, 2009,70(5):999-1010.

[9]GAINESRE,MAWHINJ.Coincidencedegreeandnonlineardifferentialequaations[M].Berlin:Springer, 1977.

[10]LUSP,GEWG.Sufficientconditionsfortheexistenceofperiodicsolutionstosomesecondorderdifferentialequationswithadeviatingargument[J].JMathAnalAppl, 2005,308(2):393-419.

(編輯CXM)

Existence and Uniqueness of Periodic Solutions for Prescribed Mean Curvature Liénard Equation with a Deviating Argument

LAN De-xin*, CHEN Wen-bin

(College of Mathematics and Computer Science, Wuyi University, Wuyi Shan 354300, China)

By using the coincidence degree theory, some new results were established, on the existence and uniqueness of T-periodic solutions for a kind of prescribed mean curvature Liénard equation of the form

prescribed mean curvature; Liénard equation; periodic solution; coincidence degree

10.7612/j.issn.1000-2537.2016.03.016

2015-10-15

武夷學院科學研究基金資助項目(XQ201305)

,E-mail:1220340699@qq.com

O175.6

A

1000-2537(2016)03-0089-06

猜你喜歡
計算機
計算機操作系統
穿裙子的“計算機”
趣味(數學)(2020年9期)2020-06-09 05:35:08
基于LabVIEW的計算機聯鎖仿真系統
基于計算機自然語言處理的機器翻譯技術應用與簡介
科技傳播(2019年22期)2020-01-14 03:06:34
計算機多媒體技術應用初探
科技傳播(2019年22期)2020-01-14 03:06:30
信息系統審計中計算機審計的應用
消費導刊(2017年20期)2018-01-03 06:26:40
計算機應用軟件開發技術的幾點探討
電子制作(2017年14期)2017-12-18 07:08:10
計算機網絡安全
iLOCK型計算機聯鎖開發中的需求開發管理
計算機聯鎖系統配置軟件設計與實現
主站蜘蛛池模板: 国产a v无码专区亚洲av| 亚洲精品欧美重口| av在线5g无码天天| 丰满人妻一区二区三区视频| 国产Av无码精品色午夜| 国产成人一二三| 日本三级欧美三级| 亚洲第一页在线观看| 久久精品视频亚洲| 国产91视频免费| 最新亚洲av女人的天堂| 美女扒开下面流白浆在线试听| 亚洲视频三级| 国产成人精品男人的天堂下载| 亚欧美国产综合| 国产美女在线观看| 国内a级毛片| 欧美日韩va| 在线看片中文字幕| 亚洲一区二区三区国产精品 | 久久国产精品影院| 欧美亚洲国产日韩电影在线| 亚洲男人的天堂网| 日本在线免费网站| 精品综合久久久久久97超人该| 91激情视频| 国产欧美性爱网| 91无码网站| 亚洲日韩精品欧美中文字幕| 91一级片| 色男人的天堂久久综合| 园内精品自拍视频在线播放| 伦伦影院精品一区| 热久久综合这里只有精品电影| 亚洲无线视频| 国产精品一线天| 久久这里只精品热免费99| 又粗又大又爽又紧免费视频| 国产三级国产精品国产普男人 | Jizz国产色系免费| 亚洲一级色| 国产精品护士| 特级做a爰片毛片免费69| 成人国产免费| 亚洲色图欧美视频| 久久黄色影院| 无码粉嫩虎白一线天在线观看| 野花国产精品入口| 亚洲无限乱码| 久久99热这里只有精品免费看 | 亚洲第一极品精品无码| 72种姿势欧美久久久大黄蕉| 国产三级韩国三级理| 成人亚洲国产| 国产一级视频在线观看网站| 亚洲天堂视频在线观看| 日韩二区三区无| 18禁影院亚洲专区| 91视频日本| 毛片手机在线看| 天天综合网在线| 精品成人免费自拍视频| 欧美在线综合视频| 99999久久久久久亚洲| 久久久久九九精品影院 | 国产精品欧美激情| 国产自在线播放| 亚洲精品国产日韩无码AV永久免费网 | 国产性生大片免费观看性欧美| 2020久久国产综合精品swag| 毛片网站观看| 国产在线观看成人91| 美女被躁出白浆视频播放| 亚洲精品视频免费观看| 99热这里只有精品免费| 中日无码在线观看| 亚洲综合香蕉| 亚洲毛片网站| 国产成人调教在线视频| 最新日本中文字幕| 亚洲综合中文字幕国产精品欧美| 老司机精品久久|