洪 林, 魏召新, 魏文輝, 譚 平*
(1. 重慶市農業科學院果樹研究所, 重慶 402260; 2. 中國農業科學院油料作物研究所,農業部油料作物生物學與遺傳育種重點實驗室, 武漢 430062)
?
專論與綜述
染色質重塑及其參與植物病害防御應答的研究進展
洪林1,魏召新1,魏文輝2,譚平1*
(1. 重慶市農業科學院果樹研究所, 重慶402260; 2. 中國農業科學院油料作物研究所,農業部油料作物生物學與遺傳育種重點實驗室, 武漢430062)
轉錄相關因子與特異DNA位點結合受染色質空間構象變化的調節,通過染色質重塑機制可以解除染色質高度緊密的折疊狀態,改變組蛋白與DNA鏈間的作用力,控制基因的表達與沉默。ATP依賴的染色質重塑復合物、組蛋白的乙酰化/去乙酰化和甲基化/去甲基化共價修飾等是染色質修飾的主要類型,植物能通過染色質重塑復合物和組蛋白修飾酶復合物直接或間接介導的染色質重塑作用調控防御基因的轉錄,控制植物對病原體侵染的防御應答。本文結合近年來的研究進展,對植物染色質重塑如何調控防御相關基因的表達及病原體蛋白T3SEs、6b和VirE等如何利用染色質重塑干預植物防御系統的分子機制進行了論述。
植物;核小體;染色質重塑;防御應答
真核生物基因組DNA通常由146 bp的染色質DNA圍繞H2A、H2B、H3、H4形成的核心組蛋白八聚體包裝成核小體結構,組蛋白H1再結合于各核小體間的連接DNA上,最終形成串珠樣結構[1]。染色質高級結構的組裝、維持及構象改變則是通過核小體高度有序的自我調節來調控的,而核小體因其結構的特殊性,能阻礙轉錄因子與染色質上靶基因的特異識別位點結合并起始特定基因的表達。然而,真核生物能借助于一些具有酶活性的復合物的作用來改變染色質的結構形態,通過染色質高級結構的各種變化增加基礎轉錄裝置與啟動子的可接近性,對染色質賦予的生物學功能進行調控。
染色質重塑是目前表觀遺傳領域的研究熱點之一,它能驅動核小體的置換或重新排列,改變染色質的空間構象。組蛋白H3和H4的甲基化、乙酰化修飾,ATP依賴的染色質構象變化等是染色質重塑的主要方式,均能使染色質特定區域對核酶的穩定性發生變化,調控基因轉錄[2]。染色質重塑在植物防御相關基因的表達調控中發揮著關鍵作用,病原體侵染植物組織后,組蛋白修飾酶、ATP依賴性染色質重塑相關因子和其他一些調節蛋白被招募到防御相關基因的轉錄控制區域。參與染色質重塑復合體形成的許多蛋白亞基影響MAPK級聯信號、SA信號轉導、ABA信號轉導等途徑,進而由PTI(PAMP-triggered immunity) 和ETI(effector-triggered immunity)介導轉錄水平上的重編程,激活或抑制植物的防御系統[3-4]。本文就染色質重塑的主要方式,染色質重塑調控植物防御應答的機制,病原體如何調控染色質重塑干擾植物防御系統等方面予以綜述,并展望該領域存在的問題及未來發展方向。
目前在動植物中發現至少有兩類高度保守的染色質修飾類型。第一類是通過水解ATP提供能量形成ATP依賴的染色質重塑復合物,進而改變核小體的位置,增強DNA 序列與轉錄因子的相互作用程度,改變組蛋白與DNA鏈之間的空間構象[5];第二類是組蛋白尾部賴氨酸的乙酰化和泛素化,蘇氨酸和絲氨酸的磷酸化,精氨酸的甲基化,谷氨酸的多聚ADP 核糖基化等共價修飾形成組蛋白修飾酶復合物(histone-modifying complex),破壞了基因組DNA與核小體、組蛋白尾部間的結構,間接引起染色質的重塑[6-7]。
1.1ATP依賴的復合物介導染色質重塑過程
ATP依賴的染色質重塑復合物為大分子量的多組分復合體,包含4~17個不同種類的亞基,且在真核生物中高度保守。ATPase亞基為其中一類最重要的蛋白質成分,具有催化和轉位酶活性,屬于SNF2超家族,存在于已知的ATP依賴的染色質重塑復合物中[8]。核心ATPase亞基的保守結構域由DExx和HELICc組成,兩個保守基序被一段長度存在變異的連接序列所間隔,基于各自獨特結構域將ATPase亞基至少可分為SWI/SNF(yeast mating-type switching/sucrose non-fermenting)、INO80、ISWI、CHD等4個亞家族,關于SWI/SNF復合物方面的研究最多[9](圖1)。

圖1 ATPase亞基家族的結構域比較[9]Fig.1 The comparison of protein domains in ATPase family[9]
SWI/SNF復合物最早是從酵母(Saccharomycescerevisiae)中純化得到的[10]。該復合物由8~14個蛋白亞基組成,分子量約1.5 MDa[11]。酵母主要有SWI/SNF和RSC兩種復合物類型,前者以SWI2或SNF2為ATPase催化亞基,而后者為Sth1[10]。擬南芥(Arabidopsisthaliana) SWI/SNF的組成亞基主要有SPLAYED (SYD)、BRAHMA(BRM)、CHR12、CHR23、ATBRCA1、BRG1、ATSWI3A、ATSWI3B、ATSWI3C和ATSWI3D等[12]。果蠅(Drosophilamelanogaster)中也發現與酵母SWI/SNF具有較高同源性的BRAHMA結合相關蛋白BAP和溴區相關的BAP兩種形式的重塑復合物,BRAHMA、Moira、SNR1、BAP60、BAP55等5種亞基為共有的核心組分,OSA亞基、溴區(bromodomain)及BAP170亞基在兩類復合體間表現一定的特異性。此外,BAP111亞基盡管未在酵母中被鑒定出,但卻被認為可能與果蠅染色質的高級形態結構相關聯[13]。人類SWI/SNF同源復合體為BAF和PBAF,分子量約為2 MDa,兩者同源性達到74%,BAF包含hBRM和BRG1兩個ATPase催化亞基,但PBAF的形成沒有hBRM亞基的參與,兩者在體外試驗中表現出相似的生化活性,但在許多細胞代謝途徑中發揮不同的功能[14]。目前關于BRG1及其同源基因的功能研究報道較多,BRG1結構域包括一個進化上保守的ATP水解酶活性區域、C端溴區、AT-hook基序及N端QLQ、HAS和BRK等。參與機體內的多種生理和病理調控過程[15]。其中,C端溴區能夠特異性識別組蛋白H3和H4末端乙酰化的賴氨酸[16]。總體來看,真核細胞SWI/SNF 復合物基于SWI/SNF/BAP/BAF和RSC/PBAP/PBAF兩種模式而建立,可能還有特異性亞基和其他因子參與的多種形式共存。
關于SWI/SNF復合物調控染色質的重塑機制仍未被闡明,科學家認為重塑可能與啟動子特性、染色質狀態、SWI/SNF復合物的濃度、DNA結合因子等有關。目前主要有以下3種假說:滑動模型、組蛋白突變體交換模型、重獲環模型[17-18]。
1.2組蛋白共價修飾參與染色質重塑
組蛋白修飾是染色質重塑的關鍵調控方式之一。乙酰化、甲基化、泛素化、磷酸化、蘇素化等多種共價修飾常發生在組蛋白N端,組蛋白H3和H4的共價修飾直接影響染色質結構。乙酰化和甲基化是最主要的修飾方式,且此過程是可逆的。
1.2.1組蛋白乙酰化與去乙酰化
乙酰化修飾引起的染色質結構重塑是基因轉錄調控的重要調節因素,組蛋白乙酰基轉移酶(HATs)和組蛋白去乙酰基酶(HDACs)共同控制組蛋白末端的乙酰化水平,激活或抑制基因轉錄。目前已經發現的與真核生物染色質重塑相關的HATs有GCN5、P300/CBP、TAFII250、MYST、PCAF等[19];HDACs主要有RPD3、HDAC1、HDAC2、HDAC3、HD1BI、HD1BII、HD2等,參與NCoR/SMRT、SIN3、NuRD及CoREST等HDACs復合物的組裝[20]。
核小體核心組蛋白的N末端尾部保守的賴氨酸(K)是組蛋白的乙酰化位點,組蛋白乙酰化狀態呈多樣性,能使ATP依賴的重塑復合物更加緊密地與DNA模板結合。組蛋白N末端尾部的賴氨酸乙酰化能中和其正電荷,促使染色質形成能與調控蛋白結合的特定結構,進而引發轉錄起始[21]。研究發現單一的HAT能乙酰化游離組蛋白,然而核小體組蛋白的乙酰化則需要包含HAT的多蛋白復合物介導下才可能實現,如FACT、HMG14等染色質修飾因子也參與不同核心組蛋白賴氨酸的乙酰化過程[22]。重組的GCN5僅乙酰化修飾組蛋白H3、H4單體,而含有GCN5的兩大復合物ADA和SAGA才能將核小體結構中組蛋白H3、H4乙酰化[23],PRZ1能通過調節GCN5活性影響GCN5/HAG1復合物參與的染色質重塑效率[24]。組蛋白乙酰化與去乙酰化能改變臨近組蛋白甲基化修飾狀態,H3K9和H3K14的乙酰化修飾可以加強轉錄因子TFⅡD與H3K4me3間的作用[25]。ING4作為HBO1組蛋白乙酰轉移酶復合體的一個重要亞基,卻能與H3K4me3位點結合,招募HBO1復合體,乙酰化修飾靶基因啟動子區的組蛋白,改變染色質結構,影響特定基因的表達[26]。
1.2.2組蛋白甲基化與去甲基化
組蛋白甲基化修飾在基因轉錄調控中發揮十分重要的作用。賴氨酸和精氨酸(R)殘基為主要的修飾位點。H3K4、H3K9、H3K27、H3K36、H3K79、H4K20等位點甲基化修飾后參與染色質結構重塑和基因表達調控,其中H3K4、H3K36、H3K79的甲基化修飾激活基因轉錄,而H3K9、H3K27、H4K20甲基化修飾抑制轉錄;H3R2、H3R8、H3R17、H3R26、H4R3是精氨酸甲基化的修飾位點。此外同一位點可能分別有一甲基化(me1)、二甲基化(me2)、三甲基化(me3)三種方式[27]。組蛋白甲基化修飾也往往與組蛋白乙酰化、DNA甲基化等其他表觀遺傳學修飾協同作用,共同調節染色質結構,影響基因轉錄。
組蛋白的甲基化修飾由一類含SET結構域的甲基轉移酶介導。目前已經發現和證實真核生物中存在數十種組蛋白賴氨酸甲基轉移酶(HKMTs)和精氨酸甲基轉移酶(PRMTs),它們參與染色質結構的形成、基因組印記及轉錄調控等多種生理功能的執行[28]。H3K9位點的甲基化修飾頻率較高,如Su(var)3-9可以特異地甲基化修飾H3K9,招募HP1與組蛋白H3結合,影響染色質構象[29],而SETDB1催化的H3的N末端甲基化可以增強HP1與H3的結合能力[30]。HP1和甲基化的染色質相互作用,抑制基因轉錄[31],SET2、SET1、NSD1、PCG、Dot1等其他HKMTs也在染色質表觀遺傳調控中起關鍵作用。
目前,已從真核生物中鑒定出約11種PRMTs。PRMT2、10和11不具有催化精氨酸甲基化的功能, PRMT1和PRMT4的甲基化修飾激活基因的轉錄,而PRMT5和PRMT6與轉錄抑制相關。PRMT5與PRMT1、PRMT4(也稱為CARM1)均能與染色質重塑復合物發生作用,調節染色質構象變化[32]。PRMT1和CARM1結合組蛋白乙酰化酶,并與染色質重塑復合物發生相互作用,導致染色質結構的解體并激活轉錄,而PRMT5則募集組蛋白去乙酰化酶HDAC,降低轉錄效率[33]。
但去甲基化酶的數量仍然較少,已發現與精氨酸相關的有PADI4、JMJD6;與賴氨酸相關的有LSD1、JHDM1、JHDM2、JHDM3/JMJD2、JARID1[34]。是否存在其他特異酶參與組蛋白的去甲基化,去甲基化酶家族成員的多樣性,去甲基修飾后激活或抑制轉錄的機制等為未來工作的重點。
2.1ATP依賴的染色質重塑因子調控植物防御應答
至今為止,科學家已從擬南芥中分離鑒定出42個SNF2家族ATP酶亞基,這些亞基聚類為24個不同的亞族。它們之中SNF2亞族的SPLAYED(SYD)和BRAHMA (BRM)、SWR1亞族的PIE1、LSH亞族的DDM1和AGO4等被認為具有調節植物防御應答的能力[35]。
SYD和BRM具有特異性和相同的防御相關基因靶位點,兩者均能與ATSWI3B和ATSWI3C互作,但僅SYD的N端能選擇性結合ATSWI3A。高通量轉錄組分析發現,SYD和BRM調控擬南芥全基因組1%的基因表達[36]。SYD-2突變體受病原菌丁香假單胞菌番茄致病變種(Pseudomonassyringaepv. Tomato DC3000, Pst DC3000)侵染后促使SA應答基因PR1的上調表達,暗示SYD可能為SA信號途徑的負調控子,SYD結合特異性分子伴侶,以復合物形式參與防御相關基因的啟動子目標區域的調節。SYD突變型植株仍能對PstDC3000的侵染作出防御應答,這可能與PstDC3000分泌T3SEs有關[36]。PR1基因在BRM-101突變株中的表達增強,但仍然缺乏BRM直接參與植株抗性調節的證據。T3SS功能缺失突變的細菌性斑點病菌丁香假單胞菌(Pseudomonassyringae)可能是研究SYD和BRM在植物防御反應中如何發揮作用的經典試材,BRM能在體外與組蛋白H3和H4結合,BRM結構域中包含有1個溴區及3個不同序列特征的DNA結合區域,缺少其中1個DNA結合區的突變體的表型介于野生型和完全突變型之間,進一步表明BRM的完整生物學功能的實現依賴于3個特征DNA結合域[37]。許多染色質重塑蛋白(CHR)結構域中含有溴區,可特異性識別組蛋白H3和H4末端乙酰化的賴氨酸位點,通過乙酰化和隨后染色質的組裝參與信號依賴性的、非基礎性的基因轉錄調控[38]。溴區直接介導組蛋白乙酰轉移酶相關的共激活子與組蛋白之間的互作,乙酰化的賴氨酸殘基為特異性作用位點[39]。進一步深入研究溴區結構域是否存在其他染色質結合熱點對建立和闡明BRM在植物免疫反應中的作用模式具有重要的指導意義。
PIE1是PstDC3000激發的植物防御應答反應過程中的負調節子。研究發現PIE1突變體的許多防御相關基因組成性表達,通常病原體侵染后這些基因的轉錄被抑制[40]。PIE1與組蛋白變體H2A.Z的共價修飾有關,且H2A.Z在染色質PIE1調控位點的募集需要PIE1參與,PIE1或H2A.Z突變體均表現對PstDC3000的抗性增強,推測PIE1介導H2A.Z與防御相關的靶基因位點結合可能抑制染色質轉錄狀態[40-41]。H2A.Z通常結合在核小體側翼轉錄起始位點,調節熱響應基因的轉錄,控制不同環境溫度條件下植物的生長發育[42]。
DDM1包含一個保守的SNF2-ATP酶結構域,至今未發現其含有SET結構域或甲基轉移酶活性[43]。但是DDM1具有維持甲基化和轉座子沉默的能力[44],這可能是通過DDM1的染色質重塑活性來調節甲基轉移酶和去甲基化酶結合染色質轉錄區實現[45-46]。DDM1突變植株全基因組發生低甲基化,大大抑制基因沉默現象[47]。突變導致DDM1功能喪失,染色質結構改變,PR1和PR2組成性表達,抗病基因SNC1表達上調,因此DDM1表現為防御應答的負調控因子[48]。至于植物DDM1基因調控病原激發的防御反應機制仍有許多不明之處。此外,在擬南芥中還發現另外一種蛋白AGO4,該蛋白調節RNA介導的DNA甲基化(RdDM)和基因沉默,正調控植物對病原體的主動防御[49]。
2.2組蛋白甲基化介導的植物防御應答
與乙酰化相比,甲基化的效應更加多樣化。組蛋白H3甲基化依賴于精氨酸和賴氨酸特定殘基的修飾能發揮激活或抑制轉錄的雙重作用[50]。植物中已報道的調節防御應答的組蛋白甲基化修飾酶有ATX1(arabidopsis homolog of trithorax 1)和SDG8(SET domain group 8)兩種。
ATX1屬于Trithorax家族成員,含有非常保守的SET結構域[51]。H3K4的低水平三甲基化會引起ATX1靶基因的表達整體下調[52],但ATX1本身只影響染色質某些特定部位的核小體H3K4甲基化修飾[53]。研究發現擬南芥ATX1在PstDC3000的T3SS功能缺失突變體激發的植物基礎抗性系統中起正調控作用,ATX1激活WRKY70表達,WRKY70是SA及JA/ET介導的防御信號途徑中的關鍵轉錄因子[54]。ChIP試驗結果表明WRKY70可能為ATX1執行組蛋白甲基化酶功能的初級靶因子,SA應答基因PR1、JA應答基因THI2.1為次級靶因子,PR1和THI2.1維持染色質相應區域保持開放的修飾狀態,促進防御相關基因的轉錄[55]。SDG8在PstDC3000激發的植物防御反應中扮演“分子開關”的角色,調節NB-LRR類基因的LAZ5和RPM1表達,但不影響RPS2、RPS4等基因的轉錄。SDG8能特異性催化H3K36的二甲基化和三甲基化修飾[56],研究發現病原體侵染過程中染色體LAZ5區域H3K36三甲基化程度變高[57]。
植物組蛋白修飾突變體改變了自身的抵抗力,但對于防御相關基因靶位點的特異性和相關染色質特征信號的研究仍不明確。組蛋白多樣性的修飾及時空組合與生物學功能的關系可作為一種重要的表觀標志,即“組蛋白密碼”。組蛋白修飾以協同或漸進的動態轉錄調控方式誘導植物特異的下游防御應答。
2.3組蛋白去乙酰化調控植物防御應答
組蛋白H3和H4的乙酰化修飾與基因活化密切相關。乙酰化酶和去乙酰化酶選擇性修飾使組蛋白乙酰化水平保持平衡狀態[50]。
研究發現兩類HDACs在植物免疫調節中發揮作用,細菌性斑點病菌PstDC3000能增強HDA19的表達,HDA19作為防御反應的正調控因子,而轉錄因子WRKY38和WRKY62負調控病程相關基因PR的表達,WRKY38和WRKY62募集HDA19形成復合物結合于水楊酸響應位點(SArlc),降低組蛋白H3和H4的乙酰化水平并抑制轉錄。對HDA19催化突變體的研究發現去乙酰化活性對于HDA19介導的植物防御相關基因表達是關鍵條件[58-59]。
SRT2為擬南芥中發現的另外一種HDAC,抑制SA生物合成基因的轉錄活性,而SA是植物抵抗細菌性斑點病菌和活體營養性病原等反應中的關鍵信號分子[60]。PstDC3000感染后誘導SRT2表達下調,促進SA合成和防御相關基因的轉錄[61]。
2.4其他參與植物防御應答的染色質相關蛋白
植物中還存在其他一些染色質相關蛋白,這些蛋白也直接參與植物防御應答。科學家通過遺傳篩查分析發現RAD51(SSN1)、SSN2、BRCA2(SSN3)等與植物抗性調節相關[62-63]。SSN2包含一個SWI2/SNF2和MuDR(SWIM)結構域,主要定位于細胞核。敲除擬南芥SSN2基因會引起PR基因表達量降低,表現不抗P.syringae[64]。系統獲得性抗性(SAR)是植物從轉錄和DNA同源重組(HR)兩個水平上產生防御應答的結果,SAR啟動植物基因組中10%的基因轉錄。SNI1負調節SAR和HR,而SSNs(suppressor of SNI1)抑制SNI1的表達,RAD51D(RAD51的5種同源物之一)、SSN1和BRCA2A(BRCA2同源物)共同形成蛋白復合體在TGA轉錄因子的協同作用下與染色質中PR基因的啟動子區相結合,調控基因轉錄[65]。擬南芥BRCA2和RAD51對遺傳毒性物質和病原體感染非常敏感,通過基因組微列陣和CHIP-Seq技術證明BRCA2/RAD51復合物在植物防御應答中發揮關鍵作用,認為RAD51D、BRCA2A、SSN2可能參與染色質重塑復合物調節SNI1和其他PR基因的轉錄事件[63]。
病原體采用多種策略來干擾植物先天免疫系統最終侵染植物體,染色質重塑復合物在進化過程中相當保守,這對于活體營養型和半活體營養型病原體在侵染初期維持穩定的共生關系尤為重要。
最早報道的有玉米炭色旋孢腔菌,該菌能產生HC毒素,HC毒素抑制組蛋白去乙酰化活性,導致組蛋白高度乙酰化,直接調節植物染色質重塑過程[66]。HC毒素還原酶能削弱其毒性并恢復玉米對病原體的抗性[67],但有關組蛋白去乙酰化活性的抑制介導病原體侵染的分子機制仍知之甚少。
3.1根癌農桿菌毒性蛋白VirE和6b
擬南芥和根癌農桿菌是研究病原體毒性因子如何與寄主染色質相關蛋白互作的兩種模式生物。根癌農桿菌能將自身的一段T-DNA整合到植物基因組中,T-DNA包含有生長素和細胞分裂素合成相關基因的編碼序列,促進植物細胞分裂和生長。同時T-DNA還包含冠癭堿合成相關基因,冠癭堿為根癌農桿菌提供營養來源[68]。研究證實核心組蛋白、組蛋白修飾酶、組蛋白分子伴侶、染色質組裝蛋白等在T-DNA整合過程中發揮關鍵作用[69-70]。
根癌農桿菌毒性蛋白VirE2具有調節染色質結構和促進T-DNA整合的功能。擬南芥中,VirE2互作蛋白VIP1(VirE2-interacting protein 1)直接與H2A等核心組蛋白發生作用,VIP1增強VirE2與核小體之間的作用[71]。通過此途徑,VirE2指導T-DNA以復合物形式與寄主染色質結合,從而整合到植物基因組中[72]。此外,VirE2互作蛋白VIP2 (VirE2-interacting protein 2)能調控組蛋白基因的轉錄[73]。研究發現植物通過上調許多組蛋白基因的表達來抵御根癌農桿菌侵染[74]。VirE3已被證實具有轉錄激活子功能,它與pCsn5-1和pBrp兩種蛋白形成復合物,在GAL4-BD蛋白因子的協同下與DNA結合,改變染色質結構,調節寄主防御相關基因的轉錄[75]。是否存在其他的根癌農桿菌毒性因子有待深入研究。
毒性蛋白6b是根癌農桿菌誘發植物異常發育和冠癭瘤形成的關鍵因子,與組蛋白H3、micro RNA途徑相關蛋白等多種染色質蛋白存在相互作用[76-77],6b可能為一種組蛋白分子伴侶,協同染色質重塑因子影響核小體的組裝、組蛋白置換、基因特異性轉錄[76]。最近蛋白結構分析發現6b還具有ADP核糖基化活性[77]。盡管6b與組蛋白H3之間確實存在聯系,但6b如何修飾H3及6b介導組蛋白H3可能發生的ADP核糖基化如何影響防御基因的轉錄仍知之甚少。
3.2Ⅲ型分泌效應因子(Type Ⅲ secreted effectors,T3SEs)
Ⅲ型分泌效應因子是一種目前研究較多的毒性蛋白。革蘭氏陰性菌借助于T3SEs進入真核細胞,抑制寄主免疫反應[78]。進入細胞質后,一方面與胞質中合成的核蛋白發生作用;另一方面,T3SEs在核定位信號序列(NLS)的引導下進行入核運輸,調節染色質構象的變化和基因轉錄。例如,黃單胞菌TAL(transcription activator-like)因子綁定特定啟動子序列位點,直接激活防御應答負調控基因的表達,加速病原體侵染和病癥表現的進程[79]。目前,僅在黃單胞菌中發現TAL因子具有直接的基因轉錄調節作用,因此尚需發掘更多的能通過染色質重塑改變基因轉錄狀態的其他T3SEs。
OspF蛋白為一種Ⅲ型分泌系統的后期效應分子,能誘導組蛋白H3去磷酸化和去乙酰化,重塑染色質,降低免疫應答相關基因的表達水平[80],同時Rb(retinoblastoma)蛋白和OspF蛋白以復合體形式參與此分子調控網絡[81]。OspF蛋白還具有磷酸絲氨酸水解酶活性,不可逆地將MAPK通路中的蛋白去磷酸化[82],丁香假單胞菌能合成一種與OspF類似的效應因子HopAI1,定位于細胞核,通過MPK3和MPK6的去磷酸化修飾干擾PAMP誘導的植物防御信號途徑[83],其是否參與植物組蛋白的修飾過程尚未得到試驗證實。
科學家從甘藍黑腐病黃單胞菌中鑒定出一種效應分子XopD,XopD蛋白具有染色質重塑活性和小泛素樣修飾蛋白(small ubiquitin-like modifier,SUMO)酶活性。通過擬南芥全基因組水平上的蛋白質研究,已經鑒定出多種SUMO底物,包括組蛋白修飾酶類、染色質重塑復合物成分及免疫相關的轉錄因子[84-85]。SUMO E3連接酶SIZ1突變體內免疫響應基因呈組成型表達,伴隨著SA積累的增加[86],暗示蘇素化(sumoylation)在免疫調節過程中扮演重要的角色。除具有SUMO蛋白酶活性,XopD還包含一個EAR基序,EAR基序富含亮氨酸,具有雙親性,是賦予轉錄因子抑制功能的一段保守序列,可以通過染色質修飾、激活子調節等途徑實現對防御和衰老相關基因的抑制[87],EAR型轉錄抑制子為植物特有的一類轉錄抑制子,適配子蛋白SIN3和SAP18能增強EAR基序招募HDA19輔阻遏復合體的能力,使H3K9、H3K27、H4K5和H4K8位點發生去乙酰化,促進基因沉默[88],EAR基序是XopD蛋白實現抑制轉錄的生物學功能的必要條件,番茄中的研究表明EAR基序能將HDA19同源物招募至XopD綁定的基因啟動子區,抑制特定基因的表達。HDA19為蘇素化(SUMO)底物之一,XopD蛋白利用SUMO蛋白酶活性作用降低HDA19自身的SUMO化水平,從而提高HDA19的去乙酰化活性,重塑染色質構象,抑制植物防御應答基因的轉錄[85]。
染色質構象動態改變是基因功能調控的關鍵點。目前對染色質重塑的修飾類型及機制的研究較多,特別是ATP依賴的重塑復合物、乙酰化、甲基化等,但欠缺系統性。大量的研究證據表明基于這些不同的染色質重塑方式能直接或間接在植物防御應答反應中發揮重要作用,模式植物擬南芥SYD、BRM、PIE1、DDM1、AGO4等蛋白具有防御調節功能的ATP酶亞基已被成功鑒定出,但相對于SNF2超家族龐大數量的蛋白亞基而言,仍是冰山一角,尋找同源或新的與染色質重塑有關的蛋白顯得尤為急切,重塑相關蛋白通過什么機制精確修飾植物染色質仍需深入解析。組蛋白修飾對于病原體侵染激發的植物信號轉導來說也非常關鍵,但分離的組蛋白甲基化、乙酰化相關因子的數量極其有限,發現的特異或保守的修飾位點數量較少,甲基化與乙酰化等共價修飾如何通過修飾酶復合物的介導來調控染色質結構仍不明晰,病原體VirE、6b、T3SEs等蛋白分子如何與重塑復合物、乙酰化修飾復合物等共同作用于植物免疫系統的分子機制知之甚少。因此,許多問題有待系統解決,今后的研究將更多地致力建立并完善染色質層面上植物與病原體互作的信號傳導網絡,為最終通過基因工程等技術提升植物抗病能力奠定基礎。
[1]Tremethick D J.Higher-order structures of chromatin: the elusive 30 nm fiber [J]. Cell, 2007, 128(4): 651-654.
[2]Lena H, Crabtree G R.Chromatin remodelling during development [J]. Nature, 2010, 463(7280): 474-484.
[3]Block A, Li Guangyong, Fu Zhengqing, et al. Phytopathogen type Ⅲ effector weaponry and their plant targets [J]. Current Opinion in Plant Biology, 2008, 11(4): 396-403.
[4]Jones J D G, Dangl J L.The plant immune system [J]. Nature, 2006, 444(7117): 323-329.
[5]Racki L R, Narlikar G J.ATP-dependent chromatin remodeling enzymes: two heads are not better, just different [J]. Current Opinion in Genetics & Development, 2008, 18(2): 137-144.
[6]Strahl B D, Allis C D. The language of covalent histone modifications [J]. Nature, 2000, 403(6765): 41-45.
[7]Taverna S D, Li H, Ruthenburg A J, et al. How chromatin-binding modules interpret histone modifications: Lessons from professional pocket pickers [J]. Nature Structural & Molecular Biology, 2007, 14(11): 1025-1040.
[8]Saha A, Wittmeyer J, Cairns B R.Chromatin remodelling: the industrial revolution of DNA around histones [J]. Nature Reviews Molecular Cell Biology, 2006, 7(6): 437-447.
[9]Clapier C R, Cairns B R.The biology of chromatin remodeling complexes [J]. Annual Review of Biochemistry, 2009, 78: 273-304.
[10]Sudarsanam P, Winston F.The Swi/Snf family nucleosome-remodeling complexes and transcriptional control [J]. Trends in Genetics, 2000, 16(8): 345-351.
[11]Vignali M, Hassan A H, Neely K E, et al. ATP-dependent chromatin-remodeling complexes[J]. Molecular and Cellular Biology, 2000, 20(6): 1899-1910.
[12]Bezhani S, Winter C, Hershman S, et al. Unique, shared, and redundant roles for theArabidopsisSWI/SNF chromatin remodeling ATPases BRAHMA and SPLAYED [J]. Plant Cell, 2007, 19(2): 403-416.
[13]Wang G G, Allis C D, Chi P. Chromatin remodeling and cancer, partⅡ: ATP-dependent chromatin remodeling [J]. Trends in Molecular Medicine, 2007, 13(9): 373-380.
[14]Wu J L, Lessard J, Crabtree G R.Understanding the words of chromatin regulation [J]. Cell, 2009, 136(2): 200-206.
[15]Trotter K W, Archer T K.The BRG1 transcriptional coregulator [J]. Nuclear Receptor Signaling, 2008, 6: e004.
[16]Shen Weiqun, Xu Chao, Huang Wei, et al. Solution structure of human Brg1 bromodomain and its specific binding to acetylated histone tails [J].Biochemistry,2007,46(8): 2100-2110.
[17]Dechassa M L, Zhang B, Horowitz-Scherer R, et al. Architecture of the SWI/SNF-nucleosome complex [J]. Molecular and Cellular Biology, 2008, 28(19): 6010-6021.
[18]Fan Huaying, He Xi, Kingston R E, et al.Distinct strategies to make nucleosomal DNA accessible [J]. Molecular Cell, 2003, 11(5): 1311-1322.
[19]Brownell J E, Zhou Jianxin, Ranalli T, et al. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation [J]. Cell, 1996, 84(6): 843-851.
[20]Cunliffe V T.Eloquent silence: developmental functions of Class I histone deacetylases [J]. Current Opinion in Genetics & Development, 2008, 18(5): 404-410.
[21]Kouzarides T.Chromatin modifications and their function [J]. Cell, 2007, 128(4): 693-705.
[22]Barski A, Cuddapah S, Cui Kairong, et al. High-resolution profiling of histone methylations in the human genome[J]. Cell, 2007, 129(4): 823-837.
[23]Anzola J M, Sieberer T, Ortbauer M, et al. PutativeArabidopsistranscriptional adaptor protein (PROPORZ1) is required to modulate histone acetylation in response to auxin [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(22): 10308-10313.
[24]Kornet N, Scheres B.Members of the GCN5 histone acetyltransferase complex regulate PLETHORA-mediated root stem cell niche maintenance and transit amplifying cell proliferation inArabidopsis[J]. The Plant Cell,2009,21(4):1070-1079.
[25]Vermeulen M, Mulder K W, Denissov S, et al. Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4 [J]. Cell, 2007, 131(1): 58-69.
[26]Shi Xiaobing, Gozani O.The fellowships of the INGs [J]. Journal of Cell Biochemistry, 2005, 96(6): 1127-1136.
[27]宋博研, 朱衛國. 組蛋白甲基化修飾效應分子的研究進展[J]. 遺傳, 2011, 33(4): 285-292.
[28]Xu Shutong, Wu Jian, Sun Bingfa, et al. Structural and biochemical studies of human lysine methyltransferase Smyd3 reveal the important functional roles of its post-SET and TPR domains and the regulation of its activity by DNA binding [J]. Nucleic Acids Research, 2011, 39(10): 4438-4449.
[29]Nakayama J, Rice J C, Strahl B D, et al. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly [J]. Science, 2001, 292(5514): 110-113.
[30]Schultz D C, Ayyanathan K, Negorev D. SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins [J]. Genes & Development, 2002, 16(8): 919-932.
[31]Loyola A, LeRoy G, Wang Y H, et al. Reconstitution of recombinant chromatin establishes a requirement for histone-tail modifications during chromatin assembly and transcription [J]. Genes & Development, 2001, 15(21): 2837-2851.
[32]Pal S, Yun R, Datta A, et al. mSin3A/histone deacetylase 2-and PRMT5-containing Brg1 complex is involved in transcriptional repression of the Myc target genecad[J]. Molecular and Cellular Biology, 2003, 23(21): 7475-7487.
[33]Socka J, Allis C D, Coonrod S.Histone arginine methylation and its dynamic regulation [J]. Front Bioscience, 2006, 11(1): 344-355.
[34]Sukada Y, Fang J, Erdjument-Bromage H, et al. Histone demethylation by a family of JmjC domain-containing proteins[J]. Nature, 2006, 439(7078): 811-816.
[35]Flaus A, Martin D M, Barton G J, et al. Identification of multiple distinct Snf2 subfamilies with conserved structural motifs[J]. Nucleic Acids Research, 2006, 34: 2887-2905.
[36]Walley J W, Rowe H C, Xiao Yanmei, et al. The chromatin remodeler SPLAYED regulates specific stress signaling pathways [J]. PLoS Pathogens, 2008, 4(12): e1000237.
[37]Farrona S, Hurtado L, Reyes J C.A nucleosome interaction module is required for normal function ofArabidopsisthalianaBRAHMA [J]. Journal of Molelular Biology, 2007, 373(2): 240-250.
[38]Finkemeier I, Laxa M, Miguet L, et al. Proteins of diverse function and subcellular location are lysine acetylated inArabidopsis[J]. Plant Physiology, 2011, 155(4): 1779-1790.
[39]Owen D J, Ornaghi P, Yang J C, et al. The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase Gcn5p[J]. The EMBO Journal, 2000, 19(22): 6141-6149.
[40]Noh Y S, Amasino R M.PIE1, an ISWI family gene, is required forFLCactivation and floral repression inArabidopsis[J]. Plant Cell, 2003, 15(7): 1671-1682.
[41]Deal R B, Topp C N, McKinney E C, et al. Repression of flowering inArabidopsisrequires activation ofFLOWERINGLOCUSCexpression by the histone variant H2A.Z [J]. Plant Cell, 2007, 19(1): 74-83.
[42]Kumar S V, Wigge P A.H2A.Z-containing nucleosomes mediate the thermosensory response inArabidopsis[J]. Cell, 2010, 140(1): 136-147.
[43]Singer T, Yordan C, Martienssen R A.Robertson’s mutator transposons inA.thalianaare regulated by the chromatin-remodeling gene decrease in DNA methylation (DDM1)[J]. Genes & Development, 2001, 15(5): 591-602.
[44]Gendrel A V, Lippman Z, Yordan C, et al. Dependence of heterochromatic histone H3 methylation patterns on theArabidopsisgeneDDM1 [J]. Science, 2002, 297(5588): 1871-1873.
[45]Brzeski J, Jerzmanowski A.Deficient in DNA methylation 1(DDM1) defines a novel family of chromatin-remodeling factors [J]. The Journal of Biological Chemistry, 2003, 278(2): 823-828.
[46]Zemach A, Li Y, Wayburn B, et al. DDM1 bindsArabidopsismethyl-CpG binding domain proteins and affects their subnuclear localization [J]. Plant Cell, 2005, 17(5): 1549-1558.
[47]Hirochika H, Okamoto H, Kakutani T.Silencing of retrotransposons inArabidopsisand reactivation by theddm1 mutation [J]. Plant Cell, 2000, 12(3): 357-369.
[48]Li Yingzhong, Tessaro M J, Li Xin, et al. Regulation of the expression of plant resistance geneSNC1 by a protein with a conserved BAT2 domain [J]. Plant Physiology, 2010, 153(3): 1425-1434.
[49]Agorio A, Vera P.Argonaute4 is required for resistance toPseudomonassyringaeinArabidopsis[J]. Plant Cell, 2007, 19(11): 3778-3790.
[50]Berger S L.The complex language of chromatin regulation during transcription [J]. Nature, 2007, 447(7143): 407-412.
[51]Alvarez-Venegas R, Avramova Z.SET-domain proteins of the Su(var)3-9, E(z) and trithorax families[J]. Gene, 2002, 285(1/2): 25-37.
[52]Alvarez-Venegas R, Pien S, Sadder M, et al. AnArabidopsishomolog of trithorax has histone methylase activity and activates flower homeotic genes [J]. Current Biology, 2003, 13: 627-637.
[53]Alvarez-Venegas R, Avramova Z.Methylation patterns of histone H3 Lys4, Lys9 and Lys27 in transcriptionally active and inactiveArabidopsisgenes and inatx1 mutants[J]. Nucleic Acids Research, 2005, 33(16): 5199-5207.
[54]Alvarez-Venegas R, Abdallat A A, Guo M, et al. Epigenetic control of a transcription factor at the cross section of two antagonistic pathways [J]. Epigenetics, 2007, 2(2): 106-113.
[55]Alvarez-Venegas R, Sadder M, Hlavacka A, et al. TheArabidopsishomolog of trithorax, ATX1, binds phosphatidylinositol 5-phosphate, and the two regulate a common set of target genes [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(15): 6049-6054.
[56]Cazzonellia C I, Cuttrissa A J, Cossettoa S B, et al. Regulation of carotenoid composition and shoot branching inArabidopsisby a chromatin modifying histone methyltransferase, SDG8 [J]. Plant Cell, 2009, 21(1): 39-53.
[57]Palma K, Thorgrimsen S, Malinovsky F G, et al. Autoimmunity inArabidopsisacd11 is mediated by epigenetic regulation of an immune receptor [J]. PLoS Pathogens, 2010, 6(10): e1001137.
[58]Kim K C, Lai Z, Fan B, et al.ArabidopsisWRKY38 andWRKY62 transcription factors interact with histone deacetylase 19 in basal defense [J]. Plant Cell, 2008, 20(9): 2357-2371.
[59]van den Burg H A, Takken F L W.Does chromatin remodeling mark systemic acquired resistance [J].Trends in Plant Science, 2009, 14(5): 286-294.
[60]Vlot A C, Dempsey D A, Klessig D F. Salicylic acid, a multifaceted hormone to combat disease [J]. Annual Review of Phytopathology, 2009, 47: 177-206.
[61]Wang Chunzheng, Gao Feng, Wu Jianguo, et al.Arabidopsisputative deacetylase AtSRT2 regulates basal defense by suppressingPAD4,EDS5 andSID2 expression [J]. Plant Cell Physiology, 2010, 51(8): 1291-1299.
[62]Durrant W E, Wang S, Dong X.ArabidopsisSNI1 and RAD51D regulate both gene transcription and DNA recombination during the defense response[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(10): 4223-4227.
[63]Wang S, Durrant W E, Song J, et al.ArabidopsisBRCA2 and RAD51 proteins are specifically involved in defense gene transcription during plant immune responses[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(52): 22716-22721.
[64]Song Junqi, Durrant W E, Wang Shui, et al. DNA repair proteins are directly involved in regulation of gene expression during plant immune response [J]. Cell Host & Microbe, 2011, 9(2): 115-124.
[65]Wang D, Amornsiripanitch N, Dong X.A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants [J]. PLoS Pathogens, 2006, 2(11): e123.
[66]Brosch G, Ransom R, Lechner T, et al. Inhibition of maize histone deacetylases by HC toxin, the host-selective toxin ofCochlioboluscarbonum[J]. Plant Cell, 1995, 7(11): 1941-1950.
[67]Hayashi M, Takahashi H, Kawai-Yamada M, et al. Maize plants mutated in NAD(P)H-dependent HC-toxin reductase gene (Hm1) is vulnerable to H2O2stress [J]. Plant Biotechnology, 2005, 22(1): 69-70.
[68]Escobar M A, Dandekar A M.Agrobacteriumtumefaciensas an agent of disease [J]. Trends in Plant Science, 2003, 8(8): 380-386.
[69]Lacroix B, Citovsky V.Agrobacterium aiming for the host chromatin: Host and bacterial proteins involved in interactions between T-DNA and plant nucleosomes[J]. Communicative Integrative Biology, 2009, 2(1): 42-45.
[70]Tzfira T, Citovsky V.Agrobacterium-mediated genetic transformation of plants: biology and biotechnology [J]. Trends in Cell Biology, 2002, 12(3): 121-129.
[71]Li Jianxiong, Krichevsky A, Vaidya M, et al. Uncoupling of the functions of theArabidopsisVIP1 protein in transient and stable plant genetic transformation byAgrobacterium[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(16): 5733-5738.
[72]Lacroix B, Loyter A, Citovsky V.Association of theAgrobacteriumT-DNA-protein complex with plant nucleosomes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(40): 15429-15434.
[73]Anand A, Krichevsky A, Schornack S, et al.ArabidopsisVIRE2 INTERACTING PROTEIN2 is required for Agrobacterium T-DNA integration in plants[J]. Plant Cell, 2007, 19(5): 1695-1708.
[74]Veena, Jiang Hongmei, Doerge R W, et al. Transfer of T-DNA and Vir proteins to plant cells byAgrobacteriumtumefaciensinduces expression of host genes involved in mediating transformation and suppresses host defense gene expression [J]. Plant Journal, 2003, 35(2): 219-236.
[75]Garcia-Rodriguez F M, Schrammeijer B, Hooykaas P J.The Agrobacterium VirE3 effector protein: a potential plant transcriptional activator[J]. Nucleic Acids Research, 2006, 34(22): 6496-6504.
[76]Terakura S, Ueno Y, Tagami H, et al. An oncoprotein from the plant pathogen agrobacterium has histone chaperone-like activity [J]. Plant Cell, 2007, 19(9): 2855-2865.
[77]Wang W, Barnaby J Y, Tada Y, et al. Timing of plant immune responses by a central circadian regulator[J]. Nature, 2011, 470(7332): 110-114.
[78]Galan J E.Common themes in the design and function of bacterial effectors [J]. Cell Host & Microbe, 2009, 5(6): 571-579.
[79]Mahfouz M M, Li Lixin, Shamimuzzaman M, et al. De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(6): 2623-2628.
[80]Arbibe L, Kim W, Batsche E, et al. An injected bacterial effector targets chromatin access for transcription factor NF-kappaB to alter transcription of host genes involved in immune responses [J]. Nature Immunology, 2007, 8(1): 47-56.
[81]Zurawski D V, Mumy K L, Faherty C S, et al.Shigellaflexneritype Ⅲ secretion system effectors OspB and OspF target the nucleus to downregulate the host inflammatory response via interactions with retinoblastoma protein [J]. Molecular Microbiology, 2009, 71(2): 350-368.
[82]Chen X L, Silver H R, Xiong L, et al. Topoisomerase I-dependent viability loss in saccharomyces cerevisiae mutants defective in both SUMO conjugation and DNA repair [J]. Genetics, 2007, 177(1): 17-30.
[83]Li Xinyan, Lin Huiqiong, Zhang Weiguo, et al. Flagellin induces innate immunity in nonhost interactions that is suppressed byPseudomonassyringaeeffectors [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(36): 12990-12995.
[84]van den Burg H A, Takken F L W.SUMO-, MAPK-, and resistance protein-signaling converge at transcription complexes that regulate plant innate immunity[J]. Plant Signaling and Behavior, 2010, 5(12): 1597-1601.
[85]Miller M J, Barrett-Wilt G A, Hua Z, et al. Proteomic analyses identify a diverse array of nuclear processes affected by small ubiquitin-like modifier conjugation inArabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(38): 16512-16517.
[86]Lee J, Nam J, Park H C, et al. Salicylic acid-mediated innate immunity inArabidopsisis regulated by SIZ1 SUMO E3 ligase[J]. Plant Journal, 2007, 49(1): 79-90.
[87]Kim J G, Taylor K W, Hotson A, et al. XopD SUMO protease affects host transcription, promotes pathogen growth, and delays symptom development inXanthomonas-infected tomato leaves [J]. Plant Cell, 2008, 20(7): 1915-1929.
[88]Benhamed M, Bertrand C, Servet C, et al.ArabidopsisGCN5, HD1, and TAF1/HAF2 interact to regulate histone acetylation required for light-responsive gene expression[J]. Plant Cell, 2006, 18(11): 2893-2903.
(責任編輯:田喆)
Advances in chromatin remodeling and its regulation of plant defense response to diseases
Hong Lin1,Wei Zhaoxin1,Wei Wenhui2,Tan Ping1
(1. Fruit Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing402260, China;2. Research Institute of Oil Crops, Chinese Academy of Agricultural Sciences, Key Laboratory of Oil Crop Biology and Genetic Breeding of the Ministry of Agriculture, Wuhan430062, China)
Transcription-related factors can be integrated into specific DNA sites, and this molecular process is regulated by the configuration changes of chromatin. However, highly condensed chromatin is relieved through chromatin remodeling of itself with the alteration of covalence power between histone and DNA chain, and this mechanism may control gene expression and silencing. There are at least two primary modification types which contain ATP-dependent chromatin remodeling complex and covalent modifications of histone tails by histone modification complexes; the later type is made up of methylation/demethylation and acetylation/ deacetylation of histone. Upon pathogen infection, the transcription of defense-related genes is regulated directly and indirectly by chromatin remodelers under the force given by chromatin remodeling in plants, and then the immune response becomes effective. This paper reviews the mechanisms by which plant chromatin remodeling regulates expression of defense-related gene and the three proteins T3SEs,6b,VirE evade plant immune system by the pathway of modifying the chromatin structure according to recent studies.
plant;nucleosome;chromatin remodeling;defense response
2015-09-06
2015-10-15
國家自然科學基金(30671312);重慶市科委基本科研項目(2012CSTSJBJY00510)
E-mail: tanp_168@163.com
Q 993.2,S 432.2
A
10.3969/j.issn.0529-1542.2016.04.002
Reviews