張炳火,李漢全,羅娟艷,楊建遠,石紅璆,孫鳳珍
(九江學院藥學與生命科學學院,江西九江 332000)
放線菌JXJ-0136對白菜和豇豆生長的影響及其解磷作用
張炳火,李漢全,羅娟艷,楊建遠,石紅璆,孫鳳珍
(九江學院藥學與生命科學學院,江西九江 332000)
【目的】確定放線菌JXJ-0136的分類地位,分析其溶解不溶性磷的能力,在作物根際土壤定殖的情況及對蔬菜種子萌發、幼苗生長和蔬菜產量的影響,評價該菌在研制微生物肥料方面的潛在應用價值。【方法】利用培養特征、形態學特征和16S rRNA基因序列系統發育分析,初步確定菌株JXJ-0136的分類學地位;以白菜和豇豆為指示植物,采用瓊脂平板法,研究該菌對蔬菜種子萌發和幼苗生長的影響;采用田間栽培試驗,研究菌株對作物生長和產量的影響,測定栽培前后土壤總磷的含量,分析該菌對作物利用土壤磷效率的影響,并對作物根際土壤微生物進行分離純化,分析該菌在根際土壤中的定殖情況;采用液體純培養方式,研究菌株對不溶性無機磷和有機磷的溶解效率,分析其解磷機理。【結果】放線菌JXJ-0136在6—45℃、pH 4.0—13.0和0—4%(w/v)的鹽濃度下均能生長,其中最適生長溫度、pH和鹽濃度分別約為28℃、pH 8.0和1%(w/v),在ISP2培養基上該菌氣絲較發達,灰白色,孢子絲簇生,孢子長卵圓形;該菌16S rRNA基因序列與鏈霉菌Streptomyces violascens、S. somaliensis、S. hydrogenans、S. albidoflavus和S. daghestanicus的親緣關系最近,相似性依次為 97.98%、97.71%、97.30%、97.23%和 97.03%,但在系統進化樹上與這些菌聚在不同分支上;該菌培養液能夠顯著提高作物種子萌發率,促進幼苗生長,在0.2%—0.8%的劑量下,白菜種子萌發率、幼苗株高和根長分別比對照組增加3.55%—12.61%、13.91%—53.03%和7.37%—51.92%,豇豆種子萌發率、幼苗株高和根長分別比對照組增加4.71%—21.18%、3.60%—22.33%和2.37%—20.08%;田間栽培試驗顯示,該菌能夠定殖于根際土壤,促進作物對土壤磷的利用,提高作物產量,當每穴施加5 mL該菌培養液,試驗結束時,白菜和豇豆試驗組的土壤總磷含量分別下降(23.56±2.65)%和(37.10±1.98)%,分別為對照組的(1.77±0.29)和(2.70±0.15)倍(P<0.01),而白菜和豇豆的產量卻分別比對照組增加(27.59±6.15)%和(70.29±5.15)%(P<0.01);液體純培養條件下接種培養5 d后,無機磷和有機磷培養基pH值由起始的7.0分別降至5.0和6.0,有效磷元素含量比對照組分別增加(73.94±0.94)和(7.12±0.28)mg(P<0.01)。【結論】放線菌JXJ-0136是鏈霉菌屬的成員,能夠顯著提高作物種子的萌發率,增加幼苗株高和根長,并定殖于根際土壤中,增加土壤可溶性磷的含量,提高作物對土壤磷的利用效率,促進它們的生長,增加其產量,在微生物肥料研制中具有較大的潛在應用價值。
微生物肥料;放線菌JXJ-0136;鏈霉菌;白菜;豇豆;解磷
【研究意義】農業可持續發展已成為全球特別是中國的一個重要議題[1]。然而,長期大量使用化學肥料導致土壤有機物質減少、質量惡化[2-3]、微生物區系發生變化[1,4]、土壤生態遭受嚴重破壞,肥力降低[5-6]。因此,減少化學肥料的用量已得到廣泛提倡[7]。許多微生物具有促進植物生長、提高營養成分的可用性及其攝取率、維持植物健康等多種功能,因此,微生物肥料成為可替代或部分替代化學肥料的理想候選者[8-11]。放線菌通常能夠產生抗逆性較強的孢子,并能夠定殖于植物根部土壤,產生各種抗生素,抑制多種植物病原體[12-14],分泌生長調節物質[15],同時這類微生物還具有解磷、解鉀等各種功能[12,16-18],是研制微生物肥料的理想材料,因此,開展放線菌菌肥的研制對農業可持續發展具有重要意義。【前人研究進展】放線菌菌肥的研究受到國內外廣泛關注,在實驗室[17]和野外[12-16,18]開展了許多工作,特別是尹莘耘等[13-16]對“5406”放線菌菌肥開展了一系列系統研究,在20世紀50—70年代,全國各地曾進行了大面積推廣應用“5406”菌肥,取得了良好的增產效果,該菌肥的有效微生物為涇陽鏈霉菌(Streptomyces jingyangensis)[19]。近年來,國內放線菌菌肥的研究主要集中在生物防治方面,同時放線菌對作物種子萌發、幼苗生長、作物產量和品質的影響也日益受到關注。趙娟等[20]篩選到3株廣譜拮抗放線菌Act1、Act11和Act12,它們對甜瓜和西瓜枯萎病菌具有拮抗活性,并對甜瓜幼苗具有促生作用,且Act12對土傳植物病原真菌鐮刀菌,如木賊鐮孢、接骨木鐮孢、尖鐮孢西瓜專化型、尖鐮孢棉花專化型和尖鐮孢黃瓜專化型等,均具有較好的抑制作用[21],該菌與腐植酸鉀配施,能夠提高丹參出苗率,減少植株死亡率,改善丹參生長微環境,促進其生長[22]。吳艷輝等[23]篩選到一株對多種植物病原真菌具有抑制作用的放線菌 W04,該菌株對西瓜枯萎病的抑制作用較強,在80%左右;王蘭英等[24]研究發現金黃垂直鏈霉菌 HN6對香蕉枯萎病的防治效果達72.02%,極顯著高于95%惡霉靈1 200倍液,并能提高香蕉生物量;張艷杰等[25]田間試驗表明玫瑰黃鏈霉菌Men-myco-93-63固體發酵物在對番茄連作障礙防效達46%;沈婷等[26]研究表明吸水鏈霉菌B04固體發酵物能有效降低草莓發病率,促進草莓生長,改善草莓品質;王蘭英等[27]研究表明放線菌HN20對生菜具有顯著促生作用,提高其各項生長指標;王世強等[28]發現鏈霉菌JD211能夠顯著提高土壤速效N、P含量,顯著促進水稻幼苗生長,改善其生長微環境。然而,目前多數研究是在實驗室條件下進行,而野外田間試驗研究則較少開展。因此,亟需加強野外試驗研究,以便真實評價放線菌菌肥在實際應用中的效果。【本研究切入點】放線菌菌肥的作用機制多種多樣,包括防治植物病害、增加土壤有效磷和鉀等礦物質元素的含量、提高種子發芽率和促進作物生長等[14-15,18,20-31]。菌株 JXJ-0136是筆者實驗室篩選的一株具有肥料效應的放線菌,本文將以2種常見蔬菜為指示植物,結合實驗室和野外田間栽培試驗,研究菌株JXJ-0136對作物生長的影響及其機制。【擬解決的關鍵問題】明確 JXJ-0136菌株的分類學地位及促進作物生長的機制,分析其潛在應用價值,為放線菌菌肥的研制提供新材料。
試驗于2013—2014年在九江學院完成。
1.1 菌株及培養基
菌株 JXJ-0136由筆者實驗室分離自廬山土樣的一株放線菌。供試植物白菜,特純矮抗青(江西洪城種業有限公司);豇豆,美國無架豆(徐州市新天地種業有限公司)。
放線菌培養基:葡萄糖4 g,酵母浸粉4 g,麥芽浸粉5 g,微量鹽1 mL(微量鹽組成:FeSO4·7H2O 0.2 g,MnCl2·4H2O 0.1 g,ZnSO4·7H2O 0.1g,蒸餾水100 mL),H2O 1 L,pH 7.2,121℃滅菌30 min。解磷培養基:采用中華人民共和國農業行業標準NY/T 1847 —2010的配方[32]。葡萄糖10 g,(NH4)2SO40.5 g,NaCl 0.3 g,MgSO4·7H2O 0.3 g,KCl 0.3 g,FeSO4·4H2O 0.036 g,MnSO4·4H2O 0.03 g;有機磷(卵磷脂,2.0 g)或無機磷(Ca3(PO4)210 g);去離子水1 L;pH 7.0,121℃滅菌30 min。種子萌發培養基:參考文獻[33],Ca(NO3)20.8207 g,KNO30.5056 g,MgSO4·7H2O 0.6162 g,KH2PO40.2722 g,Na2-EDTA 0.0745 g,FeSO4·7H2O 0.0557 g,H3BO30.02860 g,MnSO40.01105 g,CuSO4·5H2O 0.00092 g,ZnSO4·7H2O 0.0022 g,H2MoO40.0009 g,蒸餾水1 L,瓊脂15—18 g,pH 7.0,121℃滅菌30 min。
1.2 放線菌JXJ-0136的鑒定
[34]對JXJ-0136進行初步鑒定。采用插片法[35]獲得菌絲,用光學顯微鏡和掃描電鏡觀察菌絲形態特征。以ISP 2培養基[36]為基礎培養基,采用不同的pH(2.0—14.0)、NaCl含量(m/v,0—10%)和培養溫度(4—50℃)培養該菌,其中pH和NaCl耐受性試驗培養溫度為28℃,生長溫度試驗的培養基pH為7.4,NaCl含量為0。采用溶菌酶法提取基因組DNA,用細菌通用引物 primer A(5′-AGAGTTTG ATCCTGGCTCAG-3′)和primer B(5′-TACGGCTAC CTTGTTACGACTT-3′)進行PCR擴增,擴增產物送上海生工測序部測序,并與數據庫 EzTaxon Server version 2.1(http://www.ezbiocloud.net/ eztaxon)的16S rRNA基因序列進行比較,調出相似性高的菌株序列,利用軟件CLUSTAL_X1.83進行多重序列比對,采用MEGA軟件,以鄰接法構建16S rRNA基因序列系統進化樹。
1.3 放線菌JXJ-0136對種子萌發及幼苗生長的影響
將菌株 JXJ-0136接種于放線菌培養基中,置于180 r/min、28℃的條件下培養3 d,再在種子萌發培養基中分別加入0.2%、0.4%、0.6%和0.8%(v/v)的放線菌培養液,搖勻后倒入無菌組培瓶中,冷卻凝固后將經表面消毒的蔬菜種子置于培養基中,用組培膜封瓶口,于28℃、光照強度為3 000 lx,光暗比為12 h∶12 h的條件下培養,3—5 d后觀察種子萌發及幼苗生長情況,并計算種子萌發率,測量幼苗株高和根長。另外,將未接種放線菌的培養基按照0.2%、0.4%、0.6% 和 0.8%(v/v)的量,加入種子萌發培養基中,作為培養基對照組;空白對照組加無菌水。
1.4 田間試驗
利用實驗地土壤直接做營養缽,并培育豇豆和白菜幼苗,將生長一致的幼苗進行移栽,移栽處每穴施加5 mL放線菌培養液,移栽后整個生長過程中不施加任何其他肥料,統一管理,定時觀察作物生長狀況,及時收獲豆莢,測量并記錄其長度和質量,取平均值;白菜45 d后收獲,測量其株高和質量,取平均值。對照組施加 5 mL未接菌的放線菌培養基。田間試驗于2013年4—10月在九江學院潯東校區實驗地進行。
1.5 放線菌JXJ-0136對土壤總磷的影響
田間試驗結束后,取植物根部土壤烘干并粉碎,用100目篩子過篩,稱取0.5000 g置于錐形瓶中,參考汪小蘭等[37]的方法提取土壤總磷。以少許蒸餾水潤濕,加10 mL濃硫酸和1 mL高氯酸,于電爐上加熱消煮,至瓶內溶液變為白色后繼續消煮30 min,消煮液冷卻后洗入200 mL容量瓶,并定容,采用鉬銻抗比色法[32]測定溶液中可溶性磷的含量。
1.6 放線菌JXJ-0136在植物根部土壤的定殖
田間試驗結束后,取試驗組和對照組的植物根部,將根部土樣用無菌水進行梯度稀釋,取稀釋液在ISP 2瓊脂平板上涂布,置于28℃條件下培養3—7 d,觀察平板上生長的放線菌形態特征,將JXJ-0136的疑似放線菌菌落進一步純化,并與 JXJ-0136的菌落形態特征、色素產生情況、菌絲形態特征等進行比較,判斷所分離在放線菌是否可能為放線菌JXJ-0136。
1.7 放線菌JXJ-0136純培養解磷效果
取放線菌JXJ-0136培養液按照5%(v/v)的接種量,接入不溶性有機或無機磷液體培養基中,于 180 r/min、28℃的條件下培養,每24 h取樣1次,共取樣5次,樣品溶液于4 500 r/min離心20 min,取上清,采用鉬銻抗比色法[32]測定上清液中有效磷含量。第 5次取樣后用pH計檢測各樣品的pH。
1.8 統計學處理
采用SPSS19.0統計軟件對數據進行統計處理。確定3次重復實驗的平均值(mean value)和標準偏差(standard deviation,SD),繪圖數據取3次試驗的平均值,試驗組與對照組比較,采用單因素方差分析,P≤0.05為差異顯著,P≤0.01為差異極顯著。
2.1 放線菌JXJ-0136初步鑒定
菌株JXJ-0136在6—45℃、pH 4.0—13.0和0—4%的鹽濃度下均能生長,其中最適生長溫度、pH和鹽濃度分別為28℃、pH 8.0和1%。該菌氣絲較發達,灰白色,孢子絲簇生,孢子長卵圓形(圖1),16S rRNA基因序列(1 463 bp)分析表明,菌株JXJ-0136是鏈霉菌屬的成員,與Streptomyces violascens ISP 5183T( AY999737) 、 S. somaliensis NBRC 12916T(AB184243)、S. hydrogenans NBRC 13475T(AB184868)、S. albidoflavus DSM 40455T(Z76676)和S. daghestanicus NRRL B-5418T(DQ442497)的相似性依次為 97.98%、97.71%、97.30%、97.23%和97.03%,但在系統進化樹上后5株菌聚在單獨一支,而菌株JXJ-0136形成單獨一支(圖2);該菌與其他有效發表種的16S rRNA基因序列相似性均低于97%。

圖1 放線菌JXJ-0136孢子絲Fig. 1 Spore chains of actinomycete strain JXJ-0136
2.2 對種子萌發、幼苗株高和根長的影響
添加 0.2%—0.8%的無菌培養基對白菜和豇豆種子萌發率、幼苗株高和根長均無明顯影響;而添加0.2%—0.6%的放線菌JXJ-0136培養液時,白菜種子萌發率、幼苗株高和根長均隨培養液劑量的增加而增加,在劑量為 0.6%時試驗組比對照組分別高(12.61± 2.93)%、(53.03±5.72)%和(51.92±10.13)%(P<0.01),但繼續增加放線菌培養液劑量時,白菜種子萌發率、幼苗株高和根長均略有減少;在試驗濃度下(0.2%—0.8%),豇豆種子萌發率、幼苗株高和根長均隨放線菌培養液劑量的增加而增加,在劑量為0.8%時,試驗組分別比對照組高(21.18±2.04)%、(22.33± 5.56)%和(20.08±4.32)%(P<0.01)(圖3)。

圖2 菌株JXJ-0136及其相關種屬的系統進化樹Fig. 2 Phylogenetic tree based on 16 s rRNA gene sequences analysis of strain JXJ-0136 and related taxa

圖3 放線菌JXJ-0136培養液對白菜和豇豆種子萌發率、幼苗株高和根長的影響Fig. 3 Influences of actinomycete strain JXJ-0136 culture on the germination rates, heights and root lengths of seedlings of B. chinensis and V. unguiculata
2.3菌株對栽培作物生長及產量的影響
放線菌 JXJ-0136對試驗蔬菜的生長和產量均有較大影響。試驗組豆莢平均長度為(34.28±1.10)cm,比對照組(31.51±0.96)cm增加(8.79±3.48)%(P <0.05);單株豇豆的平均產量為(195.98±5.92)g,比對照組(115.08±6.17)g增產(70.29±5.15)%(P <0.01);白菜平均高度為(13.65±0.26)cm,比對照組(10.45±0.38)cm增加(30.86±2.49)%(P<0.01);白菜每株平均質量為(205.63±9.92)g,比對照組(161.17±2.07)g增加(27.59 ± 6.15)%(P<0.01)。
2.4 放線菌JXJ-0136對土壤總磷的影響
無論是否施加放線菌JXJ-0136,栽培作物后土壤總磷含量均會顯著降低(P<0.05,P<0.01),但對照組白菜土壤總磷含量比栽培前(1.44±0.06)mg·g-1降低了(13.32±2.75)%,而放線菌試驗組白菜土壤總磷含量卻比栽培前降低了(23.56±2.65)%,是對照組的(1.77±0.29)倍(P<0.01);對照組(未施加放線菌)豇豆土壤總磷含量只比栽培前(1.43±0.07)mg·g-1降低了(12.76±3.34)%,而放線菌試驗組豇豆土壤總磷含量卻比栽培前降低了(37.10±1.98)%,是對照組的(2.70±0.15)倍(P<0.01),這說明放線菌促進了作物對土壤磷的利用(圖4)。
2.5 放線菌JXJ-0136在植物根部的定殖
從施加放線菌 JXJ-0136培養液的白菜和豇豆根部土樣中,都分離到了與JXJ-0136菌落形態特征、產生的色素顏色、菌絲形態特征等均一致的放線菌,其中白菜根際土樣中為(10.33±2.52)×103CFU/g干土,豇豆根際土樣中為(8.33±2.08)×103CFU/g干土;而在未施加放線菌 JXJ-0136培養液的對照組植物根部土樣中,未分離到類似放線菌,說明放線菌JXJ-0136能夠在白菜和豇豆根部土壤定殖。

圖4 放線菌JXJ-0136對土壤總磷含量的影響Fig. 4 Influences of actinomycete strain JXJ-0136 on the soil total phosphorus contents
2.6 放線菌JXJ-0136液體解磷效果
在純培養條件下,放線菌JXJ-0136對不溶性有機磷和無機磷均具有較好的降解作用,培養液中有效磷的含量隨培養時間的延長而顯著增加(P<0.01)(圖5),接種之前,培養基中有效磷的含量分別只有(0.86 ±0.05)和(1.26±0.18)mg,接種后5 d,分別增加到(73.94±0.94)和(7.12 ± 0.28)mg;而未接菌的無機磷培養基中有效磷濃度基本未發生變化,有機磷培養基中有效磷濃度稍有上升,但其濃度增加速率遠低于試驗組(P<0.01)(圖5)。試驗結束時,無機磷和有機磷培養基pH由起始pH 7.0分別降至5.0和6.0。
放線菌JXJ-0136與Streptomyces violascens ISP 5183T親緣關系最近。然而,S. violascens的孢子絲為2—8圈螺旋形[38],而菌株JXJ-0136孢子絲簇狀生長,長曲狀,不形成螺旋。一般認為,16S rRNA基因序列相似性在95%以下可定為新屬,98%以下可定為新種[34]。放線菌JXJ-0136與S. violascens ISP 5183T相似性為97.98%,略小于98%,因此,初步確定JXJ-0136是鏈霉菌屬的一個潛在新種,但需要DNA-DNA分子雜交等試驗結果的進一步確認。

圖5 放線菌JXJ-0136對不溶性磷的降解活性Fig. 5 Degradation activities of actinomycete strain JXJ-0136 on insoluble phosphorus
放線菌菌肥“5406”對不同農作物生長的影響不同,其增產率在 5%—45%[15]。王蘭英等[27]研究表明灰色鏈霉菌HN20對黃瓜促生作用不明顯,但在低劑量條件下卻顯著促進生菜種子胚芽和胚根生長,增加其生物量,而在高濃度下則有抑制作用。李堆淑[29]研究發現細黃鏈霉菌培養液低濃度促進黃芩種子萌發和幼苗生長,高濃度則表現抑制作用。本研究也發現類似現象,在試驗條件下,豇豆種子的萌發率、幼苗株高和根長,均隨放線菌JXJ-0136使用劑量的增加而增加;但白菜種子的萌發率、幼苗株高和根長在劑量<0.6%時,隨使用劑量增加而增加,>0.6%時則隨著劑量增加而降低;同時該菌對白菜和豇豆的增產效果也具有顯著差異,這說明放線菌JXJ-0136對不同農作物的影響不同。
生長調節物質能夠刺激植物種子萌發,提高發芽率[39]。放線菌菌肥“5406”能夠產生多種植物生長調節物質,提高作物種子萌發率,促進根的生長[15]。放線菌 JXJ-0136制劑能夠顯著增加白菜和豇豆種子萌發率、幼苗株高及根長,這說明該菌能夠產生植物生長調節物質,但這些生長調節物質的理化性質及類型等尚需要進一步研究。
溶解土壤中不溶性元素,為植物提供可吸收的礦物質營養,是微生物肥料促使農作物增產的主要機制之一。許多放線菌能夠有效提高土壤中有效磷的含量,如放線菌菌肥“5406”[16]、Micromonospora aurantiaca MAMPM和灰色鏈霉菌SGMPM[12]、玫瑰黃鏈霉菌Menmyco-93-63[25]和鏈霉菌JD21[28]等。本研究表明,放線菌JXJ-0136在純培養條件下,接種于不溶性無機磷和有機磷培養基并培養,其有效磷含量均隨著培養時間的延長而迅速增加;在土壤中使用放線菌JXJ-0136制劑后,土壤中總磷含量顯著降低,這說明該菌能夠增加土壤中有效磷含量,促進植物對磷的吸收。因此,溶解不溶性磷,為植物提供可吸收的有效磷,是放線菌JXJ-0136促進植物生長的重要機制之一。
分泌小分子有機酸是解磷微生物溶解不溶性無機磷的重要方式,這些小分子有機酸主要包括草酸、乙酸、乳酸、酒石酸、琥珀酸、檸檬酸、丁二酸、丙酸和蘋果酸等,由于有機酸的產生,往往導致pH降低[40-42]。放線菌JXJ-0136接種于不溶性無機磷培養基,培養5 d后,培養液的pH比空白對照組降低了2.0,這說明產生有機酸是該菌溶解不溶性無機磷的機制之一,然而該菌分泌何種有機酸尚需要進一步研究。
JXJ-0136菌株對不溶性有機磷也具有一定的降解作用。許多微生物在環境中缺少正磷酸鹽時,可誘導其細胞產生磷酸酶,將有機磷等降解為可溶性正磷酸鹽,滿足其生長需要。但由于不溶性有機磷培養基接種該菌培養5 d后,培養液的pH比空白對照組降低了0.98,pH降低可促進卵磷脂水解。因此,該菌對有機磷的降解作用是由于其分泌了有機酸,有機酸再促使卵磷脂的水解作用,還是由于該菌能夠產生水解卵磷脂的磷酸酶,尚需要進一步研究。
有效微生物能否在施用的植物根際土壤中長期存活,并與植物形成特定的互利關系,是微生物肥料肥效能否持久的關鍵。放線菌菌肥“5406”肥效持久與其有效菌在很多作物根際土壤中能夠長期、大量定殖有關[14]。張艷杰等[25-28]研究也發現,具有肥料效應的鏈霉菌能在作物根部土壤定殖良好。本研究在整個栽培試驗中,只在栽培時施加一次放線菌 JXJ-0136制劑,但其肥效卻持續至白菜和豇豆整個生長周期,這與該菌能夠在作物根際土壤中定殖有一定聯系。
放線菌JXJ-0136是鏈霉菌屬的一個潛在新種,該菌能夠產生未知生長調節物質,提高白菜和豇豆種子萌發率,增加幼苗株高和根長,并定殖于作物根際土壤,溶解土壤中不溶性磷,為植物提供可吸收的有效磷,促進作物生長,提高作物產量,在微生物肥料研制方面具有一定的潛在應用價值。
References
[1] LIU M, KLEMENS E, ZHANG B, STEPHANIE I J H, LI Z P,ZHANG T L, SABINE R. Effect of intensive inorganic fertilizer application on microbial properties in a paddy soil of subtropical China. Agricultural Sciences in China, 2011, 10(11): 1758-1764.
[2] 徐明崗. 中國土壤肥力演變. 北京: 中國農業科學與技術出版社,2006. XU M G. The Evolution of China’s Soil Fertility. Beijing: China Agricultural Science and Technology Press, 2006. (in Chinese)
[3] KIBBLEWHITE M G, RITZ K, SWIFT M J. Soil health in agricultural systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363: 685-701.
[4] GEISSELER D, SCOW K M. Long-term effects of mineral fertilizers on soil microorganisms-A review. Soil Biology & Biochemistry, 2014,75: 54-63.
[5] AYALA S, RAO E V. Perspective of soil fertility management with a focus on fertilizer use for crop productivity. Current Science, 2002,82(7): 797-807.
[6] HU J L, LIN X G, WANG J H, DAI J, CUI X C, CHEN R R,ZHANG J B. Arbuscular mycorrhizal fungus enhances crop yield and P-uptake of maize (Zea mays L.): A field case study on a sandy loam soil as affected by long-term P-deficiency fertilization. Soil Biology and Biochemistry, 2009, 41(12): 2460-2465.
[7] WILLIAMS A, B?RJESSON G, HEDLUND K. The effects of 55 years of different inorganic fertiliser regimes on soil properties and microbial community composition. Soil Biology and Biochemistry,2013, 67: 41-46.
[8] KAUR G, REDDY M S. Effects of phosphate-solubilizing bacteria,rock phosphate and chemical fertilizers on maize-wheat cropping cycle and economics. Pedosphere, 2015, 25(3): 428-437.
[9] WELLER D M. Pseudomonas biocontrol agents of soilborne pathogens: Looking back over 30 years. Phytopathology, 2007, 97(2):250-256.
[10] SINGH H, REDDY M S. Effect of inoculation with phosphate solubilizing fungus on growth and nutrient uptake of wheat and maize plants fertilized with rock phosphate in alkaline soils. European Journal of Soil Biology, 2011, 47: 30-34.
[11] ADESEMOYE A O, TORBERT H A, KLOEPPER J W. Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system. Canadian Journal of Microbiology,2008, 54: 876-886.
[12] HAMDALI H, HAFIDI M, VIROLLE M J, OUHDOUCH Y. Growth promotion and protection against damping-off of wheat by two rock phosphate solubilizing actinomycetes in a P-deficient soil under greenhouse conditions. Applied Soil Ecology, 2008, 40(3): 510-517.
[13] 尹莘耘, 荀培琪, 林聲遠, 邱桂英, 張均康. 5406抗生菌肥料作用機制的研究Ⅱ. 產生抗菌物質的分析研究. 微生物學報, 1965,11(2): 270-274. YIN S Y, XUN P Q, LIN S Y, QIU G Y, ZHANG J K. Studies on the mechanisms of antagonistic fertilizer “5406” II. Analysis of the antibiotic substances. Acta Microbiologica Sinica, 1965, 11(2):270-274. (in Chinese)
[14] 尹莘耘, 張均康, 荀培琪. 5406抗生菌肥料作用機制的研究IV. 抗生菌在土壤中和作物根周圍活動情況的研究. 微生物學報, 1965,11(2): 281-287. YIN S Y, ZHANG J K, XUN P Q. Studies on the mechanisms of antagonistic fertilizer “5406” IV. The status of the antagonist in the soil and around the crop root. Acta Microbiologica Sinica, 1965, 11(2):281-287. (in Chinese)
[15] 尹莘耘, 荀培琪, 邱桂英, 林聲遠, 張均康. 5406抗生菌肥料作用機制的研究I. 5406號抗生菌產生刺激物質的分析研究. 微生物學報, 1965, 11(2): 259-269. YIN S Y, XUN P Q, QIU G Y, LIN S Y, ZHANG J K. Studies on the mechanisms of antagonistic fertilizer “5406” I. Isolation of the stimulating substances. Acta Microbiologica Sinica, 1965, 11(2):259-269. (in Chinese)
[16] 尹莘耘, 張均康, 荀培琪. 5406抗生菌肥料作用機制的研究Ⅲ. 抗生菌在不同土類中的適應性及其轉化氮、磷元素的分析. 微生物學報, 1965, 11(2): 275-280. YIN S Y, ZHANG J K, XUN P Q. Studies on the mechanisms of antagonistic fertilizer “5406” III. Analysis of the adaptability of antagonist “5406” in different types of soils and the conversion ofnitrogen and phosphorus. Acta Microbiologica Sinica, 1965, 11(2):275-280. (in Chinese)
[17] HAMDALI H, BOUIZGARNE B, HAFIDI M, LEBRIHI A,VIROLLE M J, OUHDOUCH Y. Screening for rock phosphate solubilizing Actinomycetes from Moroccan phosphate mines. Applied Soil Ecology, 2008, 38: 12-19.
[18] HAMDALI H, HAFIDI M, VIROLLE M J, OUHDOUCH Y. Rock phosphate solubilizing Actinomycetes: screening for plant growth promoting activities. World Journal of Microbiology & Biotechnology,2008, 24(11): 2565-2575.
[19] 陶天申, 岳瑩玉, 梁紹芬, 桑金隆, 尹莘耘. 5406抗生菌——涇陽鏈霉菌新種. 微生物學報, 1979, 19(3): 249-254. TAO T S, YUE Y Y, LIANG S F, SANG J L, YIN S Y. The antibiotic strain 5406-Streptomyces jiangyangensis n. sp. Acta Microbiologica Sinica, 1979, 19(3): 249-254. (in Chinese)
[20] 趙娟, 杜軍志, 薛泉宏, 段春梅, 王玲娜, 申光輝, 陳秦, 薛磊. 3株放線菌對甜瓜幼苗的促生與抗性誘導作用. 西北農林科技大學學報 (自然科學版), 2010, 38(2): 109-116. ZHAO J, DU J Z, XUE Q H, DUAN C M, WANG L N, SHEN G H,CHEN Q, XUE L. The growth-promoting effect and resistance induction of 3 antagonistic actinomyces on Cucumis melo L.. Journal of Northwest A &F University (Natural Science Edition), 2010, 38(2):109-116. (in Chinese)
[21] 趙娟, 薛泉宏, 王玲娜, 段春梅, 薛磊, 毛寧. 多功能放線菌Act12對土傳病原真菌的拮抗性及其鑒定. 中國生態農業學報, 2011,19(2): 394-398. ZHAO J, XUE Q H, WANG L N, DUAN C M, XUE L, MAO N. Antagonistic effect of multifunctional actinomycete strain Act12 on soil-borne pathogenic fungi and its identification. Chinese Journal of Eco-Agriculture, 2011, 19(2): 394-398. (in Chinese)
[22] 段佳麗, 薛泉宏, 舒志明, 王東勝, 何斐. 放線菌 Act12與腐植酸鉀配施對丹參生長及其根域微生態的影響. 生態學報, 2015, 35(6):1807-1819. DUAN J L, XUE Q H, SHU Z M, WANG D S, HE F. Effects of combined application of actinomycetes Act12 bio-control agents and potassium humate on growth and microbial flora in rooting zone of Salvia miltiorrhiza Bge. Acta Ecologica Sinica, 2015, 35(6):1807-1819. (in Chinese)
[23] 吳艷輝, 趙春田, 裘娟萍. 植物病原菌拮抗放線菌的分離篩選與鑒定. 農藥, 2010, 49(2): 146-149. WU Y H, ZHAO C T, QIU J P. Isolation, screening and identification of antagonistic actinomycetes inhibiting plant pathogens. Agrochemicals,2010, 49(2): 146-149. (in Chinese)
[24] 王蘭英, 王琴, 駱焱平. 金黃垂直鏈霉菌 HN6對香蕉的防病促生作用. 西北農林科技大學學報 (自然科學版), 2015, 43(5): 163-167. WANG L Y, WANG Q, LUO Y P. Disease preventing and growth promoting effects of Streptomyces aureoverticillatus strain HN6 on banana. Journal of Northwest A & F University (Natural Science Edition), 2015, 43(5): 163-167. (in Chinese)
[25] 張艷杰, 楊淑, 陳英化, 沈鳳英, 喬丹娜, 李亞寧, 劉大群. 玫瑰黃鏈霉菌防治番茄連作障礙及對土壤微生物區系的影響. 西北農業學報, 2014, 23(8): 122-127. ZHANG Y J, YANG S, CHEN Y H, SHEN F Y, QIAO D N, LI Y N,LIU D Q. Efficiency of Streptomyces roseoflavus against tomato continuous cropping obstacle and effects to soil microflora. Acta Agriculturae Boreali-occidentalis Sinica, 2014, 23(8): 122-127. (in Chinese)
[26] 沈婷, 楊華, 戴樂天, 鄧照亮, 王世梅. 吸水鏈霉菌(Streptomyces hygroscopicus) B04固體菌劑對草莓生長及果實品質影響的研究.農業資源與環境學報, 2016, 33(1): 49-54. SHEN T, YANG H, DAI L T, DENG Z L, WANG S M. Effects of solid fermentation agent of Streptomyces hygroscopicus B04 on strawberry growth and fruit quality. Journal of Agricultural Resources and Environment, 2016, 33(1): 49-54. (in Chinese)
[27] 王蘭英, 姚明燕, 駱焱平. 放線菌HN20對黃瓜和生菜的促生作用.貴州農業科學, 2016, 44(1): 98-100. WANG L Y, YAO M Y, LUO Y P. Growth-promoting effect of actinomycete HN20 strain on cucumber and lettuce. Guizhou Agricultural Science, 2016, 44(1): 98-100. (in Chinese)
[28] 王世強, 魏賽金, 楊陶陶, 李慶蒙, 涂國全, 倪國榮, 潘曉華. 鏈霉菌 JD211對水稻幼苗促生作用及土壤細菌多樣性的影響. 土壤學報, 2015, 52(3): 673-681. WANG S Q, WEI S J, YANG T T, LI Q M, TU G Q, NI G R, PAN X H. Effect of Streptomyces JD211 promoting growth of rice seedlings and diversity of soil bacteria. Acta Pedologica Sinica, 2015, 52(3):673-681. (in Chinese)
[29] 李堆淑. 細黃鏈霉菌對黃芩種子萌發特性的影響. 種子, 2015,34(9): 24-27. LI D S. Effects of Streptomyces microflavus on seed germination characteristics of Scutellaria baicalensis. Seed, 2015, 34(9): 24-27. (in Chinese)
[30] 張忠良, 何斐, 馬軍妮, 薛泉宏, 楚金強. 放線菌劑及其與有機肥配施對魔芋的促生作用. 西北農林科技大學學報 (自然科學版),2016, 44(3): 173-180. ZHANG Z L, HE F, MA J N, XUE Q H, CHU J Q. Growthpromoting effect of actinomycetes agents and organic fertilizer onAmorphophallus konjac. Journal of Northwest A & F University (Natural Science Edition), 2016, 44(3): 173-180. (in Chinese)
[31] 朱金英, 王友平, 郭建軍, 張書良, 高春華. 細黃鏈霉菌 (AMCC 400001) 與有機肥配合施用對設施番茄生長和產量的影響. 北方園藝, 2015(22): 177-181. ZHU J Y, WANG Y P, GUO J J, ZHANG S L, GAO C H. Effect of Streptomyces microflavus (AMCC 400001) and organic fertilizer combined application on the growth and yield of tomato in greenhouse. North Horticulture, 2015(22): 177-181. (in Chinese)
[32] 中華人民共和國農業部種植業管理司. 微生物肥料生產菌株質量評價通用技術要求: NY/T 1847—2010. 2011: 4-5. [2011-10-13]. Planting Management, Ministry of Agriculture of the People’s Republic of China. General technical requirements for production strain quality of microbial fertilizer: NY/T 1847-2010, 2011: 4-5. [2011-10-13]. (in Chinese)
[33] 申建波, 毛達如. 植物營養研究方法. 3版. 北京: 中國農業大學出版社, 2011. SHEN J B, MAO D R. Research Methods of Plant Nutrition. 3rd ed. Beijing: China Agricultural University Press, 2011. (in Chinese)
[34] 徐麗華, 李文均, 劉志恒, 蔣成林. 放線菌系統學——原理、方法及實踐. 北京: 科學出版社, 2007. XU L H, LI W J, LIU Z H, JIANG C L. Actinomycete Systematic -Principle, Methods and Practice. Beijing: Science Press, 2007. (in Chinese)
[35] 黃秀梨, 辛明秀. 微生物學實驗指導. 2版. 北京: 高等教育出版社,2008. HUANG X L, XIN M X. Microbiology Experiment Guidance. 2nd ed. Beijing: Higher Education Press, 2008. (in Chinese)
[36] SHIRLING E B, GOTTLIEB D. Methods for characterization of Streptomyces species. International Journal of Systematic Bacteriology,1966, 16(3): 313-340.
[37] 汪小蘭, 田荷珍, 耿承延. 基礎化學. 北京: 高等教育出版社, 1995. WANG X L, TIAN H Z, GENG C Y. Basic Chemistry. Beijing:Higher Education Press, 1995. (in Chinese)
[38] TRESNER H D, HAYES J A, BACKUS E J. Streptomyces wistariopsis sp. nov. a new violet-spored species. International Journal of Systematic Bacteriology, 1969, 19(2): 141-152.
[39] 宋文堅, 曹棟棟, 金宗來, 周偉軍. 影響根寄生植物列當種子萌發因素的研究. 種子, 2005, 24(2): 44-47. SONG W J, CAO D D, JIN Z L, ZHOU W J. The factors of influencing seed germination of root parasitic plants broomrape. Seed,2005, 24(2): 44-47. (in Chinese)
[40] CHEN Y P, PEKHA P D, ARUN A B, SHEN F T, LAI W A,YOUNG C C. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied Soil Ecology, 2006, 34: 33-41.
[41] HAMEEDA B, REDDY Y H, RUPELA O P, KUMAR G N, REDDY G. Effect of carbon substrates on rock phosphate solubilization by bacteria from composts and macrofauna. Current Microbiology, 2006,53(4): 298-302.
[42] 張英, 蘆光新, 謝永麗, 姚拓, 榮良燕, 朱穎. 溶磷菌分泌有機酸與溶磷能力相關性研究. 草地學報, 2015, 23(5): 1033-1038. ZHANG Y, LU G X, XIE Y L, YAO T, RONG L Y, ZHU Y. The relationship between organic acid secreted from phosphorus-solubilizing bacteria and the phosphate-solubizing ability. Acta Agrestia Sinica,2015, 23(5): 1033-1038. (in Chinese)
(責任編輯 岳梅)
Influences of Actinomycete Strain JXJ-0136 on the Growth of Brassica chinensis and Vigna unguiculata and Its Phosphate Solubilization
ZHANG Bing-huo, LI Han-quan, LUO Juan-yan, YANG Jian-yuan, SHI Hong-qiu, SUN Feng-zhen
(College of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, Jiangxi)
【Objective】The objective of this study is to determine the taxonomic status of an actinomycete strain JXJ-0136,investigate its ability of dissolving insoluble phosphorus, the colonization in the rhizospheric soil of crops, and its influences on the seed germination, seedling growth and yield of vegetables, and to evaluate the application value of strain JXJ-0136 in developingmicrobial fertilizer.【Method】Taxonomic status of strain JXJ-0136 was determined on the basis of the cultural and morphological characteristics, and the phylogenetic analysis of 16S rRNA gene sequence. Influences of strain JXJ-0136 on the seed germination and seedling growth were studied using agar plate. The field cultivation tests were carried out to investigate the influences of strain JXJ-0136 on the growth and yield of vegetables. The total contents of phosphorus in the soil before and after the field trial were measured to investigate the influence of strain JXJ-0136 on the utilization of phosphorus in the soil by crops. The colonization of strain JXJ-0136 in the rhizospheric soil of the plants was investigated by isolation of the microorganisms in rhizosphere soil. The efficiencies of strain JXJ-0136 to dissolve insoluble inorganic and organic phosphorus were investigated using liquid pure culture. The model vegetables of the study were Brassica chinensis and Vigna unguiculata. 【Result】 Growth of actinomycete strain JXJ-0136 was observed at 6-45℃, pH 4.0-13.0 and 0-4% (w/v) NaCl, with optimal growth at 28℃, pH 8.0 and 1% (w/v) NaCl. Strain JXJ-0136 developed well-branched aerial mycelia on ISP 2 medium. The aerial mycelia was off-white in color. Its spore chains were fascicular with elliptical spores. The 16S rRNA gene sequence was closest to Streptomyces violascens, S. somaliensis, S. hydrogenans, S. albidoflavus and S. daghestanicus with the similarities of 97.98%, 97.71%, 97.30%, 97.23% and 97.03%,respectively. However, strain JXJ-0136 formed different clades on phylogenetic tree. The culture broth of strain JXJ-0136 enhanced the seed germination and the seedling growth significantly. After addition of 0.2%-0.8% broth culture of strain JXJ-0136, the seed germination rate, plant height and root length of B. chinensis were 3.55%-12.61%, 13.91%-53.03% and 7.37%-51.92% higher than those of the controls, respectively. The seed germination rate, plant height and root length of V. unguiculata were 4.71%-21.18%,3.60%-22.33% and 2.37%-20.08% higher than these of the controls, respectively. The field cultivation tests indicated that strain JXJ-0136 could colonize in the rhizospheric soil of the plants, and promoted crops to utilize phosphorus in the soil, and enhanced the yields of the crops. After inoculating with 5 mL broth culture of strain JXJ-0136 to each plant, the soil total phosphorus contents of B. chinensis and V. unguiculata decreased by (23.56±2.65)% and (37.10±1.98)%, respectively, at the end of the tests, which were (1.77±0.29) and (2.70±0.15) times of the controls (P<0.01). The yields of B. chinensis and V. unguiculata increased by (27.59±6.15)% and (70.29±5.15)% (P<0.01) than the controls, respectively. After inoculating strain JXJ-0136 and culturing for 5 days under liquid pure culture condition, the pH values of inorganic and organic phosphorus cultures decreased to 5.0 and 6.0 initially from pH 7.0, respectively, and available phosphorus in the cultures of inorganic and organic phosphorus increased by (73.94±0.94) and (7.12±0.28) mg (P<0.01), respectively. 【Conclusion】Actinomycete JXJ-0136 is a member of the genus Streptomyces. With good properties including increasing the seed germination, plant height and root length of seedling, colonizing in rhizospheric soil, increasing the content of the available phosphorus in the soil, enhancing the crops to utilize the phosphorus in the soil and promoting the growth and yields of crops, strain JXJ-0136 has a potential application value in developing microbial fertilizer.
microbial fertilizer; actinomycete JXJ-0136; Streptomyces; Brassica chinensis; Vigna unguiculata; phosphoric solubilization
2016-03-23;接受日期:2016-05-05
國家自然科學基金(31060010)、江西省科技支撐計劃(20121BBF60048)
聯系方式:張炳火,E-mail:binghuozh@126.com。通信作者李漢全,Tel:0792-8565939;E-mail:lihanquan62@126.com