黃勛和,陳潔波,何丹林,張細權,鐘福生
?
DNA條形碼技術鑒定中國地方雞品種的重新評估
黃勛和1,陳潔波1,何丹林2,張細權2,鐘福生1
(1嘉應學院生命科學學院,廣東梅州 514015;2華南農業大學動物科學學院,廣州 510642)
【目的】探討COI基因作為標準DNA條形碼技術鑒定外形差異較小的地方雞品種的可行性。【方法】以華南地區9種優質地方雞(懷鄉雞、清遠麻雞、惠陽胡須雞、中山沙欄雞、陽山雞、杏花雞、五華三黃雞、文昌雞和廣西三黃雞)和國外引進品種隱性白羽雞為試驗材料,測定標準的DNA條形碼技術的線粒體細胞色素C 氧化酶亞基I (cytochromeoxidase subunit I,COI),同時下載已發表的31條家雞和原雞及綠頭鴨的COI基因序列,分析品種遺傳多樣性與遺傳距離,構建單倍型中介網絡圖和系統發生鄰接樹,界定區分品種特異的單倍型。【結果】除去PCR引物序列,獲得了695 bp COI基因片段。根據標準的DNA條形碼序列,截取648 bp 線粒體COI基因序列進行分析。10個雞品種203個個體共檢測到110個變異位點,占分析位點的16.98%,其中90個單一位點突變,20個簡約信息位點。平均核苷酸多樣性為0.00394(0.00349—0.00560),平均單倍型多樣性為0.832(0.763—0.905),其中五華三黃雞最高,中山沙欄雞次之,文昌雞最低。定義了84種單倍型,單倍型1為9個地方雞種所共享,出現頻率為64次;單倍型9和5為家雞和隱性白羽雞共享,出現頻率分別為29次和19次;每個雞品種均有品種特異的單倍型。廣西三黃雞、五華三黃雞與中山沙欄雞的單倍型數最多,為13個,隱性白羽雞與清遠麻雞的最少,為8個。不同品種的單倍型分布差異較大,如杏花雞的單倍型主要分布在1,清遠麻雞主要分布在1和9,惠陽胡須雞主要分布在1、5和9,隱性白羽雞主要分布在9和79。10個雞種品種間遺傳距離范圍為0.003—0.006,凈遺傳距離為0—0.003;雞品種間的遺傳距離一般大于雞品種內的遺傳距離;綠頭鴨與雞品種間的遺傳距離大于0.2。中介網絡圖將84個單倍型分為3條進化枝,呈現出一定的品種特異性,如以單倍型9為起點的進化枝沒有廣西三黃雞和文昌雞分布,但另外兩枝未表現出此特征;1為祖先單倍型,由此逐漸衍生出其他單倍型。鄰接樹顯示中國家雞與紅原雞聚為一簇,與黑尾原雞、灰原雞和綠原雞分開;中國地方雞聚為同一簇,且存在明顯的交叉現象,無顯著的品種特異性。【結論】COI基因可作為研究雞品種遺傳多樣性的候選分子標記。僅依靠標準的DNA條形碼技術無法有效區分差異外形較小的地方雞種,需要聯合多種分子標記如COI基因、細胞色素b、 AFLP指紋技術、微衛星位點LEI0258、基因組SNP和品種特異的外貌特征。
線粒體COI基因;DNA條形碼;地方雞種;品種鑒定;遺傳多樣性
【研究意義】作為分布最廣泛的家禽,家雞()在人類生產生活中扮演著重要角色。中國家雞資源豐富,僅列入《中國畜禽遺傳資源志·家禽志》的地方雞品種就有107個[1]。隨著外來引進品種和大量商品雞的飼養,地方雞的種質特性受到極大的影響。尋求快速簡便的區分外形多樣、遺傳復雜的地方雞品種的技術方法是科學家和育種專家急需解決的問題。由于線粒體細胞色素C 氧化酶亞基I(cytochromeoxidase I,COI)具有相對保守與穩定的變異性的特性,已作為DNA條形碼(DNA barcoding)研究的標準基因廣泛應用于脊椎動物和無脊椎動物的系統分類、種類鑒別、群體遺傳多樣性和分子進化學研究[2-7]。【前人研究進展】自加拿大生物學家Hebert等[8]首先倡導將648 bp COI基因作為DNA條形碼編碼技術的標準基因應用于生物物種鑒定以來,獲得了蓬勃的發展。目前BOLD系統(The Barcode of Life Data System)記錄的標本量達5 259 477件,其中條形碼研究3 881 860,物種數為235 994[9]。Kerr等[10]通過研究643種北美鳥類COI基因,發現94%的種類擁有明顯的條形碼分支,剩余的6%大部分是有規律雜交的物種。Ward[11]總結了FISH-BOL(The Fish Barcode of Life Initiative)的研究成果表明,DNA條形碼技術可以有效區分98%的海洋魚類和93%的淡水魚類。WILSON等[12]建立了馬來西亞半島鱗翅目蝴蝶的DNA條形碼參考數據庫并定義了亞種的參考閾值。孟瑋等[13-16]分別驗證了COI基因作為DNA條形碼在魚類物種鑒定、鳥類分類、銀鯧群體遺傳多樣性、動物藥材鑒定等方面的可行性。動物品種鑒定方面,高玉時等[2,17-18]采用DNA條形碼技術驗證了差異較大的地方雞品種鑒定的可行性和有效性。【本研究切入點】之前的地方雞DNA條形碼鑒定研究主要針對于外觀差異較大、地緣分布較遠的品種,而對于外觀相近,地緣集中的品種則尚未開展研究。【擬解決的關鍵問題】本研究以華南9個優質地方雞和國外引進品種隱性白羽雞作為試驗材料,采用標準的DNA條形碼技術對10個雞品種進行分子鑒定,評估COI基因作為DNA條形碼鑒定外形差異較小的雞品種的可行性。
1.1 試驗材料
以華南9種優質地方雞和國外引進品種隱性白羽雞共203個個體為試驗材料(表1)。除五華三黃雞之外,其他8種地方雞種均入選《中國畜禽遺傳資源志·家禽志》[1],而五華三黃雞入選《中國禽類遺傳資源》[19]。五華三黃雞、陽山雞采自其原產地,文昌雞、清遠麻雞采自商品群,其余6種采自保種場,五華三黃雞的樣品類型為羽毛,其他品種均為血液;從基因庫下載已發表的雞品種如黃郎雞、桃源雞、仙居雞等和原雞如紅原雞、灰尾原雞和綠原雞等的COI基因全序列,同時下載綠頭鴨COI基因作為計算遺傳距離的參考外群(http://www.ncbi.nlm.nih.gov/nuccore/)。使用試劑盒HiPure Blood/Tissue DNA Mini Kit(美基生物,廣州)提取樣品基因組DNA,-20℃保存備用。

表1 樣品信息
1.2 PCR擴增與序列測定
為提高PCR擴增的特異性和效率,參照鳥類DNA條形碼通用引物和已發表的黃郎雞線粒體全基因組序列(GU261701)微調COI基因的擴增引物(BirdF1:5′-TTCTCCAACCACAAAGACATTGGCAC-3′[20],COIR:5′- CGTGGGAAATTATTCCGAAACCTG -3′)。PCR反應體系為30 μL,含10×PCR buffer 3μL,dNTP mixture(2.5 mmol·L-1)2.4 μL,引物各0.3 μL(20 μmol·L-1),rTaq DNA聚合酶(寶生物, 大連)1.5 U,DNA模板100 ng。擴增條件為94℃預變性4 min,然后35個循環(94℃變性30 s,58℃退火1 min,72℃延伸50 s),最后72℃延伸7 min。PCR產物于1.5%瓊脂糖凝膠電泳檢測后送上海立菲生物技術有限公司(廣州)雙向測序。
1.3 序列分析
Bioedit 軟件讀取測序序列,對每個序列進行人工逐個堿基檢查校對,并通過每個樣品雙向測序和每個單倍型重新測序進行雙重校正。采用標準的648 bp DNA條形碼序列(對應小鼠COI基因第58—705位堿基)作為分析數據。所獲序列用Clustal X軟件[21]進行對位排列后,用DnaSP5.0軟件[22]定義單倍型,計算單倍型多樣性(Haplotype diversity,)、核苷酸多樣性(nucleotide diversity,π)和核苷酸差異均數()。通過NETWORK 4.6.1.4 軟件[23]構建單倍型中介連接網絡圖(Median-joining networks)。以綠頭鴨為外群(,KJ883269),用MEGA6.0 軟件[24]中的Kimura 2-parameter(K2P)模型計算遺傳距離;應用鄰接法(neighbor-joining,NJ)構建系統進化樹。
2.1 COI基因序列的核苷酸位點變異、核苷酸多樣性和單倍型多樣性
除去PCR引物序列,獲得了695 bp COI基因片段。根據標準的DNA條形碼序列,截取648 bp 線粒體COI基因序列進行分析。10個雞種203個個體線粒體COI基因共檢測到110個變異位點,占分析位點的16.98%,其中單一位點突變90個(2型20個,3型2個),簡約信息位點20個。五華三黃雞的平均核苷酸差異數最大,為3.629,文昌雞的最小,為1.455;相應地,五華三黃雞的核苷酸多樣性最高,文昌雞的最小(表2)。在110個變異位點中,定義了84種單倍型,其中單倍型1出現頻率最高,為64次(9個地方雞種所共有,隱性白羽雞除外),其次是單倍型9,為29次(8個雞種共有,杏花雞、文昌雞除外),第三是單倍型5,為19次(9個雞種共有,清遠麻雞除外)(表3)。廣西三黃雞、五華三黃雞與中山沙欄雞的單倍型數最多,為13個,隱性白羽雞與清遠麻雞的最少,為8個。不同品種的單倍型分布差異較大,如隱性白羽雞單倍型主要分布在9和79,清遠麻雞主要分布在1和9,惠陽胡須雞主要分布在1、5和9,杏花雞主要分布在1(表3)。

表2 10個雞種COⅠ基因序列變異位點數、平均核苷酸差異、核苷酸多樣性和單倍型多樣性

表3 10個雞品種線粒體COI基因的單倍型及其在不同品種的分布
續表3 Continued table 3

單倍型Haplotype變異位點Variable sites (in bp)單倍型在品種的分布(頻率)Breeds (frequency) 1111111111111111122222222222222222223333333333333333334444444444444444444455555555555555666122344555566677899011123455666789990111122344556888999011123466788888999002233344555667777890000113555689901490121492378247473091035379155674046850368058051710461261048752697035680457868467041271825781702792611251104294 Hap27.............................G................................................................................SL(1) Hap28.........C........C................G.......................G..................................................SL(1) Hap29.........C........C................G...........................................C..................A...........SL(1) Hap30.........C........C................G....................A.....................................................SL(1),WH(1) Hap31...................G..........................................................................................SL(1),YS(1) Hap32...............................................................................................T........G.....SL(1) Hap33......................................................................C.......................................SL(1) Hap34.........C........C................G........C.................................................................SL(1) Hap35.........C......T.C................G..........................................................................YS(1) Hap36...............................................................................A..............................YS(1) Hap37.................G.................................C..........................................................YS(1) Hap38.........C........C................G..............C............................................T...G..........YS(1) Hap39......................G.......................................................................................YS(1) Hap40.........C........C.............G..G..........................................................................YS(1) Hap41......................................................................................................G.....A.XH(1) Hap42....................................................G.........................................................XH(1) Hap43.........CT.......C................G..........................................................................XH(1) Hap44.........................................................................C......................A.............XH(1) Hap45.........C........C....G...........G...................................C..................T...................XH(1) Hap46.....................................................C........................................................XH(1) Hap47.........C........C................G......................G....G....................................C.........XH(1) Hap48......................................................................................................G.......XH(1) Hap49...........................C...................................................................T..............XH(1) Hap50..........................T....................................................................T..............WH(1) Hap51.............................................C................................................................WH(1) Hap52.........C........C................G....................A........................................C............WH(1) Hap53............................T.................................................................................WH(1) Hap54.........C..AA....C...........G....G..................TCA.....G...AC.........G.........................A..G...WH(1) Hap55.........C........C......C.........G..........................................................................WH(1)
續表3 Continued table 3

單倍型Haplotype變異位點Variable sites (in bp)單倍型在品種的分布(頻率)Breeds (frequency) 1111111111111111122222222222222222223333333333333333334444444444444444444455555555555555666122344555566677899011123455666789990111122344556888999011123466788888999002233344555667777890000113555689901490121492378247473091035379155674046850368058051710461261048752697035680457868467041271825781702792611251104294 Hap56..................C............................................................................T..............WH(1) Hap57.........C........C................G............................G.............................................WH(1) Hap58.....C.........................................G..............................................................WC(1) Hap59........................................G.....................................................................WC(2) Hap60...........................C........G.........................................................................WC(1) Hap61..........................................................................C...................................WC(1) Hap62................................................................................C.............................WC(1) Hap63........................................................................C.....................................WC(1) Hap64................................................T..............................................T..............WC(1) Hap65......A.......................................................................................................WC(1) Hap66....A.A.......................................................................................................WC(1) Hap67...........T..................................................................................................WC(1) Hap68......................................................................................T.......................WC(1) Hap69..............................................C..................................C............................GX(1) Hap70.................................................T..................C.........................................GX(1) Hap71C.............................................................................................................GX(1) Hap72.......T......................................................................................................GX(1) Hap73...A..........................................................................................................GX(1) Hap74......................................G.......................................................................GX(1) Hap75.....................A........................................................................................GX(1) Hap76............................................................T...................C.............................GX(1) Hap77..A....................................G......................................................................GX(1) Hap78..............G..........................................................................G.....T..............GX(1) Hap79.........C........C................G.......................................G..................................RW(6) Hap80.........C........C................G.........................................................................CRW(1) Hap81.........C........C.....C..........G.......................................G..................................RW(1) Hap82.........C........C................G.........................G................................................RW(1) Hap83...............A.......................................................C.......................T..............RW(1) Hap84..................C........................G...................................................T..............RW(1)
圓點表示與單倍型Hap1具有相同的堿基 Dots within the nucleotide position indicate the same nucleotides as given in Hap1
2.2 10個雞品種群體內與群體間遺傳距離
對10個雞品種COI基因序列K2P距離和凈遺傳距離(Da)研究顯示,綠頭鴨與雞品種的遺傳距離明顯大于雞品種之間的遺傳距離(表4)。雞品種間遺傳距離范圍為0.003—0.006,隱性白羽雞與9種地方雞種的遺傳距離較遠;五華三黃雞品種內的遺傳距離最大,為0.006,文昌雞品種內遺傳距離最小,為0.002。10個雞種品種凈遺傳距離為0—0.003(表4)。

表4 10個雞品種間Kiumura 雙參數距離和凈遺傳距離(Da)
上三角為凈遺傳距離Da,下三角為Kiumura 雙參數距離
Above dialogue was net distance (Da), down diagonal was K2P distance of COIgene among 10 chicken breeds
2.3 COI基因中介網絡圖和系統發育樹
利用表3的單倍型數據構建中介網絡圖。中介網絡圖主要分為3個進化枝,第1枝是以Hap1為中心節點,另外2枝是從Hap1衍生出來的以Hap5、Hap9為中心節點(圖1)。Hap1最有可能是祖先單倍型,逐漸衍生出其他單倍型。以Hap9為中心的進化枝表現出一定的品種特異性,如文昌雞和廣西三黃雞不在此枝;另外兩枝則未表現出此特征。

紅色方塊是軟件NETWORK生成的媒介載體,代表在實際樣本未觀察到的推測的中間單倍型。圓的大小對應于單倍型頻率。不同雞品種用不同顏色標注
采用K2P模型構建本研究定義的單倍型(每個品種所有的單倍型,共121條序列)和下載已發表的雞COI基因序列(648 bp,29條序列)的系統發育樹(鄰接樹)。發育樹分為三枝,第一枝是黑尾原雞和灰原雞,第二枝是綠原雞,第三枝是包括五個紅原雞亞種在內的地方雞(圖2)。第三枝又細分為兩枝,存在亞種/品種的個體交叉現象,沒有發現亞種/品種特異性。

品種名稱縮寫見表1,數字表示樣品編號 The breed Abbr. please see Table 1 in details, digit represent the sample number
3.1 10個雞品種COI基因序列的遺傳多樣性
本研究獲得了9個地方雞種和1個引進雞品種共203個個體的648 bp線粒體COI基因序列,共檢測到110個變異位點,定義了84種單倍型。其中五華三黃雞的遺傳多樣性最高,中山沙欄雞次之,文昌雞最低。由于分布在偏遠山村,基因交流較少,未進行系統選育且樣品為隨機采集如五華三黃雞[25],或采自祖代群如中山沙欄雞,或采樣時間較早如陽山雞,這些品種保留著較高的遺傳多樣性。而來自商品群的地方雞遺傳多樣性則較低,如文昌雞(品種內遺傳距離0.002,表4)。84種單倍型在不同的品種的分布有所差異,如單倍型1出現64次,除了隱性白羽雞,其他9個地方雞都有分布;其次是單倍型9和5;隱性白羽雞主要分布在單倍型9和79,清遠麻雞主要分布在單倍型1和9,惠陽胡須雞主要分布在單倍型1、5和9,杏花雞分布在單倍型1,而其他7個品種單倍型分布較為分散(表3)。本文研究的雞品種的COI基因序列變異位點數、平均核苷酸差異、核苷酸多樣性和單倍型多樣性比同等類型研究相近或更高[2,17-18],說明本文選取的雞品種保護潛力較大,證明標準DNA條形碼用于研究雞品種遺傳多樣性的有效性。另外,以綠頭鴨為外群計算遺傳距離時,綠頭鴨與雞品種間的遺傳距離明顯大于雞品種間的遺傳距離,表明COI基因可作為計算雞品種間的遺傳距離的分子標記。
3.2 中國地方雞品種COI基因系統發生關系
鄰接樹顯示中國地方雞與紅原雞分為兩枝,雖然有些品種分布較為集中(如惠陽胡須雞),但均存在亞種/品種的個體交叉現象(圖2)。當提高建樹可信度時(1000步bootstrap、50% cut-off),所有中國地方雞與紅原雞聚為一枝(數據未顯示),說明應用標準的DNA條形碼技術無法將中國地方雞品種有效區分開來。而中國地方雞和紅原雞與黑尾原雞、灰原雞、綠原雞分開,間接支持了中國地方雞與紅原雞親緣關系較近的觀點。主要原因可能有兩點:一是本研究的9個地方雞種在廣東飼養量較大,因地域鄰近和經貿頻繁,不同的雞種在品種形成與進化過程中不可避免存在不同程度的雜交,出現了個別品種間的交叉現象(圖2);二是COI基因的相對保守性,品種間的遺傳差異較小(表4)。在本研究中,雖然部分單倍型為特定品種所有,如單倍型12—19為清遠麻雞特有,但這些單倍型與其他雞品種部分單倍型聚在同一枝(圖2);并且該結果是基于有限的樣品(10個品種,每個品種18—23只,共203只)得出的,在增加樣品數量或品種后是否還是清遠麻雞特有還有待研究。因此,雜交使得亞種/品種鑒定變得困難,分析時需要在足夠的樣品數量和聯合多種方法后才能得出比較可靠的結論[2,12]。
3.3 應用COI基因鑒定地方雞品種
研究表明DNA條形碼對鑒定差異較大的雞品種鑒定具有可行性和有效性[2,26]。在相近的COI基因片段長度下,本研究在10個雞種203只個體共檢測到110個變異位點,多于15個差異較大的雞種227個個體的38個變異位點[2],說明本研究采用的COI基因片段信息含量較高。雖然不同的品種有特異的單倍型,但分布不集中,且大多只有1個個體(隱性白羽雞除外,單倍型79有6個個體),因此,無法確定是否能夠作為品種鑒定的診斷依據,需加大樣本量進行驗證。在本研究的9種華南家雞中,外形特征較為顯著,同時按照品種標準采集樣品,因同品種異名而導致COI無法區分開這9種地方雞品種的可能性極低。此外,有趣的是,單倍型1為9個地方雞品種所共有,隱性白羽雞除外,可作為中國地方雞品種的鑒定依據。由于地方雞品種復雜的形成與進化歷史和COI基因自身的屬性,運用標準的DNA條形碼技術無法鑒定本研究的9個親緣關系較近、地域鄰近的華南地方雞種。因此,有效的品種鑒定還需聯合多種分子標記如COI基因[26]、AFLP指紋技術[27]、細胞色素b[28]、LEI0258[29]、基因組SNP[30]等,以及與品種特定的外形特征如清遠麻雞的“一楔、二細、三麻身”、杏花雞的“兩細(頭細、腳細)、三黃(羽黃、腳黃、喙黃)、三短(頸短、體軀短、腿短)”。
COI基因可用于地方雞的遺傳多樣性研究,但標準的DAN條形碼技術無法有效區分差異較小的雞品種,需要聯合其他分子標記以及外形特征進行鑒定。
致謝:感謝鄒志冠、劉少豐提供部分試驗樣品,感謝杜炳旺教授、古文良、陳浩、劉怡然、溫金星、黃豐勛、徐迪宗、陳勇杰、曾德鑫在收集樣品時提供的幫助。
[1] 國家畜禽遺傳資源委員會. 中國畜禽遺傳資源志·家禽志. 北京: 中國農業出版社, 2011.
China National Commission of Aniamal Genetic Resources.:. Beijing: China Agriculture Press, 2011. (in Chinese)
[2] 高玉時, 唐修君, 屠云潔, 陸俊賢, 薛茂云, 施祖灝, 張小燕. 基于線粒體COI基因15個雞種的DNA 編碼研究. 中國農業科學, 2011, 44(3): 587-594.
GAO Y S, TANG X J, TU Y J, LU J X, XUE M Y, SHI Z H, ZHANG X Y. Studies on the DNA barcoding of fifteen chicken breeds by mtDNA COI gene., 2011, 44(3):587-594. (in Chinese)
[3] TAVARES E S, GON?ALVES P, MIYAKI C Y, BAKER A J. DNA barcode detects high genetic structure within Neotropical bird species., 2011, 6(12): e28543.
[4] BUCKLIN A, STEINKE D, BLANCO-BERCIAL L. DNA barcoding of marine metazoa., 2011, 3(1): 471-508.
[5] LERAY M, KNOWLTON N. DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity., 2014, 112(7): 2076-2081.
[6] SAITOH T, SUGITA N, SOMEYA S, IWAMI Y, KOBAYASHI S, KAMIGAICHI H, HIGUCHI A, ASAI S, YAMAMOTO Y, NISHIUMI I. DNA barcoding reveals 24 distinct lineages as cryptic bird species candidates in and around the Japanese Archipelago., 2015, 15(1): 177-186.
[7] BAMANIYA D C, PAVAN-KUMAR A, GIREESH-BABU P, SHARMA N, REANG D, KRISHNA G, LAKRA W S. DNA barcoding of marine ornamental fishes from India.,:,,, 2016, 27(5): 3093-3097.
[8] HEBERT P D, RATNASINGHAM S, DEWAARD J R. Barcoding animal life: cytochromeoxidase subunit 1 divergences among closely related species., 2003, 270(S1): S96-S99.
[9] RATNASINGHAM S, HEBERT P D. BOLD: The barcode of life data system., 2007, 7(3): 355-364.
[10] KERR K C, STOECKLE M Y, DOVE C J, WEIGT L A,FRANCIS C M, HEBERT P D. Comprehensive DNA barcode coverage of North American birds., 2007, 7(4): 535-543.
[11] WARD R D. FISH-BOL, a case study for DNA barcodes., 2012, 858: 423-439.
[12] WILSON J J, SING K W, SOFIAN-AZIRUN M. Building a DNA barcode reference library for the true butterflies (Lepidoptera) of peninsula malaysia: What about the Subspecies?, 2013, 8(11): e79969.
[13] 孟瑋, 楊天燕, 海薩, 海沙爾·阿那斯. 基于線粒體COI基因序列的亞東鮭DNA條形碼研究. 水產學雜志, 2010, 23(1): 6-10.
MENG W, YANG T Y, HAI S, HAI S E. Study of DNA barcoding based on the mitochondrial COI Gene Sequences in., 2010, 23(1): 6-10. (in Chinese)
[14] 馬明義, 閆穎, 王譯偉, 李靜, 蔡延森, 李佳凌. 我國32 種鳥類DNA條形碼分析. 四川動物, 2012, 31(5): 729-733.
MA M Y, YAN Y, WANG Y W, LI J, CAI Y S, LI J L. A study of DNA barcoding on 32 species of bird in China., 2012, 31(5): 729-733. (in Chinese)
[15] 彭士明, 施兆鴻, 侯俊利. 基于線粒體D-loop區與COI基因序列比較分析養殖與野生銀鯧群體遺傳多樣性. 水產學報, 2010, 34(1): 19-25.
PENG S M, SHI Z H, HOU J L. Comparative analysis on the genetic diversity of cultured and wild silver pomfret populations based on mt D-loop and COI gene., 2010, 34(1): 19-25. (in Chinese)
[16] 張輝, 姚輝, 崔麗娜, 杜鶴, 林喆, 高曉晨, 郎雪, 宋經元, 羅焜, 石林春, 陳士林. 基于COI條形碼序列的《中國藥典》動物藥材鑒定研究. 世界科學技術-中醫藥現代化, 2013, 15(3): 371-380.
ZHANG H, YAO H, CUI L N, DU H, LIN Z, GAO X C, LANG X, SONG J Y, LUO K, SHI L C, CHEN S L. Application of COI-based DNA barcoding for identifying animal medical materials in the Chinese pharmacopoeia., 2013, 15(3): 371-380. (in Chinese)
[17] 屠云潔, 高玉時, 周新民, 張學余, 王克華, 唐修君. 我國6個地方雞品種線粒體COI基因遺傳多樣性分析. 揚州大學學報(農業與生命科學版), 2007, 28(3): 31-33.
TU Y J, GAO Y S, ZHOU X M, ZHANG X Y, WANG K H, TANG X J. The genetic diversity analysis of mtDNA COI genes in six indigenous chicken breeds in China., 2007, 28(3): 31-33. (in Chinese)
[18] 高玉時, 屠云潔, 童海兵, 王克華, 陳寬維, 顧榮. 6個地方雞種線粒體COI基因的DNA條形碼. 農業生物技術學報, 2007, 15(6):924-930.
GAO Y S, TU Y J, TONG H B, WANG K H, CHEN K W, GU R. DNA barcoding application of mtDNA COI Gene in identifying six indigenous chicken breeds in China., 2007, 15(6): 924-930. (in Chinese)
[19] 陳國宏, 王克華, 王金玉, 丁鏟, 楊寧. 中國禽類遺傳資源. 上海: 上海科學技術出版社, 2004.
CHEN G H, WANG K H, WANG J Y, DING C, YANG N. Shanghai: Shanghai Scientific and Technical Publishers, 2004. (in Chinese)
[20] HEBERT P D, STOECKLE M Y, ZEMLAK T S, FRANCIS C M. Identification of birds through DNA barcodes., 2004, 2(10): e312.
[21] THOMPSON J D, GIBSON T J, PLEWNIAK F, JEANMOUGIN F, HIGGINS D G. The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools., 1997, 25(24): 4876-4882.
[22] LIBRADO P, ROZAS J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data., 2009, 25(11): 1451-1452.
[23] BANDELT H J, FORSTER P, R?HL A. Median-joining networks for inferring intraspecific phylogenies., 1999, 16(1): 37-48.
[24] TAMURA K, STECHER G, PETERSON D, FILIPSKI A, KUMAR S. MEGA6: Molecular evolutionary genetics analysis version 6.0., 2013, 30(12): 2725-2729.
[25] 黃勛和, 李威娜, 陳珊, 陳潔波, 鐘福生. 五華三黃雞群體遺傳多樣性與遺傳結構分析. 中國家禽, 2016, 38(1): 56-58.
HUANG X H, LI W N, CHEN S, CHEN J B, ZHONG F S. Population genetic diversity and genetic structure of Wuhua three- yellow chicken., 2016, 38(1): 56-58.(in Chinese)
[26] BONDOC O L, SANTIAGO R C. The use of DNA barcodes in the evolutionary analysis of domestic breeds and strains of chicken () in the Philippines., 2012, 95(4): 358-369.
[27] 高玉時, 屠云潔, 錢勇, 李慧芳, 陳寬維, 童海兵. 12個地方雞種遺傳多態性AFLP指紋分析. 農業生物技術學報, 2006, 14(4): 498-502.
GAO Y S, TU Y J, QIAN Y, LI H F, CHEN K W, TONG H B. AFLP Fingerprinting analysis of genetic polymorphism in 12 indigenous chicken breeds., 2006, 14(4): 498-502. (in Chinese)
[28] YACOUB H A, FATHI M M, SADEK M A. Using cytochromegene of mtDNA as a DNA barcoding marker in chicken strains., 2015, 26(2): 217-223.
[29] HAN B, LIAN L, QU L J, ZHENG J X, YANG N. Abundant polymorphisms at the microsatellite locus LEI0258 in indigenous chickens., 2013, 92(12): 3113-3119.
[30] KWAK W, SONG K D, OH J D, HEO K N, LEE J H, LEE W K, YOON S H, KIM H, CHO S, LEE H K. Uncovering genomic features and maternal origin of korean native chicken by whole genome sequencing., 2014, 9(12): e114763.
(責任編輯 林鑒非)
DNA Barcoding of Indigenous Chickens in China: a Reevaluation
HUANG Xun-he1, CHEN Jie-bo1, HE Dan-lin2, ZHANG Xi-quan2, ZHONG Fu-sheng1
(1School of Life Sciences, Jiaying University, Meizhou 514015, Guangdong;2College of Animal Science, South China Agricultural University, Guangzhou 510642)
【Objective】 The aim of this study is to determine the feasibility of utility of mitochondrial cytochromeoxidase subunit I (COI) gene as DNA barcoding to identify indigenous chicken breeds with nearer appearances.【Method】 COI gene of 648 bp in length was obtained from nine indigenous chicken breeds of South China (Huaixiang, Qingyuan spotted, Huiyang bearded, Zhongshan shalan, Yangshan, Xinghua, Wuhua three-yellow, Wenchang and Guangxi yellow) and one commercial breed, Recessive White, with the method of direct sequencing of PCR products; while other COI sequences were downloaded from GenBank, including Chinese indigenous chickens and wild jungles and mallard (). These sequences were then used to analyze genetic diversity and genetic distance, construct median-joining network and phylogenetic tree based on haplotypes, as well as define breed specific haplotypes. 【Result】 COI gene of 695 bp in length was obtained after deletion of the primers sequences. And then 648 bp of standard barcoding was used for analysis. A total of 110 mutation sites were detected from 203 individuals of 10 breeds with 16.98% in all sites, of which 90 were singleton variable sites and the remaining 20 were parsimony informative sites. The average nucleotide diversity and haplotype diversity were 0.00394 (0.00349-0.00560) and 0.832 (0.763-0.905), respectively. Wuhua three-yellow chicken had the highest levels of genetic diversity, Zhongshan Shalan chicken had the second higher one, but Wenchang chicken had the lowest ones. A total of 84 haplotypes were defined, haplotype 1 had the highest frequency in nine indigenous chicken breeds. Haplotyes 9 and 5 were sharing both in indigenous and Recessive White chicken breeds, with the frequencies of 29 and 19, respectively. Each breed had its own haplotypes. Guangxi yellow, Wuhua three-yellow and Zhongshan shalan chickens had most 13 haplotypes, while Qingyuan spotted and Recessive White had least 8 haplotypes. The distribution of haplotypes of different breeds had a little of difference. For example, the haplotypes of Xinghua chicken was mostly distributed at 1, where Qingyuan spotted, Huiyang bearded and Recessive White was mostly distributed at 1 and 9, 1, 5 and 9, and 9 and 79, respectively. The genetic distance and net genetic distance between 10 breeds were ranged from 0.003 to 0.006 and from 0 to 0.003, respectively. The genetic distance among breeds was higher than those of within a breed; those of betweenand chickens were higher than 0.2. The 84 haplotyes of median-joining networks of were classified into three clusters with the characteristic of breed specific. For example, the cluster originated from in haplotype 9 had no Guangxi yellow and Wenchang chicken breeds. Other haplotypes were the descendent of 1. The Neighbor-joining tree showed that indigenous chickens in China andwere clustered into one branch, separating from,and. No branch with breed specificity was found. 【Conclusion】The results presented herein indicated that COI gene can be used as a candidate molecular marker for elucidate genetic diversity of indigenous chickens. It’s less effectivity of utility of standard COI gene as DNA barcoding to identify indigenous chicken with nearer appearance, there is highly need to incorporate multiple molecular markers such as COI gene, Cytochrome b gene, AFLP (Amplified Fragment Length Polymorphism), SNP (Single Nucleotide Polymorphism) and breed specific appearances.
mitochondrial cytochromeoxidase subunit I gene; DNA barcode; indigenous chicken; breed identification; genetic diversity
2015-06-23;接受日期:2016-05-14
廣東省自然科學基金(2014A030307018)、嘉應學院“創新強校工程”項目(CQX019)、廣東省公益研究與能力建設項目(2015A020208020)
黃勛和,E-mail:hxh826@126.com。通信作者鐘福生,E-mail:zfs@jyu.edu.cn