999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

On Pseudo Weakly Clean Rings

2016-10-17 07:05:12HAOYapuCHENHuanyin
關鍵詞:杭州

HAO Yapu, CHEN Huanyin

(School of Science, Hangzhou Normal University, Hangzhou 310036, China)

?

On Pseudo Weakly Clean Rings

HAO Yapu, CHEN Huanyin

(School of Science, Hangzhou Normal University, Hangzhou 310036, China)

A ringRis called a pseudo weakly clean ring if every elementx∈Rcan be written in the form ofx=e+u+(1-e)rxorx=-e+u+(1-e)rxwhereeis an idempotent anduis a invertible element. These rings are shown to be a unifying generalization of skew power series ringR[[x;σ]], Hurwitz series ringH(R) andT(R,σ). The pseudo weak cleanness of the ring of triangular matrices is discussed as well. Furthermore, this paper proves that the following are equivalent: that isRis pseudo weakly clean; there is an integernsuch thatR[x]/(xn) is pseudo weakly clean; there is an integernsuch thatR[[x]]/(xn) is pseudo weakly clean.

pseudo weakly clean ring; skew power series ring; Hurwitz series ring; Weakly exchange ring; ideal.

Article ID: 1674-232X(2016)05-0514-08

1 Introduction

A ringRis said to be pseudo clean if for everyx∈Rthere exist an idempotente∈Rand a unitu∈Rsuch thatx-e-u∈(1-e)Rx[1]. An elementx∈Ris pseudo weakly clean if there exist an idempotente∈Rand a unitu∈Rsuch thatx-e-u∈(1-e)Rxorx+e-u∈(1-e)Rx. A ringRis said to be pseudo weakly clean if every element inRis pseudo weakly clean[2]. Pseudo clean rings are clearly pseudo weakly clean. However, a pseudo weakly clean ring may be not necessarily pseudo clean (see [2, Example 3.2.1]). We shall prove that an abelian ringRis pseudo weakly clean if and only ifRis pseudo clean.

We shall explore further properties of pseudo weakly clean rings. These rings are shown to be a unifying generalization of skew power series ringR[[x;σ]], Hurwitz series ringH(R) andT(R,σ). The pseudo weak cleanness of the ring of triangular matrices is discussed as well. Furthermore, we prove that the following are equivalent:Ris pseudo weakly clean; there is an integernsuch thatR[x]/(xn) is pseudo weakly clean; there is an integernsuch thatR[[x]]/(xn) is pseudo weakly clean.

Throughout, all rings will be associative with an identity, unless otherwise specified. The symbolsC(R),Id(R),U(R),Mn(R) andTn(R) will stand for the set of all centers, the set of all idempotents, the set of all units, the ring ofn×nmatrices and the ring of alln×nupper triangular matrices overR, respectively.

2 Equivalent Characterizations

Following Tat, an elementxof a ringRis pseudo weakly clean in case there exist an idempotente∈Rand a unitu∈Rsuch thatx-e-u∈(1-e)Rxorx+e-u∈(1-e)Rx([2]).

The following assertion is useful for applications.

Lemma 1Every homomorphic image of a pseudo weakly clean ring is pseudo weakly clean.

ProofSee [2, Proposition 3.4.1].

Letσbe an endomorphism ofR. We denote the skew formal power series ring

where addition is naturally defined and multiplication is defined by using the relationxb=σ(b)xfor allb∈R. In particular,R[[x]]=R[[x;1R]] is the ring of power series overR.

Lemma 2For any ringR, the skew power seriesfis a unit inR[[x;σ]] if and only iff(0) is a unit inR.

ProofSee [3, Lemma 4].

Theorem 1LetRbe a ring. ThenRis pseudo weakly clean if and only if so isR[[x;σ]].

ProofSuppose thatRis pseudo weakly clean, for anya∈R, we havea=e+u+(1-e)r(x) ora=-e+u+(1-e)r(x) wheree∈Id(R) andu∈U(R). Ifa=e+u+(1-e)r(x), thenf(x)=a0+a1x+a2x2…=e+u+(1-e)ra0+(a1x+a2x2+…)=e+u+(a1x+a2x2+…)-(1-e)r(a1x+a2x2+…)+(1-e)rf(x)=e+α(x)+(1-e)rf(x). Similarly, ifa=-e+u+(1-e)r(x), thenf(x)=-e+α(x)+(1-e)rf(x). It is easy to knowα(x)∈U(R[[x;σ]]), hence,R[[x;σ]] is pseudo weakly clean.

Conversely, suppose thatR[[x;σ]] is pseudo weakly clean. Then it follows by the isomorphismR?R[[x;σ]]/(x) thatRis pseudo weakly clean.

By [2, Proposition 3.4.8], the ringR[[x]] of all power series over commutative pseudo weakly clean ringRis pseudo weakly clean. We now extend this fact to noncommutative case.

Theorem 2LetRbe a ring. ThenRis pseudo weakly clean if and only if so isR[[x]].

ProofChooseσ=1Rin Theorem 1, the result immediately follows.

Corollary 1LetRbe a ring.R[[x1,…,xn]] is pseudo weakly clean if and only if so isR.

ProofBy Theorem 2 and induction, we easily obtain.

Lemma 3LetRbe a ring. Then the Hurwitz seriesx=(x0,x1,x2,…) is a unit inH(R) if and only ifx0is a unit inR.

ProofSee [4, Lemma 3.2].

Theorem 3LetRbe a ring. ThenRis pseudo weakly clean if and only if so isH(R).

ProofEvery homomorphic image of a pseudo weakly clean ring is pseudo weakly clean by Lemma 1, soR?H(R)/kerφis pseudo weakly clean, whereφ:H(R)→R.

Conversely, suppose thatRis pseudo weakly clean. Letx=(xn)∈H(R). Thenx0∈R. Hence,x0=e+u′+(1-e)rx0orx0=-e+u′+(1-e)rx0fore∈Id(R) andu′∈U(R). Thusx=λR(e)+u+λR[(1-e)rx]=(e,0,0,…)+u+((1-e)rx,0,0,…) orx=-λR(e)+u+λR[(1-e)rx]=-(e,0,0,…)+u+((1-e)rx,0,0,…), whereu∈U(H(R)).

Theorem 4LetRbe a ring. Then the following are equivalent:

(1)Ris pseudo clean ring;

(2)T2(R) is pseudo weakly clean ring;

(3)Tn(R) is pseudo weakly clean ring for somen∈N*;

(4)Tn(R)ispseudoweaklycleanringforalln∈N*.

or

(4)?(3) It is obvious.

(3)?(2) T2(R)isasubringofTn(R),sotheresultimmediatelyfollows.

Theorem 5LetRbe a ring and letn∈N*.Thenthefollowingareequivalent:

(1)Rispseudoweaklyclean;

(2)R[x]/(xn)ispseudoweaklyclean;

(3)R[[x]]/(xn)ispseudoweaklyclean.

Proof(1)?(2) Suppose thatRis pseudo weakly clean, for anya∈R, we havea=e+u+(1-e)r(x) ora=-e+u+(1-e)r(x) wheree∈Id(R) andu∈U(R). Ifa=e+u+(1-e)r(x), thenR[x]/(xn)=a0+a1x++a2x2…+an-1xn-1=e+u+(1-e)ra0+(a1x+a2x2+…+an-1xn-1)=e+u+(a1x+a2x2+…+an-1xn-1)-(1-e)r(a1x+a2x2+…+an-1xn-1)+(1-e)rR[x]/(xn)=e+α(x)+(1-e)rR[x]/(xn). Similarly, ifa=-e+u+(1-e)r(x), thenR[x]/(xn)=-e+α(x)+(1-e)rR[x]/(xn). It is easy to knowα(x)∈U(R[x]/(xn)), hence,R[x]/(xn) is pseudo weakly clean.

(2)?(3) It is obvious.

(3)?(1) By Theorem 2.

In particular, ifσ=1R, thenT(R,σ)=T(R,R).

Theorem 6LetRbe a ring. ThenRis pseudo weakly clean if and only if so isT(R,σ).

or

or

Corollary 2LetRbe a ring, and letMbe anR-R-bimodule. ThenRis pseudo weakly clean if and only if so isT(R,M).

ProofChooseσ=1Rin Theorem 6, the result immediately follows.

3 Related Rings

A ringRis said to be abelian if all of its idempotents are central. An elementxofRis called weakly exchange if there existse∈Id(R) such thate∈xRand 1-e∈(1-x)Ror 1-e∈(1+x)R. The ringRis said to be weakly exchange if every element is weakly exchange.

Proposition 1LetRbe an abelian ring. ThenRis weakly exchange if and only ifRis pseudo weakly clean.

ProofBy [2, Theorem 3.3.1] and [5, Theorem 2.2].

A ringRis called weakly-Abel ifeR(1-e)?J(R) for eache∈Id(R). Clearly, Abelian rings are weakly-Abel, but the converse is not true by the following example.

Following Wei and Li[7], a ringRis called weakly normal if for alla,r∈Rande∈Id(R),ae=0 impliesRerais nil left ideal ofR. Clearly, weakly normal rings are abelian.

Corollary 3(1) LetRbe a quasi-normal ring or weakly normal ring. ThenRis a pseudo weakly clean ring if and only ifRis a weakly exchange ring.

(2) LetRbe a ring. IfU(R)?C(R), thenRis a pseudo weakly clean ring if and only ifRis a weakly exchange ring.

Proof(1) It is obvious.

(2) By Proposition 1 and [2, Lemma 2.3.5].

Proposition 2LetRbe a pseudo weakly clean ring. IfRis an abelian ring, for every elementx, their existe,uinRsuch thatx-e-u∈(1-e)Rxif and only if for every elementx, their existe,uinRsuch thatx-e-u∈xR(1-e).

ProofIn the caseRis an abelian ring, a pseudo weakly clean ring is weakly exchange by Proposition 1. So 1-e=(1-x)ror 1-e=(1+x)r, andx-e-u=(1-e)rx,x-(1-e)rx=e+u, [1-(1-e)r]x=e+u. This shows that [1-(1-x)r2]x=x[1-r(1-x)r]=x[1-r(1-e)]=e+u, sox-e-u=xr(1-e), as required.

Conversely, writex-e-u=xr(1-e),x-xr(1-e)=e+u,x[1-r(1-e)]=e+u. This shows thatx[1-r(1-x)r]=[1-(1-x)r2]x=[1-(1-e)r]x=e+u,x-e-u=(1-e)rx, sox-e-u∈(1-e)Rx.

LetRbe a ring. We say thatRis a uniquely pseudo weakly clean ring, ifRis a pseudo weakly clean ring and for every elementx∈Rthe following hold:

(a)Ifx=u+e+(1-e)rxfor someu∈U(R) ande∈Id(R), then this representation is unique;

(b)Ifx=u-e+(1-e)rxfor someu∈U(R) ande∈Id(R), then this representation is unique.

Proposition 3LetRbe a uniquely pseudo weakly clean ring. ThenRis abelian.

ProofSupposeRis uniquely pseudo weakly clean, then

a:=[e+er(1-e)]+1+{1-[e+er(1-e)]}·0·a=e+[1+er(1-e)]+(1-e)·0·a

or

a:=-[e+er(1-e)]+1+{1-[e+er(1-e)]}·0·a=-e+[1-er(1-e)]+(1-e)·0·a

wheree∈Id(R) andr∈R. Letf=e+er(1-e), it is obviousf∈Id(R). Soe=e+er(1-e), this shows thater=ere. Similarly,re=ere. Soer=re. Thus,Ris abelian.

Recall that ifRis a (unital) ring,e∈Ran idempotent andIan ideal ofR, theneIe={exe|x∈I} is an ideal of the corner ringeRe.

In the sequel, by a non-unital ring we mean an associative ring without identity. In [8], Ster introduced the notion of a pseudo clean non-unital ring. In [2], Tat extended the notion of pseudo cleanness in non-unital ring to that of pseudo weakly cleanness. LetIbe a non-unital ring. LetQ(I)={p∈I|?p′∈Isuch thatp+p′+p′p} and letQ′(I)={q∈I|?q′∈Isuch thatq-q′+qq′=0=q-q′+q′q}. An elementx∈Iis said to be pseudo weakly clean inIifx=e+p+erxorx=-e+q+erxfor somee∈Id(I),r∈I,p∈Q(I) andq∈Q′(I). A non-unital ringIis said to be pseudo weakly clean if all of its elements are pseudo weakly clean. Clearly, a non-unital pseudo clean ring is pseudo weakly clean.

Lemma 4(1) LetRbe a pseudo weakly clean ring. Then so iseReand (1-e)R(1-e) for anye∈Id(R).

(2) LetIbe an ideal of a non-unital ringRande∈Id(R). IfIis pseudo weakly clean theneIeis pseudo weakly clean.

Proof(1) See [2, Proposition 3.4.4].

(2) Suppose thatIis pseudo weakly clean and takea∈eIe. Sinceais pseudo weakly clean inI, it is also pseudo weakly clean inRand hence pseudo weakly clean ineRe. Thus everya∈eIeis pseudo weakly clean ineRe. Hence,eIeis pseudo weakly clean.

By [9, Theorem 1], we see that every regular ring is pseudo weakly clean. The following theorem extends this result as following.

Theorem 7LetIbe a proper ideal of a non-unital ringR. IfIis pseudo weakly clean,R/Iis regular and idempotents lift moduloI. ThenRis pseudo weakly clean.

eabe=g+u1+gx(eabe-e)

eabe=-g+u2+gx(eabe-e)

A ringRisπ-regular if for eacha∈Rthere exists anx∈Rand a positive integernsuch thatan=anxan. Clearly, every regular ring isπ-regular, but the converse is not true. We do not know if regularity in Theorem 7 can be weaken to the caseπ-regular or even artinian. However, we do have the following.

Lemma 5IfRis any ring andIan ideal ofRsuch thatIisπ-regular then idempotents lift moduloI.

Theorem 8LetIbe an ideal of a ringRsuch thatIandR/Iare bothπ-regular rings. ThenRis pseudo weakly clean.

eanbe=g+u1+gx(eanbe-e)

eanbe=-g+u2+gx(eanbe-e)

Letv1,v2respectively denote the inverse ofu1,u2ineRe, andh=e-g. Multiplying the above formula byv1hand the following formula byv2hfrom the left, we havev1hanbe=v1hu1andv2hanbe=v2hu2.It follows that (bv1han)2=bv1hu1v1han=bv1han, (bv2han)2=bv2hu2v2han=bv2han, and hencem=bv1han,n=bv2hanare idempotents inRa. And (1-m)an(1-m) is pseudo weakly clean in (1-m)R(1-m). Furthermore, by the note following Lemma 4 (1) it suffices to prove that (1-m)I(1-m) is pseudo weakly clean inR. Similarly, (1-n)a(1-n) is also pseudo weakly clean inR.

Proposition 4LetRbe a ring. IfR/J(R) is pseudo weakly clean and idempotents lift moduloJ(R), thenRis pseudo weakly clean.

[1] STER J. Corner rings of a clean ring need not be clean[J]. Comm Algebra,2012,40(5):1595-1604.

[2] QUA K T. Weakly clean and related rings[D]. Malaya: The University of Malaya Kuala Lumpur,2015.

[3] ZHANG W R. On the ring of skew Hurwitz series[J]. Journal of North west Normal University,2006,42(42):5-8.

[4] KEIGHER W F. Adjunctions and comonads in differential algebra[J]. Pacific Journal of Mathematics,1975,59(1):99-112.

[5] WEI J. Weakly-abel rings and weakly exchange rings[J]. Acta Math Hungar,2012,137(4):254-262.

[6] WEI J C, LI L B. Quasi-normal rings[J]. Comm Algebra,2010,38(5):1855-1868.

[7] WEI J C, LI L B. Weakly normal rings[J]. Turk,2012,36(1):47-57.

[8] STER J. Weakly clean rings[J]. Comm Algebra,2014,401(401):1-12.

[9] CAMILLO V P, KHURANA D. A characterization of unit regular rings[J]. Comm Algebra,2001,29(5):2293-2295.

10.3969/j.issn.1674-232X.2016.05.012

關于Pseudo Weakly Clean環

郝亞璞,陳煥艮

(杭州師范大學理學院,浙江 杭州310036)

一個環R叫做pseudo weakly clean 環,如果R中的每一個元素都可以寫成x=e+u+(1-e)rx或x=-e+u+(1-e)rx的形式,其中e是冪等元,u是可逆元.R的pseudo weakly clean性在斜冪級數環R[[x;σ]],Hurwitz級數環H(R),T(R,σ)上都滿足.同時上三角矩陣的pseudo weak cleanness 得以討論.更進一步我們證明以下幾點是等價的:R是pseudo weakly clean 環;存在整數n,使得R[x]/(xn) 是pseudo weakly clean 環;存在整數n,使R[[x]]/(xn) 是pseudo weakly clean 環.

pseudo weakly clean 環;斜冪級數環;Hurwitz級數環;Weakly exchange 環;理想

date:2016-02-06

Supported by the Natural Science Foundation of Zhejiang Province (LY13A010019).

CHEN Huanyin(1963—), Male, Professor, Ph. Doctor, majored in algebra of basic mathematics.E-mail:huanyinchen@aliyun.com

O153.3MSC2010:15B99;16U99;16S70Article character: A

猜你喜歡
杭州
走,去杭州亞運會逛一圈兒
科學大眾(2023年17期)2023-10-26 07:38:38
杭州
幼兒畫刊(2022年11期)2022-11-16 07:22:36
杭州明達玻璃纖維有限公司
玻璃纖維(2022年1期)2022-03-11 05:36:12
杭州亥迪
杭州復工復產進行時
杭州(2020年6期)2020-05-03 14:00:51
杭州宣言
G20 映像杭州的“取勝之鑰”
傳媒評論(2017年12期)2017-03-01 07:04:58
杭州
汽車與安全(2016年5期)2016-12-01 05:21:55
杭州江干區的醫養護一體化
中國衛生(2016年8期)2016-11-12 13:27:12
杭州舊影
看天下(2016年24期)2016-09-10 20:44:10
主站蜘蛛池模板: 无码综合天天久久综合网| 精品国产免费人成在线观看| 欧美一区二区精品久久久| 免费在线国产一区二区三区精品| 国产精品尹人在线观看| 午夜福利在线观看入口| 亚洲乱伦视频| 国产熟睡乱子伦视频网站| 91小视频在线观看免费版高清| 国产午夜看片| 制服丝袜一区二区三区在线| 狠狠躁天天躁夜夜躁婷婷| 亚洲欧美成aⅴ人在线观看| 久久人搡人人玩人妻精品| 亚洲第七页| 精品国产成人国产在线| 国产永久在线观看| 亚洲综合专区| 色综合网址| 久久国产香蕉| 欧美午夜小视频| jizz亚洲高清在线观看| 色精品视频| 成年片色大黄全免费网站久久| 国产第一页免费浮力影院| 91精品国产综合久久香蕉922| 91探花国产综合在线精品| 国产尹人香蕉综合在线电影 | 爆乳熟妇一区二区三区| 激情视频综合网| 亚洲大学生视频在线播放| 亚洲国产欧美目韩成人综合| 99尹人香蕉国产免费天天拍| 欧美日韩国产成人在线观看| 国产一级二级在线观看| 华人在线亚洲欧美精品| 无码精油按摩潮喷在线播放| 乱人伦99久久| 国产真实乱子伦精品视手机观看| 国产凹凸一区在线观看视频| 黄色成年视频| 亚洲日韩国产精品综合在线观看| 日韩少妇激情一区二区| 亚洲色图欧美| 亚洲va视频| 国产乱人伦AV在线A| 欧美激情,国产精品| 综合色亚洲| 欧美亚洲日韩中文| 国产情侣一区二区三区| 中文字幕资源站| 国产免费福利网站| 福利姬国产精品一区在线| 国产男人天堂| yy6080理论大片一级久久| 免费无码AV片在线观看国产| 极品私人尤物在线精品首页| 婷婷六月综合网| 成人免费网站久久久| 国产自在线播放| 国产精品成| 国产人成在线观看| 国产在线拍偷自揄拍精品| 一本久道久久综合多人| 欧美日韩一区二区在线播放 | 毛片免费高清免费| 日本午夜三级| 日韩精品免费一线在线观看| 国产区在线观看视频| 91国内在线视频| 最新无码专区超级碰碰碰| 国产成人资源| 国产高清不卡视频| 国产精品天干天干在线观看| 国产美女自慰在线观看| 国产91成人| 日本手机在线视频| 中文精品久久久久国产网址| 日韩毛片基地| 欧美成人A视频| 麻豆国产精品一二三在线观看| 制服无码网站|