999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

論平均值公理在量子力學中的地位及其對教學的啟示

2016-08-31 01:58:46彭勇宜符力平
物理與工程 2016年3期
關鍵詞:物理理論體系

彭勇宜 彭 政 符力平

(中南大學物理與電子學院,湖南 長沙 410083)

?

論平均值公理在量子力學中的地位及其對教學的啟示

彭勇宜彭政符力平

(中南大學物理與電子學院,湖南 長沙410083)

文章對平均值公理在量子力學中的作用、地位及其對量子力學教學的啟示進行了詳細的分析和討論,表明只需將普通的平均值公式加以推廣,便可自然地得到量子力學中的平均值公理.平均值公理在量子力學中處于基礎地位,從平均值公理出發,用嚴格的數學理論可進一步推導出量子力學的其他基本特性.在量子力學教學過程中,從平均值公理出發,量子力學理論的邏輯和概念會更清晰,特別是對于初學者而言,這樣更便于他們接受和理解量子力學理論.

平均值公理;量子力學;教學

作為物理專業四大力學之一的量子力學,其重要性是不言而喻的,可以說沒有哪一門現代物理學的分支和現代高端科學技術能離開量子力學這個基礎.但是,量子力學也是出了名的難學和難教的一門課程.這一方面與量子力學本身的特點有關,另一方面也與人們對量子力學的基本概念和理論體系的論述不一有關[1-4].

如何從教學的角度把量子力學教好,其中重要的一個方面就是對量子力學的理論體系作清晰的梳理,構建一個邏輯性強、便于教學的量子力學理論體系.像任何一門學科一樣,量子力學理論體系有它自身發展的歷史,在發展的初期過程中,有些概念并不完善,一些問題也沒有徹底弄清楚,經過一段時期的發展之后,回過頭來,站在一個比較高的高度重新審視它,才把整個理論看得更清楚.例如,在發展初期麥克斯韋就是用力學的方法來描述電磁場的,當時,他仿照流體力學和彈性力學的做法對電磁場作論述,給人們認識理解電磁場帶來了很大的困難.但經過一個時期的發展之后,人們具備了關于場的清晰概念,再回過頭來看,電磁場理論就清晰多了,不再需要用到力學的方法.量子力學也是如此,在講述量子力學理論時,可以按照歷史進程講述量子理論,也可以不沿著發展軌跡來講述.教學中如將量子力學的整個內容做科學的梳理,以最符合邏輯的方式重新組織量子力學理論,可以收到事半功倍的效果.

量子力學的公理體系就是將量子力學理論納入一個邏輯體系,以公理的形式給出量子力學的基本原理,再在此基礎上導出量子力學的所有內容來.這是教授量子力學最合適和最有效的一種方式[5,6].

然而,在量子力學教學的實踐過程中,時常發現一些教材對公理體系的論述不一致,造成了作為初學者的學生在學習過程中的一些困惑和思維混亂.例如不同的公理之間究竟有什么關系?它們與量子力學創建初期提出的一些的基本思想,如波-粒二象性、測不準原理、疊加原理以及互補原理等究竟存在什么樣的聯系?它們是完全相互獨立的還是在一定程度上又相互包含?這些縱橫交錯的疑問,往往使量子力學初學者如墜入云霧之中,造成學習和理解上的嚴重障礙.

本文探討平均值公理在量子力學中的作用和地位,進而闡述其對量子力學教學的啟發.多年的教學實踐也表明平均值公理易于被量子力學初學者接受和理解,可以幫助他們消除上面所提到的那些疑惑,取得了滿意的效果.

1 量子力學公理

任何一個物理理論都具備以下3個基本要素:①基本的物理概念;②對應的數學表示;③數學與物理概念之間的對應規則.對于量子力學初學者和講授者而言,根據物理理論的3個基本要素,以下述公理為基礎開展教學是比較合適的:

公理1: 對每一個量子體系,都存在一個復的波函數Ψ(r,t),它描述了該量子體系在t時刻的狀態.并且,所有關于該體系的信息都可從這個波函數當中獲得.特別地,t時刻發現粒子在r處附近小體元d3r內的概率為

公理2: 波函數隨時間的變化服從薛定諤方程

另外,還有波包收縮公理和對稱化公理,由于這兩條公理與本文聯系不大,就不在此羅列了.

公理1給出了物理概念和相應的數學表示,即量子力學一個體系的態與表示態的數學表示:波函數.對一個體系的態的物理概念在量子力學教材中有詳細的討論,這里不再贅述.至于數學表示的波函數則意義非常清楚.公理2也沒有什么爭議,大家都有共識.所以,這兩條公理無須作進一步討論,大家都接受.公理3則是要討論的重點,它是物理概念與其數學表示之間的對應規則.然而,在實際教學當中,各個教材在此問題上的提法并不完全統一.有的雖然選擇這一條作為公理,可并未清楚地解釋它與量子力學的新思想之間的關系,初學者感受不到它的基礎地位;有的甚至就不提它,取而代之用其他的公理,形成了不同的教材采用不同的公理體系的局面,極大地影響了初學者對量子力學的認識.下面就這一公理的作用以及它與量子力學新思想之間的關系做一些論證,來說明這一公理的基礎性.

2 平均值公理的地位

先看公理3的引出.根據公理1,量子體系的波函數包含了該體系的所有信息,那么,當給定一個體系的波函數后,又如何由波函數來獲得某一物理量A的信息呢?也即如何由波函數求得某一物理量的可能取值和取這些值的相應概率?在經典力學當中,物理量是通過以r和p為自變量(兩者表示質點的狀態)的函數來表示的,所以,物理概念與數學形式之間的對應關系是清楚的.例如,一維勢場中的一個質量為m的質點,其能量這一物理量就由數學公式:E=mv2/2+V(x)給出.然而,在量子力學當中,由于對體系的態定義不同,沒有了類似于經典力學中的那些對應關系.此外,一個物理量的取值也不唯一,可呈現各種可能的取值,因而對這些可能的取值還存在取各值的概率的問題.因此,需要有一套能從已知狀態中獲得體系各物理量的可能取值以及取這些值的概率的方法.

什么樣的數學形式能勝任物理量這一角色?物理量的這一數學形式與波函數(即體系的狀態)的關系又是怎樣的呢?先考察坐標這一物理量與波函數的關系.根據波函數的概率解釋和求平均值的一般概念,可將坐標的平均值寫為:

接下來考慮動量.同樣,根據平均值的求法和傅里葉變換,有

可見動量的平均值與波函數的關系與前式是類似的,與前式相比,除了將動量物理量換成了算符“-i”外,兩者形式完全一樣.這說明其中一定存在著某種新的物理思想.再注意到,這一形式也是迄今為止所能找到的唯一表達物理量與數學形式(波函數)之間關系的式子,是實現對應規則的唯一式子.對于其他物理量情況如何呢?或一般情況下是怎樣的呢?于是,像電磁學中將靜磁場規律·B=0推廣為時變電磁場的規律一樣,將此式作推廣,認為一般情況下也是成立的.這便是量子力學的第三條公理——平均值公理產生的源頭.由此可見,這一條公理的出現合情合理,容易讓人接受,也容易施于教學之中.

表面上看,這條平均值公式的假設非常一般,但實際上它包含著非常豐富的內容.首先,它預示著物理量必須要用算符來替代.這一點從動量平均值的計算就可以看出,即如果堅持這一平均值公式形式的正確性,則相應的動量就必須代以算符-i.此外,如果仍舊保留動能、角動量等這樣一些經典物理量的概念,則可以由平均值公式確定其他物理量所對應的算符.例如,要計算動能的平均值,則由平均值的計算性質,有

因此,與動能對應的算符為

可見,對簡單的力學問題來說,物理量要用算符來表示就已包含在平均值公理當中了,這時,可以不需要再將“物理量用算符表示”這條帶有硬性規定似的公理單獨提出.或者說,在公理體系的量子力學中,無須強調對應原理,盡管這一原理在量子力學創建初期起到非常大的作用.當然,對于更深入的量子理論,在涉及體系內部自由度問題時,由于沒有經典對應,那時可以通過講解對應原理以及對稱性原理等,藉此來尋找這些無經典對應的物理量所對應的算符.但無論如何,此時的平均值公理仍然是一條可以用于檢驗理論與實驗是否相符的重要法則.

其次,平均值公理還給出了預計測量結果的方法,即從描述體系的波函數當中獲取物理量的信息,具體有如下兩條推論:(1)對處于某一狀態的體系,一個物理量的取值只能是表示該物理量的算符的本征值;(2)對體系的這一物理量進行測量,獲得某一結果(本征值)的概率也可由平均值公理給出.這表明在整個理論體系中,平均值公理起著將理論形式與物理實際聯系起來的橋梁作用.

為說明以上兩條推論,先介紹概率論里的幾個概念.令X為一個隨機變量,取值x,ρ(x)dx為隨機變量取值在[x,x+dx]區間內的概率,ρ(x)稱為概率密度,或者概率分布,它是討論隨機變量統計問題的關鍵所在.下面給出一種確定概率密度的方法.

定義1: 隨機變量X的m階矩用〈Xm〉表示,其定義為下面的積分

由此可見,一階矩就是平均值(期望值).

定義2: 隨機變量X的特征函數定義為e-ixτ的平均值,即積分

因此,特征函數是X的概率密度ρ(x)的傅里葉變換.

將上式積分里的指數函數展開,并利用矩的定義,就有

因此,如果所有階的矩都已知的話,則特性函數χ(τ)也就已知了,再利用傅里葉逆變換,得

即概率密度ρ(x)被確定下來了.

令ρ(a)da為物理量A取值在[a,a+da]范圍內的概率,則概率密度為

因此,物理量A只有取an的概率為

所以

從而得到物理量A的數值分布情況

上式表明:只有當a是本征值當中的數時,即a=an(n=1,2,…),其概率才不為零,否則,a的取值概率都為零.這樣,測量的可能結果只能是本征值an當中的值.第一條推論得以證明.下面計算測量獲得an的概率,與前面的討論類似,因為

即獲得an的概率為|cn|2.這樣,第二條推論也得以證明.

目前,許多教材將“物理量的取值為對應算符的本征值”作為公理來陳述,同時也將“測量獲得某一結果的概率為|cn|2”當作另一條公理,即所謂投影假設.倘若沒有平均值公理作基礎,這些都很難讓人一下子接受,學生往往會知其然而不知其所以然.然而,從上面的討論來看,這些都無須當作是基本的,它們都可當作是平均值公理的產物,因此,平均值公式作為公理是理所當然的.須說明的是如果掌握了最基本的公理,再進一步學習量子力學時,為了簡潔的需要可以不再用平均值公式作為公理,取而代之用其他形式的公理(比如,上面提到的投影假設),這也是可以的.這是在理解了量子力學的基本原理、不會產生疑惑的基礎上才這樣做.對于量子力學初學者來講,要很好理解和接受量子力學,用平均值公理會更合情合理些.

除此之外,從平均值這一量子力學的基本公理出發,經過一定的數學推導,還可以對在量子力學產生初期所提出的那些思想進行解釋,如測不準原理.總之,有了上述提出的公理體系,可以像牛頓力學,電磁學等其他物理學學科那樣,從最基本的原理出發來演繹整個量子力學,邏輯清晰而簡單,從而使得量子力學的教和學變得有規可循,

不再為那些含糊不清的概念和術語所迷惑,使量子力學不再像“天書”,也不再是只停留在書本上的珍品,而是實實在在的處理實際問題的理論依據.

3 結語

平均值公理在量子力學中處于基礎地位,可以由平均值公理導出量子力學中的其他特性.并且從平均值公理出發,量子力學理論的邏輯和概念變得更加簡潔和清晰,特別是對于量子力學初學者而言,也更便于他們理解和接受量子力學理論.

[1]ZeilingerA.Afoundationalprincipleforquantummechanics[J].FoundationofPhysics, 1999, 29: 631-644.

[2]MullerR,WiesnerH.Teachingquantummechanicsonanintroductorylevel[J].AmericanJournalofPhysics, 2002, 70(3): 200-209.

[3]張永德.量子力學[M]. 北京: 科學出版社, 2002.

[4]鄒鵬程.量子力學[M]. 北京: 高等教育出版社, 2003.

[5]Cohen-TannoudjiC,DiuB,LaloeF.Quantummechanics[M].NewYork:JohnWileyandSons, 1977.

[6]BongaartsP.QuantumTheory[M].Switzerland:SpringerInternationalPublishing, 2015.

DISCUSSION ON THE STATUS OF EXPECTATION VALUE AXIOM IN QUANTUM MECHANICS AND ITS ENLIGHTENMENT FOR TEACHING

Peng YongyiPeng ZhengFu Liping

(School of Physics and Electronics, Central South University, Changsha, Hunan410083)

In this paper, the effects and status of expectation value axiom (EVA) in quantum mechanics are analyzed and discussed, and its enlightenment for teaching is also analyzed. It is indicated that the EVA can be obtained naturally by extending the ordinary expectation value formula. The EVA is the fundamental quantity in quantum mechanics. According to strict mathematics theory, other basic features of quantum mechanics can be derived directly from the EVA. When the teaching of quantum mechanics starts from the EVA, the logic and concepts of quantum mechanics become more distinct. So the theory of quantum mechanics can be accepted and understood more easily, especially for beginners in quantum mechanics.

expectation value axiom; quantum mechanics; teaching

2016-01-22;

2016-03-05

2015年中南大學教學改革研究項目資助(普通教育類54號).

彭勇宜,男,副教授,主要從事近代物理學的教學與研究.pyyi@sina.com

引文格式: 彭勇宜,彭政,符力平. 論平均值公理在量子力學中的地位及其對教學的啟示[J]. 物理與工程,2016,26(3):13-17.

猜你喜歡
物理理論體系
只因是物理
井岡教育(2022年2期)2022-10-14 03:11:44
堅持理論創新
當代陜西(2022年5期)2022-04-19 12:10:18
神秘的混沌理論
理論創新 引領百年
構建體系,舉一反三
相關于撓理論的Baer模
處處留心皆物理
三腳插頭上的物理知識
我不是教物理的
中學生(2015年2期)2015-03-01 03:43:33
“曲線運動”知識體系和方法指導
主站蜘蛛池模板: 欧美三級片黃色三級片黃色1| 国产成人综合日韩精品无码首页| 白丝美女办公室高潮喷水视频| 成人免费黄色小视频| 欧美中文字幕在线二区| 2019年国产精品自拍不卡| 国产亚洲精品97AA片在线播放| 无码电影在线观看| 黄色网在线| 久久精品中文字幕免费| 免费国产不卡午夜福在线观看| 欧美精品H在线播放| 久久久久国产精品嫩草影院| 日韩乱码免费一区二区三区| 久久亚洲国产一区二区| 国产一级小视频| 国产福利一区视频| 成年人国产视频| 久久黄色毛片| 97一区二区在线播放| 99热这里只有精品在线播放| 色婷婷电影网| 成人在线观看一区| 为你提供最新久久精品久久综合| 99re在线观看视频| 亚洲无码精品在线播放| 久久国产成人精品国产成人亚洲| 三级毛片在线播放| 国产精品99久久久| 亚洲无码高清一区二区| 18禁不卡免费网站| 色综合热无码热国产| 色天天综合久久久久综合片| 国产精品久久久久久搜索| 国产欧美日韩91| 18禁不卡免费网站| 色综合中文字幕| www亚洲天堂| 国产精品毛片在线直播完整版| 看国产一级毛片| 久久天天躁狠狠躁夜夜2020一| 亚洲一区波多野结衣二区三区| 午夜视频在线观看免费网站| 99视频精品全国免费品| 日韩精品高清自在线| 国产精品理论片| 亚洲精品欧美日本中文字幕 | 女人毛片a级大学毛片免费| 就去色综合| 亚洲欧美成人综合| 国产成人亚洲欧美激情| 日韩在线2020专区| 在线观看无码av免费不卡网站 | 久草国产在线观看| 在线免费观看AV| 免费毛片视频| 日本高清有码人妻| 在线视频97| 欧美不卡视频一区发布| 日韩在线成年视频人网站观看| 黄色三级网站免费| 国产精品精品视频| 97色伦色在线综合视频| 日本精品中文字幕在线不卡| 欧美伊人色综合久久天天| 亚洲丝袜中文字幕| 91免费观看视频| 久久精品人人做人人爽电影蜜月| 亚洲国产高清精品线久久| 欧美精品v欧洲精品| 色视频国产| 欧美性天天| 亚洲天堂视频在线免费观看| 免费毛片网站在线观看| 久久性妇女精品免费| 亚洲天堂视频在线观看免费| 国产成人AV男人的天堂| 亚洲最新地址| 四虎影视永久在线精品| 又猛又黄又爽无遮挡的视频网站| 国产无码网站在线观看| 9啪在线视频|