閆 蕾楊宗舉蘇 亮肖 陽(yáng)郭 林宋梅芳,4孫 蕾,孟凡華白建榮楊建平,*
1山西大學(xué)生物工程學(xué)院, 山西太原030006;2中國(guó)農(nóng)業(yè)科學(xué)院作物科學(xué)研究所, 北京100081;3中國(guó)農(nóng)業(yè)科學(xué)院研究生院, 北京100081;4北京市輻射中心, 北京100875;5山西省農(nóng)業(yè)科學(xué)院作物科學(xué)研究所, 山西太原030031
2個(gè)玉米ZmCRY1a基因的克隆及其響應(yīng)光質(zhì)處理的表達(dá)模式
閆 蕾1,2,**楊宗舉2,3,**蘇 亮2肖 陽(yáng)3郭 林2宋梅芳2,4孫 蕾2,3孟凡華2白建榮1,5,*楊建平2,*
1山西大學(xué)生物工程學(xué)院, 山西太原030006;2中國(guó)農(nóng)業(yè)科學(xué)院作物科學(xué)研究所, 北京100081;3中國(guó)農(nóng)業(yè)科學(xué)院研究生院, 北京100081;4北京市輻射中心, 北京100875;5山西省農(nóng)業(yè)科學(xué)院作物科學(xué)研究所, 山西太原030031
隱花色素(cryptochrome, CRY)是植物藍(lán)光的主要受體, 參與其調(diào)節(jié)生長(zhǎng)發(fā)育及生物鐘過程。為研究隱花色素在玉米光形態(tài)建成及生物鐘調(diào)控方面的作用, 本研究利用同源克隆的方法得到玉米自交系B73的2個(gè)ZmCRY1a基因的cDNA序列, 分別命名為ZmCRY1a1和ZmCRY1a2。這2個(gè)基因的編碼區(qū)(coding DNA sequence, CDS)序列長(zhǎng)度都為2124個(gè)核苷酸, 編碼707個(gè)氨基酸。生物信息學(xué)分析表明ZmCRY1a1和ZmCRY1a2推測(cè)的氨基酸序列均包含DNA photolyase、FAD binding和Crytochrome C結(jié)構(gòu)域; 與擬南芥及其他常見作物的CRY比對(duì)并構(gòu)建系統(tǒng)發(fā)育樹顯示, 這2個(gè)基因與水稻OsCRY1a氨基酸序列一致性最高, 而與擬南芥和大豆等雙子葉植物的CRY1氨基酸序列一致性相對(duì)較低。利用實(shí)時(shí)熒光定量PCR分析了ZmCRY1a1和ZmCRY1a2在不同器官及響應(yīng)光質(zhì)、光質(zhì)轉(zhuǎn)換及長(zhǎng)日照與短日照處理的表達(dá)模式。在檢測(cè)的器官中, ZmCRY1a1的表達(dá)豐度均高于ZmCRY1a2; 這2個(gè)基因在成株期葉片中表達(dá)豐度最高, 分別是根中ZmCRY1a1的52.1倍和6.2倍。相對(duì)于黑暗下, 二者在各種持續(xù)光質(zhì)中的表達(dá)豐度均較高, 尤其在藍(lán)光和遠(yuǎn)紅光條件下。盡管是作為編碼藍(lán)光受體的基因, 2個(gè)ZmCRY1a的表達(dá)卻能強(qiáng)烈地響應(yīng)遠(yuǎn)紅光和紅光轉(zhuǎn)換處理。同樣二者也能響應(yīng)不同光周期處理, 長(zhǎng)日照條件下, ZmCRY1a1的轉(zhuǎn)錄在一個(gè)光周期內(nèi)共出現(xiàn) 5個(gè)峰值, 而ZmCRY1a2的轉(zhuǎn)錄只有4個(gè)峰值; 短日照條件下, 2個(gè)ZmCRY1a的表達(dá)出現(xiàn)了極其相似的模式, 均在進(jìn)入黑暗后10 h 和14 h時(shí)出現(xiàn)2個(gè)最高峰。由此推測(cè)2個(gè)ZmCRY1a可能在玉米光形態(tài)建成與開花調(diào)節(jié)中發(fā)揮重要作用。
玉米; 隱花色素; 光信號(hào)轉(zhuǎn)導(dǎo); 基因克隆; 表達(dá)模式
玉米(Zea may L.)不但是重要的糧食作物, 而且是高光效的C4模式植物。高等植物主要的藍(lán)光受體隱花色素(cryptochrome, CRY)參與光形態(tài)建成、開花誘導(dǎo)、種子休眠和生物總量等性狀的發(fā)育過程。光是影響植物生長(zhǎng)發(fā)育的關(guān)鍵因素之一, 既作為供給植物光合作用的能量物質(zhì), 又以信號(hào)物質(zhì)參與調(diào)節(jié)植物生長(zhǎng)發(fā)育, 包括種子萌發(fā)、莖節(jié)伸長(zhǎng)、向光性、避蔭性(shade avoidance)和開花期, 以及作物的產(chǎn)量和品質(zhì)等[1-5]。植物通過光受體來(lái)感知周圍環(huán)境中光線成分、強(qiáng)弱及節(jié)律的變化。
隱花色素是一類在高等真核生物中廣泛存在的黃素類蛋白, 主要負(fù)責(zé)吸收藍(lán)光(400~500 nm)和紫外光-A (UV-A; 315~400 nm)[6]。作為一類重要的光受體, 隱花色素不但負(fù)責(zé)調(diào)節(jié)植物的生長(zhǎng)和發(fā)育, 并且還參與包括植物和動(dòng)物的生物鐘調(diào)控[7-10]。植物至少含有CRY1和CRY2兩類隱花色素, 其中CRY1主要調(diào)節(jié)高輻照強(qiáng)度藍(lán)光下的去黃化反應(yīng); 而 CRY2則是低輻照強(qiáng)度藍(lán)光的主要受體, 參與光周期介導(dǎo)的開花調(diào)節(jié)[7,11]。隱花色素蛋白有2個(gè)結(jié)構(gòu)域, N端結(jié)構(gòu)域與光解合酶活性相關(guān)(photolyase-related,PHR), 負(fù)責(zé)吸收光量子。C端結(jié)構(gòu)域?yàn)楹?質(zhì)運(yùn)輸和蛋白質(zhì)間相互作用所必須[11-12]。擬南芥的 CRY1蛋白屬于藍(lán)光穩(wěn)定型, 而擬南芥黃化幼苗中的CRY2蛋白轉(zhuǎn)換到藍(lán)光條件下會(huì)被迅速磷酸化并降解[13-16]。擬南芥的隱花色素家族還包括第3個(gè)成員CRY3, 這種僅在葉綠體和線粒體中檢測(cè)到的CRY-DASH蛋白盡管缺少CRY蛋白典型的C末端的延伸, 但仍可能具有單鏈DNA光裂合酶活性[17-19]。擬南芥CRY1蛋白主要在細(xì)胞核與細(xì)胞質(zhì)之間穿梭并發(fā)揮作用, 而翻譯后的CRY2蛋白僅在細(xì)胞核中完成生活周期和生理功能[15]。
在真菌[20]、苔蘚[21]、蕨類[22]、番茄[23-24]、甘藍(lán)型油菜[25]、豌豆[26-27]、大豆[28-29]和水稻[30-31]中隱花色素基因的研究取得了不少實(shí)質(zhì)性的進(jìn)展。與擬南芥中功能類似, 隱花色素在多種被子植物中作為光受體和參與生物鐘調(diào)控。甘藍(lán)型油菜 BnCRY1的轉(zhuǎn)錄能被藍(lán)光所誘導(dǎo)[25]; 擬南芥、番茄和豌豆的CRY1的表達(dá)豐度也受到生物鐘調(diào)控[25,32-33]。植物的隱花色素在開花誘導(dǎo)中起重要作用。擬南芥的CRY2在藍(lán)光下通過抑制光周期調(diào)節(jié)開花誘導(dǎo)重要組分CONSTANS (CO)蛋白的降解而促進(jìn)開花誘導(dǎo)基因FLOWERING LOCUS T (FT)的表達(dá), 從而促進(jìn)開花[11]。CRY2也可以通過與CIB1 (cryptochrome interacting basic helix loop helix, 隱花色素相互作用bHLH1)蛋白互作, 來(lái)激活FT的表達(dá), 同樣促進(jìn)開花[34]。對(duì)作物大豆隱花色素功能研究取得突破性進(jìn)展, 受光周期節(jié)律調(diào)節(jié)的GmCRY1a蛋白水平和光周期誘導(dǎo)的開花與品種的緯度分布緊密相關(guān), 因此, GmCRY1a是大豆光周期誘導(dǎo)開花期的主要調(diào)節(jié)因子[28]。
隱花色素與植物的抗逆也密切相關(guān)。光激活的大豆GmCRY2a通過與CIB1的直接互作, 阻止其激活衰老相關(guān)基因如WRKY DNA BINDING PROTEIN53b (WRKY53b)的表達(dá), 進(jìn)而抑制大豆的葉片衰老[29]。對(duì)轉(zhuǎn)小麥 TaCRY1擬南芥的研究發(fā)現(xiàn), 轉(zhuǎn)基因植株通過調(diào)節(jié)脅迫與ABA響應(yīng)基因的轉(zhuǎn)錄, 來(lái)增強(qiáng)對(duì)植物高鹽、高滲透勢(shì)和ABA的抗性[35]。最近研究表明,藍(lán)光下大麥中CRY1通過提高ABA的含量來(lái)抑制休眠種子萌發(fā)[36]。同樣也發(fā)現(xiàn)甘藍(lán)型油菜BnCRY1響應(yīng)ABA和甘露醇處理, 并且激活生物和非生物脅迫的信號(hào)通路[37]。
模式植物擬南芥的隱花色素研究已經(jīng)較為深入,如對(duì)水稻、小麥、高粱、大麥 CRY1的研究, 但對(duì)玉米CRY1a (ZmCRY1a)一直未見報(bào)道。本研究通過分析玉米ZmCRY1a在不同器官、各種光處理下的表達(dá)豐度, 明確玉米ZmCRY1a響應(yīng)不同光質(zhì)處理的模式, 不但豐富植物隱花色素基因功能研究,而且為利用玉米隱花色素途徑進(jìn)行品種改良奠定基礎(chǔ)。
1.1試驗(yàn)材料
玉米自交系B73由李新海博士惠贈(zèng)、由楊建平實(shí)驗(yàn)室繁育并保存。
1.1.1器官特異性表達(dá)樣品 自然條件下生長(zhǎng)60 d后分別取成株的葉、莖、根、幼穗、苞葉、花絲、雄花、花柄、葉鞘和葉枕。
1.1.2各種持續(xù)光質(zhì)處理 玉米自交系B73在22℃, 黑暗(Dk)、遠(yuǎn)紅光(FR, 1.9 μmol m-2s-1)、紅光(R,22.3 μmol m-2s-1)、藍(lán)光(B, 13.0 μmol m-2s-1)和白光(WL, 17.0 μmol m-2s-1)培養(yǎng)箱中生長(zhǎng)13 d。
1.1.3黑暗轉(zhuǎn)換各種光質(zhì) 在 22℃黑暗中生長(zhǎng)13 d后分別轉(zhuǎn)入以上各種光質(zhì)條件如1.1.2下0.25、0.5、1、2、4、8、12和24 h, 分別取樣。
1.1.4光周期長(zhǎng)日照和短日照處理 玉米幼苗在22℃長(zhǎng)日照(LD, 16 h光照/8 h黑暗)或短日照(SD,8 h光照/16 h黑暗)條件下生長(zhǎng)13 d, 每隔2 h取樣,WL和Dk互相轉(zhuǎn)換時(shí)提前5 min取樣。
1.2菌株和載體
大腸桿菌 DH5α菌株和克隆載體 pEASY-Blunt-Simple分別購(gòu)自北京天根公司和北京全式金生物技術(shù)有限公司。
1.3酶和試劑
PrimeSTAR HS酶購(gòu)自TaKaRa, Revert Aid First Strand cDNA Synthesis Kit購(gòu)自Thermo Scientific,限制性內(nèi)切酶和T4 DNA連接酶購(gòu)自NEB公司, 凝膠回收試劑盒和質(zhì)粒提取試劑盒購(gòu)自天根生化科技有限公司。
1.4RNA提取及cDNA合成
以TRIzol (Invitrogen, USA)法提取玉米總RNA,經(jīng) DNase I (RNase-free, TaKaRa)處理后作為模板,以 Oligo-dT18為引物, 利用 Revert Aid Frist Strand cDNA Synthesis Kit (Thermo Scientific)反轉(zhuǎn)錄成cDNA備用。
1.5ZmCRY1a1和ZmCRY1a2的克隆
根據(jù) NCBI中的 ZmCRY1a1 (ZM05G31560)、ZmCRY1a2 (ZM04G17060)的序列設(shè)計(jì)引物(表 1),用黑暗條件下13 d幼苗的cDNA為模板, 均分別擴(kuò)增得到2124 bp的片段, 與pEASY-Blunt-Simple載體連接, 經(jīng)PCR和酶切鑒定后由北京奧克鼎盛生物科技有限公司測(cè)序, 測(cè)序正確后備用。
1.62個(gè)ZmCRY1a的序列比對(duì)、結(jié)構(gòu)預(yù)測(cè)與進(jìn)化樹分析
利用 NCBI-Blast網(wǎng)站(http://blast.ncbi.nlm.nih. gov/Blast.cgi)獲得玉米(Zea mays L.)、擬南芥(Arabidopsis thaliana)、水稻(Oryza sativa L.)、高粱(Sorghum bicolor)、小麥(Triticum aestivum)、大麥(Hordeum vulgare L.)、甘藍(lán)型油菜(Brassica napus L.)、豌豆(Pisum sativum L.)、番茄(Solanum lycopersicum)、大豆(Giycine max) CRY1推導(dǎo)蛋白的氨基酸序列。使用 DNAMAN Version 6軟件比對(duì)ZmCRY1a蛋白與其他作物氨基酸序列, 用 SMART網(wǎng)站(http://smart.embl-heidelberg.de/)分析ZmCRY1a蛋白的結(jié)構(gòu)域。
1.7實(shí)時(shí)熒光定量PCR (qRT-PCR)
根據(jù)目的基因序列, 利用Primer Premier 5.0軟件設(shè)計(jì)熒光定量PCR引物, 內(nèi)參基因?yàn)門ubulin[38](表 2)。熒光定量 PCR儀為 Roche 480 (Roche, 瑞士), PCR程序?yàn)?5℃ 30 s; 95℃ 5 s, 60 ℃ 20 s, 72℃ 10 s, 50個(gè)循環(huán)。然后繪制60~95℃溶解曲線。采用定量PCR試劑SYBR Premix Ex Taq II (TaKaRa大連公司), 按照商家說明操作。采用2-ΔΔCT的方法計(jì)算結(jié)果[39], 經(jīng) 3次獨(dú)立的生物學(xué)重復(fù), 并以此計(jì)算其標(biāo)準(zhǔn)差。

表1 同源克隆所用引物Table 1 Primers for homologous cloning

表2 qRT-PCR所用引物Table 2 Primers for qRT-PCR
2.12個(gè)ZmCRY1a的同源克隆
根據(jù) NCBI中 ZmCRY1a1和 ZmCRY1a2的mRNA對(duì)應(yīng)cDNA序列(ZM05G31560、ZM04G17060)設(shè)計(jì)引物, 用RT-PCR分別得到2124 bp左右的DNA片段(圖1-A), 與預(yù)計(jì)擴(kuò)增的2個(gè)ZmCRY1a的ORF片段大小一致。將擴(kuò)增片段回收并連接到 pEASYBlunt-Simple載體上, 得到重組載體pEASYZmCRY1a1和pEASY-ZmCRY1a2, 經(jīng)PCR鑒定后的克隆再經(jīng)BamH I和Sma I雙酶切驗(yàn)證, 符合要求的克隆經(jīng)酶切得到 2124 bp左右的目的基因條帶及3830 bp左右的載體條帶(圖1-B)。對(duì)符合要求的克隆測(cè)序, 顯示得到的cDNA克隆序列與NCBI中2 個(gè)ZmCRY1a的mRNA對(duì)應(yīng)序列(ZM05G31560和ZM04G17060)完全一致。
2.22個(gè)ZmCRY1a與其他單子葉植物CRY1的同源性比對(duì)
通過RT-PCR同源克隆、測(cè)序得到玉米ZmCRY1a1和ZmCRY1a2的全長(zhǎng)cDNA序列, 其ORF包含2124個(gè)核苷酸殘基, 編碼707個(gè)氨基酸殘基, 蛋白質(zhì)分子量分別為79.9 kD和79.7 kD, 等電點(diǎn)分別為4.85和5.32 (http://web.expasy.org/protparam)。利用 NCBI 網(wǎng) 站 (http://www.ncbi.nlm.nih.gov/)和DNAMAN Version 8軟件對(duì)二者的結(jié)構(gòu)域分析, 并與擬南芥和水稻的CRY1進(jìn)行氨基酸水平的序列比對(duì)(圖2)。與其他2個(gè)CRY1結(jié)構(gòu)類似, ZmCRY1a1和ZmCRY1a2蛋白均包含1個(gè)PHR結(jié)構(gòu)域(1個(gè)DNA photolyase結(jié)構(gòu)域和 1個(gè) FAD binding 7結(jié)構(gòu)域)、1個(gè)Cryptochrome C (CCE)結(jié)構(gòu)域。利用 DNAMAN Version 8將其氨基酸序列與擬南芥[7]、水稻[24]和大麥[36]等CRY1序列進(jìn)行系統(tǒng)發(fā)育樹分析(圖3), 結(jié)果表明, ZmCRY1a1和ZmCRY1a2蛋白間氨基酸水平上的一致性為91.67%, 它們與水稻、小麥CRY1的一致性分別為90%和86%; 而與擬南芥CRY1的一致性只有70%。可見, CRY1在單、雙子葉植物進(jìn)化上明顯的差異暗示CRY1功能可能存在分化。

圖1 2個(gè)ZmCRY1a的cDNA片段的RT-PCR擴(kuò)增及其克隆pEASY-ZmCRY1a的雙酶切鑒定Fig. 1 cDNA fragments of both ZmCRY1a genes and double digestion of pEASY-ZmCRY1a constructs using BamH I and Sma IA: ZmCRY1a的cDNA片段的RT-PCR擴(kuò)增。M: 1 kb Plus DNA Ladder; 1: ZmCRY1a1 PCR產(chǎn)物; 2: ZmCRY1a2 PCR產(chǎn)物。B:pEASY-ZmCRY1a的雙酶切鑒定。M: 1 kb Plus DNA Ladder; 1、2分別為pEASY-ZmCRY1a1和pEASY-ZmCRY1a2經(jīng)BamH I和Sma I雙酶切后獲得約2124 bp和3830 bp的條帶。A: cDNA fragments of both ZmCRY1a genes by RT-PCR. M: 1 kb Plus DNA Ladder; 1 and 2: RT-PCR products of ZmCRY1a1 and ZmCRY1a2, respectively. B: double enzyme digestion of pEASY-ZmCRY1a using BamH I and Sma I. M: 1 kb Plus DNA Ladder; 1 and 2: double digestion products of pEASY-ZmCRY1a1 and pEASY-ZmCRY1a2 using BamH I and Sma I, respectively.
2.32個(gè)ZmCRY1a的器官特異性分析
基因的表達(dá)部位與其功能關(guān)系密切, 通過qRT-PCR分析了2個(gè)ZmCRY1a在根、莖和葉片等器官中表達(dá)的差異。由于土壤中的根受光的影響較小,把 ZmCRY1a1在根中的表達(dá)豐度設(shè)為對(duì)照, 并設(shè)為1。ZmCRY1a1在莖、花絲、花柄和雄花中表達(dá)豐度與其根中 ZmCRY1a1的表達(dá)豐度相似(1.1~1.7倍),在葉鞘、幼穗、苞葉和葉枕中表達(dá)豐度稍高(根中ZmCRY1a1的 2.7~6.1倍), 而葉片中表達(dá)豐度最高,是根中ZmCRY1a1的52.1倍(圖4)。ZmCRY1a2在葉中表達(dá)豐度也較高(根中ZmCRY1a1的6.2倍), 而在各種器官中的表達(dá)豐度僅為根中ZmCRY1a1的0.2~0.7倍(圖4)。作為編碼光受體的基因, 2個(gè)ZmCRY1a在玉米葉中高水平表達(dá), 可能與其更有效地發(fā)揮作用存在密切關(guān)系。
2.42個(gè)ZmCRY1a轉(zhuǎn)錄表達(dá)對(duì)不同光質(zhì)的響應(yīng)
為了研究2個(gè)ZmCRY1a基因?qū)Ω鞣N光質(zhì)的響應(yīng),采用qRT-PCR方法分析它們?cè)诤诎担―k)和持續(xù)遠(yuǎn)紅光(FRc)、紅光(Rc)、藍(lán)光(Bc)和白光(WLc)下表達(dá)豐度。ZmCRY1a1在黑暗條件下的表達(dá)豐度較低, 作為對(duì)照并設(shè)為1。在黑暗條件下ZmCRY1a2的表達(dá)豐度是ZmCRY1a1的2.3倍。2個(gè)ZmCRY1a對(duì)各種光質(zhì)均有較強(qiáng)的響應(yīng), 特別是二者在持續(xù)藍(lán)光條件下的表達(dá)豐度最高, 均達(dá)到黑暗下 ZmCRY1a1表達(dá)豐度的9倍以上。ZmCRY1a1在持續(xù)遠(yuǎn)紅光下的表達(dá)豐度也較高, 是自身黑暗時(shí)的6.3倍。ZmCRY1a1在持續(xù)紅光和白光下的表達(dá)豐度基本一致, 分別是自身黑暗時(shí)的 3.7倍和 4.9倍。與 ZmCRY1a1不同,ZmCRY1a2在持續(xù)遠(yuǎn)紅光、紅光、藍(lán)光和白光下基本一致, 是ZmCRY1a1黑暗時(shí)的8.2~9.2倍。持續(xù)光條件下的轉(zhuǎn)錄表達(dá)分析結(jié)果暗示, 2個(gè)ZmCRY1a除了參與玉米藍(lán)光途徑的調(diào)節(jié)外, 可能也在遠(yuǎn)紅光和紅光信號(hào)途徑中起重要作用, 特別是 ZmCRY1a2對(duì)各種光質(zhì)均有較強(qiáng)的反應(yīng)。

圖2 玉米與擬南芥和水稻CRY1蛋白的氨基酸序列比對(duì)和結(jié)構(gòu)域分析Fig. 2 Multiple sequence alignments and function domains of CRY1 proteins among Zea may, Arabidopsis thaliana, and Oryza sativa AtCRY1: 擬南芥CRY1, AAB28724; ZmCRY1a1: 玉米CRY1a1, ZM05G31560; ZmCRY1a2: 玉米CRY1a2, ZM04G17060; OsCRY1a: 水稻CRY1a, BAB70686。黑色、深灰色、淺灰色和白色分別代表比較的4條氨基酸序列100%、75%、50%和0一致性。AtCRY1: Arabidopsis thaliana CRY1, AAB28724; ZmCRY1a1: Zea may CRY1a1, ZM05G31560; ZmCRY1a2: Zea may CRY1a2,ZM04G17060; OsCRY1a: Oryza sativa CRY1a, BAB70686. Black, dark grey, light gray, and white colors represent 100%, 75%, 50%, and 0 of homology of the four amino acid sequences, respectively.
將黑暗中生長(zhǎng)13 d的玉米自交系B73幼苗轉(zhuǎn)入遠(yuǎn)紅光、紅光、藍(lán)光和白光下0.25、0.5、1、2、4、8、12和24 h, 來(lái)進(jìn)一步研究2個(gè)ZmCRY1a表達(dá)豐度對(duì)不同光質(zhì)的響應(yīng)。將ZmCRY1a1和ZmCRY1a2在黑暗條件下的表達(dá)豐度設(shè)為各自基因的對(duì)照, 并均設(shè)為1。我們首先考察了2個(gè)ZmCRY1a1對(duì)藍(lán)光的響應(yīng)(圖 6-A), 在由黑暗轉(zhuǎn)換到藍(lán)光 8 h內(nèi),ZmCRY1a1的表達(dá)豐度持續(xù)上升至最大值(自身黑暗時(shí)的9.6倍); 之后在12 h時(shí)下降到自身黑暗時(shí)的3.2倍; 最后在24 h時(shí)其豐度又上升到自身黑暗時(shí)的6.9倍。在黑暗轉(zhuǎn)換到藍(lán)光時(shí) ZmCRY1a2表達(dá)模式與ZmCRY1a1較類似, 只是在2 h內(nèi)其轉(zhuǎn)錄豐度并沒有上調(diào), 維持在自身黑暗時(shí)的0.05~1.40倍, 4~8 h上升到自身黑暗時(shí)的5.0~6.3倍; 12 h時(shí)下降到自身黑暗時(shí)的2.1倍, 以后逐步上升, 在24 h時(shí)表達(dá)豐度達(dá)到自身黑暗時(shí)的24.7倍達(dá)最大值。ZmCRY1a1在由黑暗轉(zhuǎn)換到白光的0.25、4、12、24 h出現(xiàn)4個(gè)峰值, 分別是自身黑暗時(shí)的1.4、2.2、2.8和5.1倍(圖6-B)。在黑暗轉(zhuǎn)換到白光時(shí) ZmCRY1a2表達(dá)模式與ZmCRY1a1較類似, 在0.25、4、12、24 h時(shí)同樣出現(xiàn)4個(gè)峰值, 但12 h時(shí)峰值巨大(為其黑暗時(shí)的9.0倍), 其另外3個(gè)峰值也達(dá)到ZmCRY1a1對(duì)應(yīng)峰值的1.6~2.3倍(圖6-B)。

圖3 2個(gè)ZmCRY1a蛋白與擬南芥及常見作物的CRY1蛋白的氨基酸水平的系統(tǒng)發(fā)育分析Fig. 3 Phylogenetic analysis of amino acid sequences of both ZmCRY1a and Arabidopsis thaliana and other crop CRY1 proteinsAtCRY1: 擬南芥, AAB28724; BnCRY1: 甘藍(lán)型油菜, CAG28805;GmCRY1a: 大豆, DQ401046; GmCRY1b1: 大豆, AB498929;GmCRY1b2: 大豆, AB498930; HvCRY1a: 大麥, ABB13328;HvCRY1b: 大麥, ABB13331; OsCRY1a: 水稻, BAB70686;OsCRY1b: 水稻, BAB70688; PsCRY1: 豌豆, AAS79662; SbCRY2:高粱, AAN37909; SlCRY1a: 番茄, AAD44161; SlCRY1b: 番茄,AAL02092; TaCRY1a: 小麥, ABX58028; ZmCRY1a1: 玉米,ZM05G31560; ZmCRY1a2: 玉米, ZM04G17060。AtCRY1: Arabidopsis thaliana CRY1, AAB28724; BnCRY1:Brassica napus CRY1, CAG28805; GmCRY1a: Glycine max CRY1a, DQ401046; GmCRY1b1: Glycine max CRY1b1,AB498929; GmCRY1b2: Glycine max CRY1b2, AB498930;HvCRY1a: Hordeum vulgare subsp. vulgare CRY1a, ABB13328;HvCRY1b: Hordeum vulgare subsp. vulgare CRY1b, ABB13331;OsCRY1a: Oryza sativa japonica Group CRY1a, BAB70686;OsCRY1b: Oryza sativa japonica Group CRY1b, BAB70688;PsCRY1: Pisum sativum CRY1, AAS79662; SbCRY2: Sorghum bicolor CRY2, AAN37909; SlCRY1a: Solanum lycopersicum CRY1a, AAD44161; SlCRY1b: Solanum lycopersicum CRY1b,AAL02092; TaCRY1a: Triticum aestivum CRY1a, ABX58028;ZmCRY1a1: Zea may CRY1a1, ZM05G31560; ZmCRY1a2: Zea may CRY1a2, ZM04G17060.

圖4 2個(gè)ZmCRY1a在不同器官中的相對(duì)表達(dá)水平Fig. 4 Relative expression of both ZmCRY1a genes in different organs分別取玉米自交系B73(60 d)的不同器官用于qRT-PCR分析, 包括根、莖、葉、雄花、葉枕、葉鞘、花絲、幼穗、花柄和苞葉。把 ZmCRY1a1在根中的表達(dá)豐度設(shè)為對(duì)照, 并且將該ZmCRY1a1/Tubulin設(shè)為1。柱狀圖顯示的為3次獨(dú)立的生物學(xué)重復(fù)ZmCRY1a1/Tubulin或ZmCRY1a2/Tubulin的比值的平均值, 誤差線代表標(biāo)準(zhǔn)差。Different organs of 60-day-old maize inbred line B73, including root, stem, leaf, stamen, pulvinus, sheath, pedical, young ear, pistil and bract, were harvested for qRT-PCR assays. The transcription abundance of ZmCRY1a1 in root was set as the control, and the ratio of ZmCRY1a1/Tubulin in root was 1. Each column shows the mean expression of ZmCRY1a1/Tubulin or ZmCRY1a2/Tubulin of three biological repeats. Error bars indicate the standard deviation.

圖5 2個(gè)ZmCRY1a對(duì)響應(yīng)不同光質(zhì)的相對(duì)表達(dá)水平Fig. 5 Relative expression of both ZmCRY1a genes under different continuous light conditions玉米自交系“B73”的幼苗在黑暗或者持續(xù)遠(yuǎn)紅光(FRc, 1.9 μmol m-2s-1)、持續(xù)紅光(Rc, 22.3 μmol m-2s-1)、持續(xù)藍(lán)光(Bc, 13 μmol m-2s-1)或者持續(xù)白光(WLc, 17 μmol m-2s-1)下生長(zhǎng) 13 d。把ZmCRY1a1在黑暗條件下的表達(dá)豐度設(shè)為對(duì)照, 并且將該ZmCRY1a1/Tubulin設(shè)為 1。柱狀圖代表 3次獨(dú)立的生物學(xué)重復(fù)ZmCRY1a1/Tubulin或ZmCRY1a2/Tubulin的平均值, 誤差線代表標(biāo)準(zhǔn)差。The seedlings of maize inbred line B73 were grown in continuous far-red light (FRc, 1.9 μmol m-2s-1), red light (Rc, 22.3 μmol m-2s-1), blue light (Bc, 13 μmol m-2s-1), or white light (WLc, 17 μmol m-2s-1) for 13 d. The transcription abundance of ZmCRY1a1 in the dark was set as the control, and the ratio of ZmCRY1a1/Tubulin in the dark was given 1. Each column shows the mean expression of ZmCRY1a1/Tubulin or ZmCRY1a2/Tubulin of three biological repeats. Error bars indicate the standard deviation.
盡管是作為編碼藍(lán)光受體的基因, 由于這2個(gè)ZmCRY1a在持續(xù)遠(yuǎn)紅光和紅光中有相對(duì)高的表達(dá)豐度, 進(jìn)一步考察它們對(duì)遠(yuǎn)紅光和紅光的響應(yīng)(圖6-C)。在由黑暗轉(zhuǎn)換到遠(yuǎn)紅光0.25 h時(shí)ZmCRY1a1的表達(dá)豐度未見明顯的變化; 0.5 h時(shí)其表達(dá)豐度略下降到自身黑暗時(shí)的56%; 然后在1 h和2 h時(shí)其豐度穩(wěn)步上升, 在4 h時(shí)達(dá)到第一個(gè)峰值(自身黑暗時(shí)的3.6倍); 之后在8 h時(shí)其豐度又迅速下降(自身黑暗時(shí)的1.2倍); 隨后在12 h時(shí)其豐度繼續(xù)下降到自身黑暗時(shí)的0.8倍; 最后, 在24 h時(shí)回升到最高峰值(自身黑暗時(shí)的 4.8倍)。在黑暗轉(zhuǎn)換到遠(yuǎn)紅光時(shí)ZmCRY1a2表達(dá)模式與ZmCRY1a1較類似, 有3點(diǎn)明顯的差異, 一是ZmCRY1a2表達(dá)豐度的第一個(gè)峰值發(fā)生在黑暗轉(zhuǎn)換到遠(yuǎn)紅光1 h時(shí), 早于但低于ZmCRY1a1; 二是ZmCRY1a2在8 h時(shí)也形成與自身黑暗時(shí)相當(dāng)?shù)囊粋€(gè)小峰; 三是ZmCRY1a2在24 h時(shí)達(dá)到最高峰值略低于ZmCRY1a1 (自身黑暗時(shí)的3.9倍)。最后檢測(cè)了ZmCRY1a1對(duì)紅光的響應(yīng), 在由黑暗轉(zhuǎn)換到紅光0.25 h時(shí), ZmCRY1a1的表達(dá)豐度上升到自身黑暗時(shí)的1.7倍, 在0.5 h時(shí)迅速下降到自身黑暗時(shí)的74%; 在1~4 h, ZmCRY1a1的表達(dá)豐度持續(xù)上升, 在4 h時(shí)達(dá)到其自身黑暗時(shí)12.9倍, 隨后在8 h時(shí)下降到與自身黑暗時(shí)相當(dāng)水平, 之后穩(wěn)步上升, 在24 h時(shí)達(dá)到自身黑暗時(shí)的22.8倍。在黑暗轉(zhuǎn)換到紅光時(shí)ZmCRY1a2表達(dá)模式與ZmCRY1a1類似, 但ZmCRY1a2在黑暗轉(zhuǎn)換到紅光1 h時(shí)出現(xiàn)一個(gè)小峰(是自身黑暗時(shí)的4.7倍); 在24 h時(shí)僅上升到自身黑暗時(shí)8.6倍, 遠(yuǎn)低于ZmCRY1a1。綜合不同持續(xù)光質(zhì)和由黑暗轉(zhuǎn)換到各種光質(zhì)處理下的結(jié)果可以看出, 2個(gè)ZmCRY1a表達(dá)豐度不僅響應(yīng)藍(lán)光和白光處理,而且也能強(qiáng)烈地響應(yīng)遠(yuǎn)紅光和紅光。

圖6 2個(gè)ZmCRY1a基因響應(yīng)黑暗到不同光質(zhì)轉(zhuǎn)換的相對(duì)表達(dá)水平分析Fig. 6 Relative expression analysis of both ZmCRY1a genes during transitions from darkness to different light conditions玉米自交系B73的幼苗在黑暗生長(zhǎng)13 d后轉(zhuǎn)入A: 藍(lán)光(B, 13 μmol m-2s-1), B: 白光(WL, 17 μmol m-2s-1), C: 遠(yuǎn)紅光(FR, 1.9 μmol m-2s-1)及D: 紅光(R, 22.3 μmol m-2s-1)、或者0、0.25、0.5、1、2、4、8、12和24 h的ZmCRY1a表達(dá)模式。將ZmCRY1a1和ZmCRY1a2在黑暗條件下的表達(dá)豐度設(shè)為各自基因的對(duì)照, 并均設(shè)為 1。柱狀圖顯示 3次獨(dú)立的生物學(xué)重復(fù) ZmCRY1a1/Tubulin或ZmCRY1a2/Tubulin的平均值, 誤差線代表標(biāo)準(zhǔn)差。The seedlings of maize inbred line B73 were grown in the dark for 13 d, then transferred to A: blue light (B, 13 μmol m-2s-1), B: white light (WL, 17 μmol m-2s-1), C: far-red light (FR, 1.9 μmol m-2s-1), D: red light (R, 22.3 μmol m-2s-1), for 0.25, 0.5, 1, 2, 4, 8, 12, or 24 h. The transcription abundance of ZmCRY1a1 or ZmCRY1a2 in the dark was set as the controls of the either genes, and the ratio of ZmCRY1a1/Tubulin or ZmCRY1a2/Tubulin in the dark was given 1. Each column shows the mean expression of ZmCRY1a1/Tubulin or ZmCRY1a2/Tubulin of three biological repeats. Error bars indicate the standard deviation.
2.52個(gè)ZmCRY1a的表達(dá)對(duì)光周期(長(zhǎng)日照和短日照)處理的響應(yīng)
長(zhǎng)日照條件下, ZmCRY1a1在光照階段有3個(gè)明顯的表達(dá)峰, 分別出現(xiàn)在4、8和12 h, 是自身黑暗時(shí)的2.4、3.0和4.2倍; ZmCRY1a1在進(jìn)入黑暗階段18 h和22 h時(shí)有2個(gè)明顯的表達(dá)峰, 分別是自身黑暗時(shí)的2.5倍和1.7倍(圖7-A)。ZmCRY1a2在長(zhǎng)日照條件下光照階段的3個(gè)表達(dá)峰與ZmCRY1a1趨勢(shì)完全一致,只是峰值略高, 在4、8和12 h時(shí)分別是自身黑暗時(shí)的4.0、4.4和6.6倍; ZmCRY1a2僅在進(jìn)入黑暗階段的18 h時(shí)出現(xiàn)一個(gè)極強(qiáng)峰值, 是自身黑暗時(shí)的14.9倍(圖7-B)。
在短日照條件下, 2個(gè)ZmCRY1a的表達(dá)出現(xiàn)了極其相似的模式, 在光照階段的2 h和8 h時(shí)出現(xiàn)2個(gè)小的表達(dá)峰(分別是自身黑暗時(shí)的1.1~1.7倍)(圖7-C,D)。在黑暗階段, 2個(gè)ZmCRY1a均出現(xiàn)1個(gè)小的和2個(gè)顯著的表達(dá)峰; 在14 h時(shí)小的表達(dá)峰, 分別是其本身黑暗時(shí)的1.3倍和2.2倍(圖7-C, D); 在18 h和22 h 時(shí)2個(gè)顯著峰, 分別是其本身黑暗時(shí)的5~6倍。可見2個(gè)ZmCRY1a的表達(dá)能響應(yīng)長(zhǎng)日和短日處理。

圖7 2個(gè)ZmCRY1a在光周期(長(zhǎng)日照和短日照)處理的相對(duì)表達(dá)水平Fig. 7 Relative expression of both ZmCRY1a genes in response to photoperiod (long-day and short-day) treatment玉米自交系“B73”的幼苗在長(zhǎng)日照條件(LD, 16 h光照/8 h黑暗)或者短日照條件(SD, 8 h光照/16 h黑暗)生長(zhǎng)13 d, 然后每隔2 h取樣一次。將 ZmCRY1a1和 ZmCRY1a2在黑暗條件下的表達(dá)豐度設(shè)為各自基因的對(duì)照, 并均設(shè)為 1。柱狀圖顯示 3次獨(dú)立的生物學(xué)重復(fù)ZmCRY1a1/Tubulin或ZmCRY1a2/Tubulin的平均值, 誤差線代表標(biāo)準(zhǔn)差。The seedlings of maize inbred line B73 were grown in long-day condition (LD, 16 h light/8 h dark) or short-day (SD, 8 h light/16 h dark) for 13 d, then they were samples every two hours. The transcription abundance of ZmCRY1a1 or ZmCRY1a2 in the dark was set as the controls of the either genes, and the ratio of ZmCRY1a1/Tubulin or ZmCRY1a2/Tubulin in the dark was given 1. Each column shows the mean expression of ZmCRY1a1/Tubulin or ZmCRY1a2/Tubulin of three biological repeats. Error bars indicate the standard deviation.
隱花色素不但參與植物光形態(tài)建成[27]、開花調(diào)節(jié)[26,32-33]和種子休眠等發(fā)育過程, 也負(fù)責(zé)生物與非生物脅迫的調(diào)節(jié)[36-37]。與擬南芥和水稻等普通的二倍體不同, 玉米被認(rèn)為起源于一個(gè)古四倍體, 其染色體組經(jīng)歷基因組和片段復(fù)制、染色體融合及易位等[40-42], ZmCRY1a也保留了2個(gè)拷貝。本研究發(fā)現(xiàn), 2 個(gè) ZmCRY1a在玉米的葉片中表達(dá)豐度最高(圖 4),同時(shí)它們的表達(dá)不但響應(yīng)藍(lán)光和白光處理, 而且響應(yīng)遠(yuǎn)紅光和紅光(圖5和圖6), 以及光周期(長(zhǎng)日照和短日照)處理(圖 7)等。表明它們可能參與玉米在不同光質(zhì)下的光形態(tài)建成及光周期的調(diào)節(jié)。2個(gè)ZmCRY1a在進(jìn)化關(guān)系上與水稻CRY1a親緣關(guān)系最近, 而與擬南芥等雙子葉植物的 CRY1親緣關(guān)系相對(duì)較遠(yuǎn)(圖2和圖3)。ZmCRY1a與單子葉水稻和小麥的 CRY1a一致性較與雙子葉擬南芥和大豆的CRY1a一致性更高(圖3), 表明ZmCRY1a與同屬于單子葉的CRY1具有更相似的功能。
植物通過光受體來(lái)感知光質(zhì)、光強(qiáng)和周期的變化, 進(jìn)而調(diào)節(jié)自身的生長(zhǎng)和發(fā)育進(jìn)程。近期的研究也發(fā)現(xiàn)甘藍(lán)型油菜 BnCRY1的表達(dá)豐度在莖、花、幼嫩長(zhǎng)角果和根中均較高, 該基因負(fù)責(zé)調(diào)控下胚軸和莖的生長(zhǎng)以及花青素的積累[25]。與 OSCRY1a[30]類似, 2個(gè)ZmCRY1a在葉片中高表達(dá)(圖4), 可能植物葉片巨大的表面積,為光受體更好接受光線提供了便利。除在葉片中高表達(dá)外, ZmCRY1a1在其他器官中表達(dá)各異, 而 ZmCRY1a2在其他各種器官中的表達(dá)豐度基本一致(圖4), 推測(cè)二者在各種器官中的功能存在分工。近期的報(bào)道表明甘藍(lán)型油菜BnCRY1基因在白光中的表達(dá)豐度遠(yuǎn)高于在黑暗[25]。2個(gè)ZmCRY1a對(duì)不同光質(zhì)均存在較強(qiáng)的響應(yīng), 特別是對(duì)藍(lán)光響應(yīng)最強(qiáng); 但是 ZmCRY1a1對(duì)藍(lán)光、遠(yuǎn)紅光、紅光和白光的響應(yīng)存在差異, 而 ZmCRY1a2基因?qū)@些光質(zhì)的響應(yīng)類似, 暗示2個(gè)ZmCRY1a在各種光質(zhì)下可能也存在功能的分工。另外, 2種 ZmCRY1a基因非常強(qiáng)烈地響應(yīng)黑暗轉(zhuǎn)換到遠(yuǎn)紅光和紅光(圖6), 暗示它們可能參與玉米調(diào)控遠(yuǎn)紅光和紅光反應(yīng)。
隱花色素在藍(lán)紫光區(qū)有3個(gè)吸收峰(420、450和480 nm), 在近紫外光370 nm左右有一個(gè)吸收峰, 而對(duì)紅光(600~700 nm)和遠(yuǎn)紅光(700~750 nm)沒有吸收峰。擬南芥隱花色素與光敏色素的遺傳與蛋白存在互作[43-49], 并且通過互作調(diào)節(jié)植物光形態(tài)建成、生物鐘和種子萌發(fā)等發(fā)育過程[43-49]。是否 2個(gè)ZmCRY1a可能與6個(gè)光敏色素存在蛋白互作, 在紅光和遠(yuǎn)紅光處理下光敏色素發(fā)揮作用并通過與隱花色素之間的互作來(lái)影響2個(gè)ZmCRY1a蛋白的穩(wěn)定性, 進(jìn)而反饋調(diào)節(jié)2個(gè)ZmCRY1a的表達(dá)豐度, 值得進(jìn)一步探索。由于玉米光敏色素有 6個(gè)拷貝, 而藍(lán)光受體, 除了 2個(gè)拷貝的 ZmCRY1a以外, 還包括ZmCRY1b和ZmCRY2; 這4個(gè)藍(lán)光受體與6個(gè)光敏色素間的互作模式, 以及在互作與活性之間的關(guān)系有待闡明。
在模式植物擬南芥中的研究表明, 高等植物開花的調(diào)控是由光信號(hào)轉(zhuǎn)導(dǎo)途徑與生物鐘途徑(circadian clock)相關(guān)基因如 GI (GIGANTEA)、CO (CONSTANS)和FT (FLOWERING LOCUS T)共同完成的[50-52]。CRY2通過抑制 CO蛋白的降解和促進(jìn)FT的表達(dá), 來(lái)促進(jìn)植物開花[11,34]。近期的研究結(jié)果顯示甘藍(lán)型油菜 BnCRY1在促進(jìn)開花中起作用[25],GmCRY1a與OsCRY1a也參與開花調(diào)控[28,30]。本研究表明2個(gè)ZmCRY1a的表達(dá)強(qiáng)烈地響應(yīng)長(zhǎng)日照和短日照處理(圖7), 2個(gè)ZmCRY1a與玉米開花調(diào)控基因ZmGI、ZmCOL和ZmFT之間的關(guān)系需進(jìn)一步驗(yàn)證。2個(gè)ZmCRY1a對(duì)各種光質(zhì)及長(zhǎng)日照、短日照的響應(yīng),推測(cè)其可能參與玉米光形態(tài)建成及開花調(diào)控,ZmCRY1a在玉米改良中的作用值得進(jìn)一步探討。
玉米 ZmCRY1a與擬南芥 AtCRY1和水稻OsCRY1a具有相似的結(jié)構(gòu), 都包含 PHR結(jié)構(gòu)域(DNA photolyase結(jié)構(gòu)域和FAD binding 7結(jié)構(gòu)域)和Cryptochrome C結(jié)構(gòu)域(CCE結(jié)構(gòu)域); ZmCRY1a在葉片中表達(dá)豐度最高, 并且受到不同光質(zhì)的影響,能強(qiáng)烈響應(yīng)遠(yuǎn)紅光處理, 對(duì)長(zhǎng)日照和短日照處理也有很強(qiáng)的響應(yīng)。推測(cè)2個(gè)ZmCRY1a在玉米光形態(tài)建成與開花調(diào)節(jié)中發(fā)揮重要作用。
References
[1] Bae G, Choi G. Decoding of light signals by plant phytochromes and their interacting proteins. Annu Rev Plant Biol, 2008, 59:281-311
[2] Li J G, Li G, Wang H Y, Deng X W. Phytochrome signaling mechanisms. The Arabidopsis Book, 2011, e0148 (doi: 10.1199/ tab.0148)
[3] Quail P H. Phytochrome photosensory signalling networks. Nat Rev Mol Cell Biol, 2002, 3: 85-93
[4] 詹克慧, 李志勇, 侯佩, 習(xí)雨琳, 肖陽(yáng), 孟凡華, 楊建平. 利用修飾光敏色素信號(hào)途徑進(jìn)行品種改良的可行性. 中國(guó)農(nóng)業(yè)科學(xué), 2012, 45: 3249-3255
Zhan K H, Li Z Y, Hou P, Xi Y L, Xiao Y, Meng F H, Yang J P. A new strategy for crop improvement through modification of phytochrome signaling pathways. Sci Agric Sin, 2012, 45:3249-3255 (in Chinese with English abstract)
[5] Briggs W R, Olney M A. Photoreceptors in plant photomorphogenesis to date. Five phytochromes, two cryptochromes, one phototropin, and one superchrome. Plant Physiol, 2001, 125:85-88
[6] Lin C T. Blue light receptors and signal transduction. Plant Cell,2002, 14: S207-S225
[7] Ahmad M, Cashmore A R. HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature,1993, 366: 162-166
[8] Cashmore A R. Cryptochromes: enabling plants and animals to determine circadian time. Cell, 2003, 114: 537-543
[9] Lin C T, Shalitin D. Cryptochrome structure and signal transduction. Annu Rev Plant Biol, 2003, 54: 469-496
[10] Sancar A. Structure and function of DNA photolyase and cryptochrome blue light photoreceptors. Chem Revs, 2003, 103:2203-2237
[11] Guo H, Yang H Q, Mockler T C, Lin C T. Regulation of flowering time by Arabidopsis photoreceptor. Science, 1998, 279:1360-1363
[12] Li Q H, Yang H Q. Cryptochrome Signaling in Plants. Photochem Photobiol, 2007, 83: 94-101
[13] Shalitin D, Yang H Q, Mockler T C, Maymon M, Guo H, White-lam G C, Lin C T. Regulation of Arabidopsis cryptochrome 2 by blue-light dependent phosphorylation. Nature, 2002, 417:763-767
[14] Ahmad M, Jarillo J A, Cashmore A R. Chimeric proteins between cry1 and cry2 Arabidopsis blue light photoreceptors indicate overlapping functions and varying protein stability. Plant Cell,1998, 10: 197-207
[15] Lin C T, Yang H Q, Guo H, Mockler T, Chen J, Cashmore A R. Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2. Proc Natl Acad Sci USA,1998, 95: 2686-2690
[16] Yu X, Klejnot J, Zhao X, Shalitin D, Maymon M, Yang H Q, Lee J, Liu X, Lin C T. Arabidopsis cryptochrome 2 completes its posttranslational life cycle in the nucleus. Plant Cell, 2007, 19:3146-3156
[17] Kleine T, Lockhart P, Batschauer A. An Arabidopsis protein closely related to Synechocystis cryptochrome is targeted to organelles. Plant J, 2003, 35: 93-103
[18] Selby C P, Sancar A. A cryptochrome/photolyase class of enzymes with single stranded DNA specific photolyase activity. Proc Natl Acad Sci USA, 2006, 103: 17696-17700
[19] 陳福祿, 李宏宇, 林辰濤, 傅永福. 擬南芥隱花色素突變體抑制子的篩選及其表型分析. 中國(guó)農(nóng)業(yè)科技導(dǎo)報(bào), 2009, 11(3):93-97 Chen F L, Li H Y, Lin C T, Fu Y F. Screening and phenotypic analysis of suppressor of cryptochromes mutant in Arabidopsis. J Agric Sci Technol, 2009, 11(3): 93-97 (in Chinese with English abstract)
[20] Immeln D, Schlesinger R, Heberle J, Kottke T. Blue light induces radical formation and autophosphorylation in the light-sensitive domain of Chlamydomonas cryptochrome. J Biol Chem, 2007,282: 21720-21728
[21] Imaizumi T, Kanegae T, Wada M. Cryptochrome nucleocytoplasmic distribution and gene expression are regulated by light quality in the fern Adiantum capillus-veneris. Plant Cell, 2000,12: 81-96
[22] Imaizumi T, Kadota A, Hasebe M, Wada M. Cryptochrome light signals control development to suppress auxin sensitivity in the moss physcomitrella patens. Plant Cell, 2002, 14: 373-386
[23] Ninu L, Ahmad M, Miarelli C, Cashmore A R, Giuliano G. Cryptochrome 1 controls tomato development in response to blue light. Plant J, 1999, 18: 551-556
[24] Giliberto L, Perrotta P, Pallara P, Weller J L, Fraser P D, Bramlev P M, Flore A, Tavazza M, Giuliano G. Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content. Plant Physiol, 2005, 137: 199-208
[25] Chatterjee M, Sharma P, Khurana J P. Cryptochrome 1 from Brassica napus is up-regulated by blue light and controls hypocotyl/stem growth and anthocyanin accumulation. Plant Physiol,2006, 141: 61-74
[26] Platten J D, Foo E, Elliott R C, Hecht V, Reid J B, Weller J L. Cryptochrome 1 contributes to blue-light sensing in pea. Plant Physiol, 2005, 139: 1472-1482
[27] Platten J D, Foo E, Elliott R C, Hecht V, Reid J B, Weller J L. The cryptochrome gene family in pea includes two differentially expressed CRY2 genes. Plant Mol Biol, 2005, 59: 683-696
[28] Zhang Q Z, Li H Y, Li R, Hu R B, Fan C M, Chen F L, Wang Z H,Liu X, Fu Y F, Lin C T. Association of the circadian rhythmic expression of GmCRY1a with a latitudinal cline in photoperiodic flowering of soybean. Proc Natl Acad Sci USA, 2008, 105:21028-21033
[29] Meng Y Y, Li H Y, Wang Q, Liu B, Lin C T. Blue light-dependent interaction between Cryptochrome2 and CIB1 regulates transcription and leaf senescence in soybean. Plant Cell, 2013, 25:4405-4420
[30] Hirose F, Shinomura T, Tanabata T, Shimada H, Takano M. Involvement of rice cryptochromes in de-etiolation responses and flowering. Plant Cell Physiol, 2006, 47: 915-925
[31] Zhang Y C, Gong S F, Sang F, Yang H Q. Functional and signaling mechanism analysis of rice CRYPTOCHROME 1. Plant J,2006, 46: 971-983
[32] Toth R, Kevei E, Hall A, Millar A, J, Nagy F, Kozma-Bognar L. Circadian clock-regulated expression of phytochrome and cryptochrome genes in Arabidopsis. Plant Physiol, 2001, 127:1607-1616
[33] Facella P, Loredana L, Carbone F, Galbraith D W, Giuliano G,Perrotta G. Diurnal and circadian rhythms in the tomato transcriptome and their modulation by cryptochrome photoreceptors. PLoS One, 2008, 3(7): e2798
[34] Liu H, Yu X, Li K, Klejnot J, Yang H, Lisiero D, Lin C. Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis. Science, 2008, 322: 1535-1539
[35] Xu P, Xiang Y, Zhu H, Xu H, Zhang Z Z, Zhang C Q, Zhang L X,Ma Z Q. Wheat cryptochromes: Subcellular localization and involvement in photomorphogenesis and osmotic stress responses. Plant Physiol, 2009, 149: 760-774
[36] Barrero J M, Downie A B, Xu Q, Gubler F. A role for barley CRYPTOCHROME1 in light regulation of grain dormancy and germination. Plant Cell, 2014, 26: 1094-1104.
[37] Sharma P, Chatterjee M, Burman N, Khurana J P. Cryptochrome 1 regulates growth and development in Brassica through alteration in the expression of genes involved in light, phytohormone and stress signaling. Plant Cell Environ, 2014, 37: 961-977
[38] 原換換, 孫廣華, 閆蕾, 郭林, 樊曉聰, 肖陽(yáng), 孟凡華, 宋梅芳,詹克慧, 楊青華, 楊建平. 玉米ZmPP6C基因的克隆及其響應(yīng)光質(zhì)和脅迫處理的表達(dá)模式分析. 作物學(xué)報(bào), 2016, 42:170-179 Yuan H H, Sun G H, Yan L, Guo L, Fan X C, Xiao Y, Meng F H,Song M F, Zhan K H, Yang Q H, Yang J P. Molecular cloning of ZmPP6C gene and its expression patterns in response to light and stress treatments in maize (Zea mays L.). Acta Agron Sin, 2016,42: 170-179 (in Chinese with English abstract)
[39] Rajeevan M S, Ranamukhaarachi D G, Vernon S D, Unger E R. Use of real-time quantitative PCR to validate the results of cDNA array and differential display PCR technologies. Methods, 2001,25: 443-451
[40] Schnable J C, Springer N M, Freeling M. Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss. Proc Natl Acad Sci USA, 2011, 108:4069-4074
[41] Wei F S, Nelson W, Coe E, Bharti A K, Engler F, Butler E, Kim HR, Goicoechea J L, Chen M S, Lee S, Fuks G, Villeda S H,Schroeder S, Fang Z W, McMullen M, Davis G, Bowers J E,Paterson A H, Schaeffer M, Gardiner J, Cone K, Messing J, Soderlund C, Wing R A. Physical and genetic structure of the maize genome reflects its complex evolutionary history. PLoS Genetics,2007, 3(7): e123
[42] Salse J, Bolot S, Throude M, Jouffe V, Beno?t P, Quraishi U M,Calcagno T, Cooke R, Delseny M, Feuilleta C. Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution. Plant Cell,2008, 20: 11-24
[43] Ahmad M, Cashmore A R. The blue-light receptor cryptochrome 1 shows functional dependence on phytochrome A or phytochrome B in Arabidopsis thaliana. Plant J, 1997, 11: 421-427
[44] Chory J. Genetic interactions between phytochrome A, phytochrome B, cryptochrome 1 during Arabidopsis development. Plant Physiol, 1998, 118: 27-35
[45] Hennig L, Funk M, Whitelam C G, Schafer E. Functional interaction of cryptochrome 1 and phytochrome. Plant Cell, 1999, 20:289-294
[46] Somers D E, Devlin P F, Kay S A. Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science, 1998, 282: 1488-1490
[47] Ahmad M, Jarillo A J, Smirnova O, Cashmore R A. The CRY1 blue light photoreceptor of Arabidopsis interacts with Phytochrome A in vitro. Mol Cell, 1998, 1: 939-948
[48] Ma?s P, Devlin F P, Panda S, Kay S A. Functional interaction of phytochrome B and cryptochrome 2. Nature, 2000, 408: 207-211
[49] Neff M M, Jarillo J A, Capel J, Tang R H, Yang H Q, Alonso J M,Ecker J R, Cashmore A R. An Arabidopsis circadian clock component interacts with both CRY1 and phyB. Nature, 2001, 410:487-490
[50] Suárez-López P, Wheatley K, Robson F, Onouchi H, Valverde F,Coupland G. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature, 2001, 410:1116-1120
[51] Pineiro R P, Coupland G. The control of flowering time and floral identity in Arabidopsis. Plant Physiol, 1998, 17: 1-8
[52] Samach A, Onouchi H, Gold S E, Ditta G S, Schwarz-Sommer Z,Yanofsky M F, Coupland G. Distinct roles of CONSTANS target genes in reproductive development in Arabidopsis. Science, 2000,288: 1613-1616
Molecular Cloning of Two Maize (Zea mays) CRY1a Genes and Their Expression Patterns of in Response to Different Light Treatments
YAN Lei1,2,**, YANG Zong-Ju2,3,**, SU Liang2, XIAO Yang3, GUO Lin2, SONG Mei-Fang2,4, SUN Lei2,3,MENG Fan-Hua2, BAI Jian-Rong1,5,*, and YANG Jian-Ping2,*
1College of Biology Engineering, Shanxi University, Taiyuan 030006, China;2Institute of Crop Science, Chinese Academy of Agricultural Sciences,Beijing 100081, China;3Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China;4Beijing Radiation Center, Beijing 100875, China;5Institute of Crop Sciences, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China
Cryptochromes are blue light receptors that regulate the development of growth and circadian clock in plants. To stress the functions of crytochrome 1 (CRY1) on photomorphogenesis and flowering regulation in maize (Zea mays L.), we isolated the cDNA clones of two ZmCRY1a genes from inbred line B73 by homologous cloning, and designated as ZmCRY1a1 and ZmCRY1a2. The length of both ZmCRY1a coding DNA sequences were 2124 nucleotides, which encoded 707 amino acid residues. Bioinformatics analyses were employed to predict their function domains and to build a phylogenetic relationship tree among plant CRY1 homologs by the DNAMAN software and the NCBI blast. The two ZmCRY1a proteins possessed three function domains: DNA photolyase, FAD binding, and crytochrome C domains. Phylogenetic analysis indicated that the two ZmCRY1a proteins belonged to the same branch with OsCRY1a, while showing low similarity to other CRY1 proteins from dicotyledonous species, such as A. thaliana and Glycine max. The transcription abundances of two ZmCRY1a genes in different organs and in response to light treatments were detected using quantitative RT-PCR (qRT-PCR). qRT-PCR assays indicated that the two ZmCRY1a genes were highly expressed in leaf with 52.1 or 6.2 times higher than ZmCRY1a1 abundance in root, respectively. The transcription abundances of the both genes were very high under different continuous light conditions, especially in blue and far-red light. Although encoding blue light receptors, they both greatly responded to dark-to-far-red and dark-to-red transitions. In addition, their transcription abundances could also respond to photoperiod treatment (both long-day and short-day conditions). In long-day condition, The transcription abundances of ZmCRY1a1 and ZmCRY1a2 had five four peaks, respectively. In short-day condition, both ZmCRY1a genes had two big peaks which happened at 10 h and 14 h after transition into darkness. Our results suggest that both ZmCRY1a genes may be involved in seedling de-etiolation and flowering time control, thus their roles in crop improvement are worthy of more exploration in the future.
Zea mays.L; Cryptochrome; Light signaling transduction; Gene cloning; Expression pattern
10.3724/SP.J.1006.2016.01298
本研究由國(guó)家重點(diǎn)研發(fā)計(jì)劃試點(diǎn)專項(xiàng)項(xiàng)目(SQ2016ZY03002918), 國(guó)家轉(zhuǎn)基因生物新品種培育重大專項(xiàng)(2016ZX08010002-003-002),國(guó)家自然科學(xué)基金項(xiàng)目(3157026), 北京市自然科學(xué)基金(重點(diǎn))項(xiàng)目(6151002)和中國(guó)農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程項(xiàng)目資助。
This study was supported by the Special Project of National Key Research and Development Project (SQ2016ZY03002918), the Genetically Modified Organisms Breeding Major Projects of China (2016ZX08010002-003-002), the National Natural Science Foundation of China (31570268), the Beijing Natural Science Foundation (6151002), and the Agricultural Science and Technology Innovation Program (ASTIP).
(Corresponding authors): 楊建平, E-mail: yangjianping02@caas.cn, Tel: 010-82105859; 白建榮, E-mail: jrbai@sohu.com, Tel:0351-7639551
**同等貢獻(xiàn)(Contributed equally to this work)
聯(lián)系方式: 閆蕾, E-mail: yanlei2723@126.com, Tel: 010-82105851; 楊宗舉, E-mail: zongjuyang@163.com
Received(): 2016-01-20; Accepted(接受日期): 2016-05-09; Published online(網(wǎng)絡(luò)出版日期): 2016-06-02.
URL: http://www.cnki.net/kcms/detail/11.1809.S.20160602.1435.006.html