999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Ridge-type spectral decomposition estimators inmixed effects models with stochastic restrictions

2016-09-20 05:51:24ZHENGLuYUERongxianCHENGJing
關(guān)鍵詞:效應(yīng)模型

ZHENG Lu, YUE Rongxian, CHENG Jing

(1.College of Mathematics and Science,Shanghai Normal University,Shanghai 200234,China;2.College of Science,Anhui Agricultural University,Hefei 230036,China)

?

Ridge-type spectral decomposition estimators inmixed effects models with stochastic restrictions

ZHENG Lu1, YUE Rongxian1, CHENG Jing2

(1.College of Mathematics and Science,Shanghai Normal University,Shanghai 200234,China;2.College of Science,Anhui Agricultural University,Hefei 230036,China)

This paper proposes a new estimation of fixed effects in linear mixed models with stochastic restrictions,which is called a conditional ridge-type spectral decomposition estimator.Using the mean squared error matrix and generalized mean squared error as criteria for comparing the estimates,we establish sufficient conditions for the superiority of the conditional ridge-type spectral decomposition estimator over the conditional spectral decomposition estimator.The upper and lower bounds of the relative efficiency are also given.Finally,a simulation example is given to illustrate the theoretical results.

linear mixed mode; mean squared error matrix; ridge-type spectral decomposition estimatior; stochastic linear restrictions

1 Introduction

Linear mixed model is an important statistical model.In the recent twenty years,linear mixed models have found more and more applications in the fields of biology,medicine,economy,finance,environment science,sample investigation and mechanical engineering[1-5].Based on spectral decomposition,a further study of estimation about fixed effect is made in this paper.Spectral decomposition (SD) estimation was proposed by Wang and Yin[6].With this method we can obtain several SD estimators,which are all unbiased estimators.

Consider the following general linear mixed model

(1)

whereyis ann×1 vector of observations,Xis ann×pknown design matrix with full column rank,βis anp×1 vector of fixed effect,Uis ann×pdesign matrix,ξis anq×1 vector of random effect,εis ann×1 vector of random disturbances.Suppose that

It follows that

V=Cov(y)=Cov(u)=UDUT+F≥0.

By spectral decomposition on the covariance matrix,we have

We multiplyPifrom the left on both sides of (1),and denote

y(i)=Piy, Xi=PiX,ui=Piu.

Then we have the following transformed model:

(2)

It is easy to obtain that E(ui)=0 and Cov(ui)=λiPi.Note thatPiis a singular matrix,and then model (2) is a singular linear model.

Wang and Yin[6]proposed spectral decomposition estimation (SDE) to estimate the fixed effectsβand the variance components simultaneously.A prominent feature of this method is that for the fixed effects we can obtain several spectral decomposition estimates.Specifically,for every eigenvaluesλi,the spectral decomposition estimators of its corresponding fixed effectsβare given by

wherer=rk(Pi)-rk(Xi).

(3)

(4)

whereki>0andQiistheeigenvectormatrixofXTPiX.Thepartialridge-typespectraldecompositionestimatorissuperiortothespectraldecompositionestimatorinthesenseofmeansquarederrormatrix.

Thispaperbeginswithanintroductorysectioncontainingabriefreviewoftheestimatorsonfixedeffects.Itisworthnotingthat,theaboveestimatorsareobtainedbyestimatingtheregressioncoefficientsβfromthelinearmixedmodelitself.Whereasintheregressionmodelfordescribingeconomicphenomena,inadditiontothesampleinformation,wetendtogetsomepriorinformation.Withthesepriorinformation,theregressioncoefficientestimateshavemoresuperiorpropertiesthanthosehavenopriorinformation.Thefundamentalpurposeofthispaperistointroduceanewconditionalridge-typespectraldecompositionestimator(CRSDE)forthefixedeffects.

Therestofthispaperisorganizedasfollows.Section2introducestheconditionalspectraldecompositionestimator(CSDE),andSection3introducestheCRSDE.ThesetwoestimatorsarecomparedinSection4.AnumericalexampleisgiventoillustratesomeofthetheoreticalresultsinSection5andsomeconclusionremarksaregiveninSection6.

2 Conditional spectral decomposition estimate

Considerthelinearmixedmodel(1)withrespecttothefollowingstochasticrestriction:

(5)

whererisaj×1knownrandomvector,Risagivenj×pmatrixwithfullrowrank,eisaj×1vectorofrandomdisturbanceswithmean0andcovariancematrixWwhichisaknownpositivematrix.Supposethatuandeareuncorrelated.

Merge(2)with(5)asfollows:

(6)

Wedenote

andrewrite(6)as

(7)

Notethat

Because(2)isasingularlinearmodel,sothemodel(7)isasingularlinearmodelwithstochasticlinearrestrictions[9].

WedefinetheCSDEofβtobethefollowing:

(8)

Letδi1≥δi2≥…≥δiri>0bethepositiveeigenvaluesof(XTPiX+λiRTW-1R) , ri≤p ,andφi1,φi2,…,φiribethecorrespondingstandardizedeigenvectors.DefineΦi=(φi1,φi2,…,φiri).Wethenhave

and

Therefore,wecaneasilygetthemeansquarederror(MSE)oftheCSDE:

3 Conditional ridge-type spectral decomposition estimate

Definethefollowingestimatorsofthefixedeffectsβinthemixedmodel(7):

(9)

ThesearecalledtheCRSDE.Notethat

andthen

Therefore,theCRSDEsin(9)areStein-typebiasedestimators.

(10)

TheCSDEofγin(10)isgivenby

(11)

andtheCRSDEofγisgivenby

(12)

4 Superiority of the conditional ridge-type spectral decomposition estimator

whereDisapositivedefinitematrix.ThefollowingtwolemmasareusefulforcomparingtheMSEMandGMSEofestimators.

Lemma 4.1[10,Theorem A.71]LetAbe ann×nsymmetric matrix,xbe ann-vector,andα>0 be any scalar.Then the following statements are equivalent:

(i)αA-xxT≥0.

(ii)A≥0,x∈R(A),andxTA-x≤α,withA-beinganyg-inverseofA,whereR(A)isthevectorspacespannedbythecolumnvectorsofA.

(13)

(14)

Therefore,we have

and the proof is completed.

Theorem 4.2For model (7) within the ellipsoidγTΛiγ≤λifor eachi∈{1,…,t},we have

(15)

where

ProofFrom (13) and (14),we conclude that

Denote

We then have

and then the desired result (15) follows from Lemma 4.2.

Theorem 4.3The relative efficiency satisfies

ProofAccording to the definition of the relative efficiency,we have

Becauseδi1≥δi2≥…≥δiri>0 and

it follows that

The proof is completed.

5 Monte-carlo simulation study

To illustrate our theoretical results,we now consider a simulation study to compare the performance of the estimators introduced in previous sections.This study was discussed by Gumedze and Dunne[11]and Yang,Ye and Xue[12].Here the linear mixed model is given by

wherei=1,…,5,j=1,…,10 withβ=(β1,β2,β3)T=(2,1.5,2)T,and theξare iid random effects with distributionN(0,0.5) ,andeijare iid random disturbances with distributionN(0,1).The explanatory variablesx1ij,x2ijandx3ijare generated pseudo-numbers from uniform distributionsU(1,3),U(2,4) andU(0,1),respectively.The covariance matrix ofξi+eijis given by

The distinct eigenvalues ofVareλ1=6 andλ2=1.

Assume that the following stochastic linear restrictions are used:

In the simulation study,J=1000 replicates are generated andthe estimated mean squared errors (EMSE) for estimators are calculated as

where the subscriptjrepresents the estimators in thejth repeated experiment.Then using the equations in (3),(8) and (9) corresponding toλ2,we compute the EMSE values of the SDE,CSDE and CRSDE by the above formulas.The simulation results are shown in Table 1.

Table 1 EMSEs of SDE,CSDE and CRSDE (i=2) for β=(β1,β2,β3)T

We observe that the CRSDE and CSDE forβare superior to the SDE.And when ridge parameterkis small enough,the CRSDE is superior to the CSDE.The Monte Carlo simulations agree with our theoretical discovery in this paper.We can conclude that the CRSDE is meaningful in practice.

6 Conclusion

In this paper,the CSDE and CRSDE for the parameters of fixed effects in a linear mixed model are proposed when the prior information is available about the parameters.Furthermore,we show that the CRSDE is superior to the CSDE and SDE in the sense of MSEM under certain conditions.The upper and lower bounds of the relative efficiency are also given.Finally,we illustrate our results with a Monte-Carlo simulation study.

References:

[1]Verbeke G,Molenberghs G.Linear mixed models in practice:a SAS-oriented approach.Lecture Notes in Statistics 126 [M].New York:Springer-Verlag,1997.

[2]Verbeke G,Molenberghs G.Linear mixed models for longitudinal data [M].New York:Springer-Verlag,2000.

[3]Wang S G,Chow S C.Advanced linear models [M].New York:Marcel Dekker Inc,1994.

[4]Khunri A I,Mathew T,Sinha B K.Statistical tests for mixed linear models [M].New York:John Wiley,1998.

[5]Searle S R,Casella G,McCulloch C E.Variance components [M].New York:John Wiley,1992.

[6]Wang S G,Yin S J.A new estimate of the parameters in linear mixed models [J].Science in China (Series A),2002,32(5):434-443.

[7]Rao C R,Toutenburg H.Linear models:Least squares and alternatives [M].New York:Springer-Verlag,1995.

[8]Yang H,Li Y L.Partial ridge-type spectral decomposition estimator in linear mixed model (in Chinese) [J].Chinese Journal of Applied Probability,2008,24(3):289-296.

[9]Xu J W,Yang H.Estimation in singular linear models with stochastic linear restrictions [J].Communications in Statistics-Theory and Methods,2007,40(24):4364-4371.

[10]Rao C R,Toutenburg H,Heumann S C.Linear models and generalizations:least squares and alternatives [M].New York:Springer-Verlag,2008.

[11]Gumedze F N,Dunne T T.Parameter estimation and inference in the linear mixed model [J].Linear Algebra and its Applications,2011,435(8):1920-1944.

[12]Yang H,Ye H L,Xue Kai.A further study of predictions in linear mixed models [J].Communications in Statistics-Theory and Methods,2014,43(20):4241-4252.

(責(zé)任編輯:馮珍珍)

10.3969/J.ISSN.1000-5137.2016.04.001

具有隨機(jī)約束的混合效應(yīng)模型參數(shù)的嶺型譜分解估計(jì)

鄭鷺1, 岳榮先1, 程靖2

(1.上海師范大學(xué) 數(shù)理學(xué)院,上海 200234; 2.安徽農(nóng)業(yè)大學(xué) 理學(xué)院,合肥 230036)

對于具有隨機(jī)線性約束的線性混合效應(yīng)模型參數(shù)提出一種稱之為條件嶺型譜分解估計(jì)的方法.利用均方誤差矩陣和廣義均方誤差對固定效應(yīng)參數(shù)的幾種估計(jì)量進(jìn)行比較,給出條件嶺型譜分解估計(jì)優(yōu)于條件譜分解估計(jì)的充分條件,并給出這兩種估計(jì)的相對效率的上下界.最后,模擬算例驗(yàn)證了理論結(jié)果的正確性.

混合效應(yīng)模型; 均方誤差矩陣; 嶺型譜分解估計(jì); 隨機(jī)線性約束

date: 2016-03-20

Shanghai Municipal Science and Technology Research Project (14DZ1201900);NSFC grant (11471216);NSFC grant (11401056)

YUE Rongxian,College of Mathematics and Science,Shanghai Normal University,No.100 Guiling Rd,Shanghai 200234,China,E-mail:yue2@shnu.edu.cn

O 212.4Document code: AArticle ID: 1000-5137(2016)04-0387-08

猜你喜歡
效應(yīng)模型
一半模型
鈾對大型溞的急性毒性效應(yīng)
懶馬效應(yīng)
場景效應(yīng)
重要模型『一線三等角』
重尾非線性自回歸模型自加權(quán)M-估計(jì)的漸近分布
應(yīng)變效應(yīng)及其應(yīng)用
3D打印中的模型分割與打包
FLUKA幾何模型到CAD幾何模型轉(zhuǎn)換方法初步研究
偶像效應(yīng)
主站蜘蛛池模板: 欧美亚洲一二三区| 午夜三级在线| 国产呦精品一区二区三区下载| julia中文字幕久久亚洲| 国产一级无码不卡视频| 国产va在线观看| 91精品啪在线观看国产91九色| 黄色在线网| 热久久这里是精品6免费观看| 成人免费视频一区| 免费A∨中文乱码专区| 71pao成人国产永久免费视频| 亚洲国产高清精品线久久| 日本高清成本人视频一区| 日本午夜精品一本在线观看 | 亚洲欧美日韩天堂| 国产99视频在线| www成人国产在线观看网站| 天堂在线视频精品| 美女国产在线| 四虎永久在线精品国产免费| 蜜臀AV在线播放| 日韩成人高清无码| 国产无码精品在线| 亚洲欧美天堂网| 成年女人18毛片毛片免费| 香蕉久久国产超碰青草| 网久久综合| 一本久道久综合久久鬼色| 久草中文网| 国产精品一线天| a级毛片在线免费观看| 久久久噜噜噜| 无码电影在线观看| 91福利在线看| 亚洲成人福利网站| 国内熟女少妇一线天| 九九这里只有精品视频| 老司机精品久久| 国产一二视频| 久久精品aⅴ无码中文字幕| 精品久久久无码专区中文字幕| 国产亚洲精品自在线| 免费黄色国产视频| 最新加勒比隔壁人妻| 国产9191精品免费观看| 久久久久无码精品| 午夜综合网| 亚洲一区二区三区麻豆| 亚洲无码视频一区二区三区| 精品免费在线视频| 亚洲天堂777| 永久免费av网站可以直接看的| 日本色综合网| 99在线观看国产| 日韩不卡免费视频| 国产伦精品一区二区三区视频优播 | 国产亚洲精品在天天在线麻豆| 国产成人精品高清在线| 91欧洲国产日韩在线人成| 国产亚洲视频中文字幕视频| 国产第二十一页| 色婷婷色丁香| 午夜视频www| 99久久这里只精品麻豆| 久久精品娱乐亚洲领先| 国产精品亚洲精品爽爽| 亚洲成在线观看 | 国产精品jizz在线观看软件| 亚洲欧美日韩中文字幕在线一区| 精品福利视频导航| 亚洲综合狠狠| 亚洲欧美天堂网| 欧美成人二区| 亚洲欧美天堂网| 伊人五月丁香综合AⅤ| 中国国产一级毛片| 女人爽到高潮免费视频大全| 91无码人妻精品一区| 久久精品人人做人人| 正在播放久久| 亚洲综合色区在线播放2019|