趙忠海,李 輝,易恒潔,楊勝林,彭邦星,卜小雁
(貴州大學動物科學學院/高原山地動物遺傳育種與繁殖教育部重點實驗室,貴陽 550025)
MyoG和MEF2a基因多態性聚合效應對鴨屠宰性狀的影響
趙忠海,李輝,易恒潔,楊勝林,彭邦星,卜小雁
(貴州大學動物科學學院/高原山地動物遺傳育種與繁殖教育部重點實驗室,貴陽 550025)
【目的】探討MyoG和MEF2a基因聚合效應對鴨屠宰性狀的影響,為進一步確定與鴨屠宰性狀相關的分子遺傳標記提供研究基礎,為鴨屠宰性狀的多基因聚合育種提供依據。【方法】試驗以240只三穗鴨為研究素材,擴增MyoG和MEF2a基因并進行PCR產物直接測序以檢測兩基因所有外顯子的單核苷酸突變(SNPs)位點。運用SPSS 18.0軟件中的GLM統計模型對MyoG和MEF2a基因的SNPs所對應的不同基因型與三穗鴨屠宰性狀進行關聯分析,根據單基因關聯分析結果,將對屠宰性狀存在顯著影響的MyoG和MEF2a基因的多態位點利用軟件PHASE 2.0構建聚合基因型,再進行聚合基因型與屠宰性狀的關聯分析。【結果】在試驗群體中一共發現8個SNPs,其中在MyoG基因中有6個SNPs被找到,MEF2a基因中找到2個SNPs位點,在所有突變位點中,其中MyoG基因的g.2977G>C位點發生的G/C突變使密碼子由GAG變為GAC,所編碼的氨基酸由谷氨酸變成天冬氨酸;而MEF2a基因中的兩個多態位點,g.47915G>A位點發生的G/A突變使密碼子由GAA變為AAA,編碼的氨基酸由谷氨酸變成賴氨酸,g.47918G>A位點的G/A突變引起的密碼子由GAT變成AAT,所編碼的氨基酸由天冬氨酸變成天冬酰胺。剩下的5個突變位點均屬于同義突變,并未引起編碼氨基酸的改變。此外,進行χ2適合性檢驗,除了MyoG基因的g.1131C>T位點和MEF2a基因的g.47915G>A、g.47918G>A位點未處于Hardy-Weinberg平衡狀態(P<0.05)外,其他的突變位點均處于平衡狀態。單基因關聯分析結果表明,MyoG基因g.1131C>T和g.2204G>A突變分別對胸肌率、體重和全凈膛重有著顯著影響,其所對應的純合子基因型CC、GG型為優勢基因型。MEF2a基因g.47915G>A/g.47918G>A位點影響全凈膛率,GA基因型個體屬于優勢基因型個體。通過挑選出與屠宰性狀(胸肌率、體重、全凈膛重和全凈膛率)有關聯的MyoG基因g.1131C>T/g.2204G>A位點與MEF2a基因g.47915G>A/g.47918G>A進行聚合效應分析,結果顯示,聚合后的8種聚合基因型個體的全凈膛率,在各基因型間無顯著差異(P>0.05),TTGAGA基因型的平均值最高,其次為CCGGGA基因型;其他3個指標各基因型間差異達到了顯著,其中體重和全凈膛重存在正相關,都是CCGAGA基因型的平均值最高,CTGGGA基因型的平均值次之;CCGGGG基因型的胸肌率平均值最高,其次是CCGGGA基因型。結果顯示,單個基因的平均值最高的基因型分別為CC、GG和GA,在兩基因聚合后在4個指標中CCGGGA基因型都不是最優的組合,說明兩個基因間存在互作效應。【結論】兩個基因間存在互作效應,所以用單個基因分子標記進行選育可能會顧此失彼,不能收到良好的效果,但是本研究的聚合優勢基因型個體偏少,有待于進一步擴大樣本進行驗證分析,進行更多基因的聚合效應分析。
MyoG基因;MEF2a基因;屠宰性狀;聚合效應
【研究意義】畜禽屠宰性能由于與經濟效益密切相關,在畜禽育種工作中一直備受重視,但屠宰性狀屬于數量性狀,受多基因控制,易受環境影響,因此采用傳統的選育方法進行改良進展緩慢。分子標記由于其結果不受環境影響,不存在等位基因顯隱性表型關系,并且可進行早期選擇,被認為是縮短育種周期,加快遺傳進展的有效手段。但是基因之間往往存在互作效應,因此單基因分子標記往往會出現顧此失彼的現象,而多基因聚合的分子育種技術將有望彌補這方面的缺陷。因此,本研究選擇在畜禽研究中被證明與畜禽屠宰性狀相關的兩個候選基因-肌細胞生成素(MyoG)基因和肌細胞增強因子2a(MEF2a)基因,進行兩基因聚合效應對屠宰性狀的影響研究,為實現畜禽的多基因聚合育種提供依據。【前人研究進展】由于MyoG基因和MEF2a基因在肌細胞分化和肌肉形成中發揮重要作用,而肌肉的發育與畜禽屠宰性狀息息相關,所以這兩個基因在畜禽研究中一直被作為屠宰性狀的候選基因。MyoG基因是生肌家族因子中最重要的一員,在肌細胞的分化過程中起著重要的作用,能促進肌細胞的增殖和分化[1]。而MEF2基因家族(MEF2a、MEF2b、MEF2c和MEF2d)在骨骼發育、肌肉形成、肝臟纖維化和神經系統發育等多種生理過程中發揮作用,同時它也參與一些疾病的發生,如阿爾茨海默氏癥和帕金森氏病等[2]。在骨骼肌發育的過程中,敲除microRNA可導致試驗動物在胚胎期致死或骨骼肌發育不全、肌纖維形態異常、肌原細胞凋亡和成肌細胞死亡增加[3-4]。LIU等[5]通過構建小干擾RNA質粒載體獲得敲除牛MyoG基因骨骼肌細胞的試驗結果顯示該基因的表達顯著低于其他試驗陽性基因。NEVILLE等[6]研究表明,MyoG通過控制成肌細胞的融合和肌纖維的形成而對肌肉的分化起關鍵作用,是唯一能在所有骨骼肌細胞中表達的基因,是骨骼肌分化所必須的基因。許多骨骼肌和心肌基因的調控區都存在MEF2的結合位點,能夠與大多數肌肉特異基因的啟動子或增強子直接結合,在所有的肌肉細胞類型中可作為肌源性基因表達的主要調節物[7-9]。LIU[10]等對鴨的MEF2a基因mRNA表達進行探究,發現在平滑肌中的表達量高于心肌和骨骼肌。JUSZCZUKKUBIAK等[11]對波蘭荷斯坦奶牛MEF2a基因啟動子區多態性及該基因mRNA表達水平進行研究,結果顯示,啟動子區域突變的不同基因型個體的背最長肌MEF2a基因mRNA水平顯著高于其他基因型個體,因此認為MEF2a的核苷酸序列突變可能作為牛的生長性狀指標分子標記。【本研究切入點】MyoG和MEF2a基因在人、小鼠及其他家畜方面已有大量研究,家禽方面近幾年的研究也在逐步增多,但水禽方面的研究相對較少,迄今為止還未見到關于鴨的MyoG和MEF2a基因聚合效應分析的報道。雖然植物的多基因聚合育種已取得了初步成功,但動物的聚合育種還未見到成功的報道。本研究在前人研究的基礎上進一步探討MyoG和MEF2a基因之間的關系,探討聚合基因型與鴨屠宰性狀的關聯性,為畜禽多基因聚合育種的研究提供基礎。【擬解決的關鍵問題】以貴州省優良地方品種——三穗鴨為研究對象,首次將MyoG和MEF2a基因的聚合基因型與三穗鴨屠宰性狀進行關聯分析,進行多基因聚合效應的探討,為家禽屠宰性狀分子標記選育提供依據。
試驗于2014年7月采集樣品,2014年10月至2015年6月在貴州大學動物科學學院高原山地動物遺傳育種與繁殖教育部重點實驗室進行相關操作。
1.1試驗材料
17周齡三穗鴨240只(公母各半),相同飼養管理水平,翅靜脈采血,肝素鈉抗凝,置-70℃冰箱保存。屠宰測定按照中華人民共和國農業部制訂的《家禽生產性能名詞術語和度量統計方法》(2004)進行[12]。
1.2基因組DNA提取與引物設計
采用血液/細胞/組織基因組DNA提取試劑盒(北京天根)提取基因組DNA。根據NCBI上發布的家鴨MyoG基因編碼區全序列(GenBank: NW_004676592.1)、家鴨MEF2a基因編碼區全序列(GenBank: NW_004676438.1),應用軟件Primer Premier 5.0及Oligo 6.0軟件設計引物。引物由上海英濰捷基生物技術有限公司合成,引物詳細信息見表1。
1.3PCR擴增
PCR擴增采用30 μL反應體系,包括2×Taq PCR Master Mix(北京天根)12 μL,上、下游引物各3.0 μL(濃度均為10 μmol·L-1),模板DNA(50 ng·μL-1)4 μL,ddH2O 8 μL。反應條件如下:94℃預變性4 min,94℃變性30—35 s,退火30—35 s(退火溫度如表1所示),72℃延伸30—40 s,35個循環。擴增完成后,72℃再延伸10 min后,4℃保存。
1.4數據處理分析
采用DNAstar進行序列對比拼接,PHASE 2.0軟件進行兩基因聚合基因型的判定,Excel 2010進行數據整理,SPSS18.0軟件中一般線性模型(GLM)進行關聯分析,結果以均值±標準差體現。統計模型如下:
單基因效應關聯分析數學模型:
Y=μ+Gi+S+Gi×S+e(i=1,2)
聚合基因型效應關聯分析數學模型:Y=μ+G+e其中:Y為性狀測定值,μ代表群體均值,Gi為MyoG或MEF2a基因型效應,S為樣品性別,Gi×S為基因型與性別互作效應,G為MyoG和MEF2a基因的聚合基因型效應,e為隨機殘差。
2.1PCR 產物檢測
擴增目的片段,1.2%瓊脂糖電泳檢測PCR擴增目的產物片段,結果見圖1、2。擴增產物大小與設計引物預期擴增片段長度一致。
2.2PCR擴增產物測序及序列分析
根據目的片段擴增結果,將所有PCR產物送往上海英濰捷基生物技術有限公司進行直接測序。測序結果經序列拼接、對比,并與GenBank上公布的基因參考序列矯正,發現MyoG基因共有6個SNPs(圖3、4),分別位于外顯子1的g.1131C>T位點,外顯子2的g.2186G>A位點和g.2204G>A位點,外顯子3的g.2920G>A位點、g.2962C>T位點和g.2977G>C位點,其中,g.2977G>C位點發生的G/C突變使密碼子由GAG變為GAC,所編碼的氨基酸由谷氨酸變成天冬氨酸。MEF2a基因共有2個SNPs(圖5),分別位于外顯子11的g.47915G>A位點和g.47918G>A位點,g.47915G>A位點發生的G/A突變使密碼子由GAA變為AAA,所編碼的氨基酸由谷氨酸變成賴氨酸,g.47918G>A位點的G/A突變引起的密碼子由GAT變成AAT,編碼的氨基酸由天冬氨酸變成天冬酰胺。

表1 MyoG、MEF2a基因引物信息Table 1 The primer sequences and their information for PCR amplification of the MyoG and MEF2a genes in Sansui duck

圖1 MyoG基因PCR擴增Fig. 1 The amplification result of MyoG from PCR

圖2 MEF2a基因PCR擴增Fig. 2 The amplification result of MEF2a from PCR

圖3 MyoG基因1131、2920和2977 bp處的堿基變異Fig. 3 The sequencing map of the MyoG gene at positions 1131, 2920 and 2977

圖4 MyoG基因2186、2204 和2962 bp處的堿基變異Fig.4 The sequencing map of the MyoG gene at position 2186, 2204 and 2962
2.3MyoG基因和MEF2a基因遺傳學分析
測序結果經序列比對發現,在MyoG基因外顯子擴增片段中存在6個SNPs位點,將6個SNPs位點所對應純合子和雜合子的基因型分別定義為CC、CT、TT;GG、GA;GG、GA;GG、GA、AA;CC、 CT和GG、GC、CC型。對幾種基因型分析,可知相對應的基因型中TT、GG、GG、GA、CC、GG為優勢基因型,等位基因T、G、G、G、C、G則為優勢等位基因。在MEF2a基因外顯子11中有2個SNPs位點,這兩個多態位點屬于完全連鎖平衡位點,將它們所對應純合子和雜合子的基因型分別定義為GG、GA型。對基因型進行分析,可知相對應的基因型中GA為優勢基因型,等位基因G則為優勢等位基因。

圖5 MEF2a基因47915和47918 bp處的堿基變異Fig. 5 The sequencing map of MEF2a gene at position 47915 and 47918
統計各基因型的個體數,分別計算MyoG基因和MEF2a基因中的SNPs位點的基因型頻率和基因頻率,計算結果如表2所示。χ2適合性檢驗結果表明,在MyoG基因中除g.1131C>T外,該基因座其他多態位點均處于Hardy-Weinberg平衡狀態(P>0.05)。對MEF2a基因中的2個SNPs進行χ2適合性檢驗,結果表明,該基因這兩個多態位點均未處于Hardy-Weinberg平衡狀態(P<0.05),這可能是由于在育種過程中的人為選擇或遺傳漂變造成的。
2.4MyoG基因與MEF2a基因多態性與屠宰性狀的相關性分析
MyoG基因多態性與三穗鴨屠宰性狀的顯著性關系分析如表3所示。可以看出,公鴨的胸肌率在MyoG基因g.1131C>T位點的不同基因型間差異顯著,CC型顯著高于CT和TT型,TT型顯著高于CT型。MyoG基因g.2204G>A的不同基因型對體重和全凈膛重有顯著影響,GG型均顯著高于GA型。其余的性狀在各個SNPs的不同基因型間和性別間差異不顯著。MEF2a基因的2個突變位點g.47915G>A/g.47918G>A的不同基因型對全凈膛率有顯著影響(P<0.05),且GA型顯著高于GG型,其余的性狀在兩個SNPs的不同基因型、性別間無差異顯著性,分析統計結果如表4所示。

表2 MyoG、MEF2a基因多態位點基因頻率及基因型頻率Table 2 Gene frequency and genotype frequency of SNPs in MyoG and MEF2a gene
2.5聚合基因型與屠宰性狀間相關性分析
根據單個SNP位點分析結果,只選取與屠宰性狀有顯著影響的3個SNPs位點,采用PHASE 2.0軟件,進行兩基因聚合基因型的判定,選取的性狀也是在單基因關聯分析時存在顯著差異的指標。由于聚合后試驗群體個體數較少緣故,故不考慮性別因素。聚合后共得到8種聚合基因型(表5)。從體重指標看,試驗群體中CTGGGG型體重除與TTGAGA型個體間差異不顯著,與其他基因型個體間均呈現顯著差異,且CTGGGA、TTGGGG與CTGGGG基因型間呈差異極顯著(P<0.01),TTGAGA與TTGGGG、CTGGGA間存在差異顯著(P<0.05);從全凈膛重指標看,幾種聚合基因型中,除了CTGGGG基因型和TTGAGA基因型間差異不顯著,與其他幾種基因型間均差異顯著;CCGAGA基因型的體重和全凈膛重平均值都最高,但個體數量少,有必要擴大樣本做進一步驗證,其次為CTGGGA基因型,兩個指標一致,這是由于兩個指標呈正相關引起的。此外,基因型CCGGGA的胸肌率與TTGAGA基因型間表現出顯著差異(P<0.05),與CTGGGG、CTGGGA、TTGGGG、TTGGGA間均呈差異極顯著關系(P<0.01),CCGGGG聚合基因型的胸肌率平均值最高,其次是CCGGGA基因型;在全凈膛率這個指標,TTGAGA基因型的平均值最高,其次為CCGGGA基因型,但各基因型間差異都沒達到顯著水平。
3.1MyoG基因多態性對肌肉的影響
在不影響肉質風味的前提下,動物能快速生長、肌肉沉積率高一直以來是畜禽育種的目標之一,研究證實,MyoG基因能在所有骨骼肌中表達,其表達程度直接影響畜禽的產肉性能[13]。WEINTRAUB等[14-15]研究表明,敲除MyoG基因的小鼠出生后會發生骨骼肌的發育嚴重缺陷。缺失MyoG基因的小鼠要比正常小鼠個體小。唐瑩等[16]利用PCR-SSCP技術檢測京海黃雞MyoG基因外顯子多態性,結果表明,MyoG基因多態與京海黃雞生長性狀相關。ZHANG等[17]再一次證實了MyoG基因多態性對京海黃雞的生長性狀有影響。XUE等[19]報道,肌細胞生成素基因單核苷酸多態性對豬的初生重和背標厚度有顯著影響。王健等[20]對太湖鵝MyoG基因研究報道,在外顯子1中第108位點處發現堿基C/T突變,推斷該基因多態性對太湖鵝早期增重有顯著影響。本研究中,共發現三穗鴨MyoG基因6個SNPs,其中g.2977G>C位點發生的G/C突變使密碼子由GAG變為GAC;所定義的幾種基因型中,MyoG基因g.1131C>T的不同基因型胸肌率有顯著影響,CC型顯著高于CT和TT型,TT型顯著高于CT型,公鴨的胸肌率差異顯著。MyoG基因g.2204G>A的不同基因型對體重和全凈膛重有顯著影響,GG型均顯著高于GA型。其余的性狀在各個SNPs的不同基因型間和性別間差異不顯著。

率eat 2.08肉)1±瘦Leanmpercentage(%24.4率uscle tage1.51肌)5±胸Breastmpercen(%12.3率tage1.35肌uscle)腿Legmpercen(%12.06±率膛)2.96凈(%全iscerated Evpercentage.41±75率膛2.56凈tage(%)半Semi-evisceratedpercen.76±84率tage)2.25Traits宰屠Dressingpercen(%2±93.1狀性重uscle肌14胸Breastmweight(g)122±htertraits 重ht肌uscle)9腿Legmweig(g8±11Ggeneandslaug重膛)64凈(g全iscerated Evweight986±重ht8 yo膛)凈(g08±6Semi-eviscerated半weig11析重)±85分體ghter(g聯屠Slauweight1218關的狀重)性體(g宰Weight1308±76屠與er點別)位性Gend態♀(24多型因因type8)(6基基G GenoCC3 MyoheassociationresultsbetweenthegenotypeofMT Table3 T點Ps表位SNg.1131C>2.924±22.51.27b7±11.32.1211.16±5.20.14±735.944±81.92.880±94.220115±202±111911±1103733±111±12213021383±136)♂(442.750±23.21.40b2±11.71.8911.48±4.57.94±735.104±82.92.6693.82±187±1117114±02±110021624±111±11512721356±121T(68)2.230±22.60.897±10.91.4011.62±3.57.40±763.57.71±853.814±93.68113±109±11834±9101261±111±11812681357±154)♀(20(24)CT2.411±19.32a7.89±1.31.5911.42±4.03.32±781.433±88.42.659±96.2±2185193±12377±9101316±112±10413241375±113♂(4)2.41.05±22a1.49.46±101.258±11.53.28.72±763.38.16±863.578±94.013108±90±12941±8100270±111±10812771360±138T(24)3.072±22.61.853±11.31.8011.29±4.59.80±725.00.08±822.359±91.926114±233±1187999±326±911±8812631373±82)♀(56)(100TT2.247±22.51.15c4±10.61.7911.93±3.15.56±742.96.45±833.448±92.315109±223±12626±810749±911±11112721377±110)♂(442.68.59±22c1.59.02±111.787±11.54.04.58±734.20.68±822.826±92.122112±237±11611±810336±911±9712671374±93T(100)3.761±24.23.520±11.50.240±12.70.94.86±730.44.45±831.240±93.523109±92±1291957±83181±±11512121295±106♀(8)(12)GAAg.2186G>1.992±23.31.038±12.31.9110.94±4.71.85±743.691±.8833.079±93.319146±179±122179±1114220±113±10814711575±192♂(4)2.71.91±232.54.79±111.031±12.10.87.19±740.37.57±830.806±93.427121±84±124331±1105060±111±17112981388±178T(12)2.788±22.61.675±11.21.5911.43±4.08.05±744.30.28±832.554±92.421114±185±11208±810134±911±8912591363±0972)♀(11)(228GG2.335±22.21.283±10.61.7511.61±4.15.25±744.578±83.13.407±93.718109±219±112724±1104447±111±14812931379±1486)♂(112.556±22.41.503±10.91.6611.52±4.08.15±744.403±83.23.0693.11±191±1119117±06±110162041±111±12312761371±124T(228)1.275±24.10.649±12.21.9111.86±3.35.00±763.81.95±842.856±93.624120±14±11514973±6187±110±19512001285±247♀(8)(16)GAAg.2204G>0.874±22.50.882±10.50.0112.02±0.23.73±710.04.28±811.298±94.1±1791114±1089861±98976±±12911311200±120♂(8)1.285±23.31.190±11.41.1011.94±3.13.87±733.052±83.11.832±93.924106±99±107a11917±2731±110±14111661243±166AT(16)2.869±22.61.789±11.11.5811.49±4.00.89±734.21.17±832.503±92.421113±186±11907±710834±811±8312601364±862)♀(11)(224GG2.386±22.21.330±10.71.7811.56±4.16.45±744.634±83.33.452±93.718111±210±122241±1104066±111±14513111399±1442)♂(112.62.48±221.58.95±101.673±11.54.05.17±744.38.26±833.068±93.019112±198±1104b24±1101750±111±12012851381±119BT(224)

率eat 2.37肉)2±瘦Leanmpercentage(%24.2率uscle tage2.30肌)5±胸Breastmpercen(%11.7率tage0.32肌uscle)腿Legmpercen(%12.46±率膛)1.81凈(%全iscerated Evpercentage.33±75率膛2.36凈tage(%)半Semi-evisceratedpercen.45±85率tage)1.80Traits宰屠Dressingpercen(%0±94.3狀性重uscle肌20胸Breastmweight(g)115±重ht肌uscle)5腿Legmweig(g2±12重膛)61凈(g全iscerated Evweight982±重膛ht)3凈(g半Semi-evisceratedweig13±611重體ghter)±81屠Slauweight(g1229重)體Weight(g1303±67別er性)edtable3Gend♀(16型因typetinu基Geno(56)onAA3 CA表Ps續點位SNg.2920G>2.221±21.71.292±10.21.3411.49±3.05.94±743.121±84.44.307±93.319104±207±110514±1101542±111±12012611351±113)♂(402.46.43±221.70.65±101.217±11.72.69.05±752.87.71±843.713±93.619107±178±11404±9100133±111±10812521337±102T(56)2.865±22.51.786±10.81.5011.69±4.42.83±724.67.84±812.291±91.519108±166±1187993±0017±111±8612481365±105)♀(56)(100GA2.396±22.01.145±10.52.0711.50±5.41.95±735.995±82.62.549±94.517110±219±116445±1108868±111±18813361411±175)♂(442.624±22.31.512±10.71.7411.61±4.80.32±735.190±82.22.8292.86±189±1018117±27±110164439±111±14412871385±139T(100)2.928±22.51.568±11.51.7810.99±3.68.01±753.57.26±842.548±93.022120±223±11226±810853±811±9912741369±96)♀(48(84)GG2.279±23.11.338±11.31.8211.81±3.51.91±733.833±82.53.186±93.121117±221±121127±1102948±111±12812941392±161)♂(362.62.84±221.43.49±111.804±11.33.57.54±743.69.52±832.752±93.121119±227±11327±9100551±111±11012831379±125T(84)2.849±22.61.741±11.21.6211.47±3.88.81±734.16.13±832.552±92.520112±185±11302±810229±911±9012561358±962)♀(1132)(2CCTg.2962C>2.308±22.21.309±10.61.7211.59±4.08.27±744.500±83.23.345±93.719110±209±112829±1104553±111±14912991385±1490)♂(122.568±22.41.544±10.91.6611.53±3.95.05±744.307±83.13.0393.16±191±1119117±09±110162241±111±12512781372±126T(232)0 0 0 0 0 0000000♀(0)(8)CT2.175±24.12.272±12.00.0912.13±4.95.13±774.59.55±851.863±92.430127±67±12547±510462±711±12212581363±159♂(8)2.17.15±242.27.02±120.093±12.14.95.13±774.53.55±851.863±92.430127±67±12547±510462±711±12212581363±159T(8)3.600±23.02.340±11.21.5211.79±4.07.57±752.78.76±841.681±91.431111±226±11177±809095±710±7511821293±81)♀(168)(2CCCg.2977G>1.527±21.70.753±11.61.8710.14±4.34.62±733.975±82.10.961±92.217117±262±100904±1103021±111±18212621370±213)♂(122.777±22.41.728±11.31.7611.09±3.96.74±743.33.64±831.385±91.724113±230±1186988±106±911±12612161326±142T(28)2.582±22.01.263±11.31.6210.69±5.54.36±735.89.56±822.812±93.220117±220±11228±9100157±111±6813061401±67)♀(482)(7GC3.230±23.21.275±11.42.7611.75±3.71.35±744.166±83.23.184±94.319119±281±124242±1106568±111±14213191399±154)♂(242.782±22.41.237±11.32.0511.04±4.91.69±735.269±82.72.9093.59±198±1124114±0733±1102161±111±9513101400±99T(72)2.808±23.32.043±11.21.2912.14±1.94.17±742.46.50±832.352±92.219111±110±1273993±619±811±9012351341±111)♀(56)(140GG2.139±22.01.243±10.31.3111.75±4.33.34±744.824±83.33.621±93.819106±171±123229±1104754±111±15312981384±148)♂(842.461±22.6數1.64體otsignificant(P>個9±本asn10.6樣為字1.29數中11.91±號括,值3.53均平.27±的總74母公體3.99群驗0±試ithoutanyidentificationtablethedifferencew83.4示),w0.053.23。“T”表ples93.17±.05)>0(Pifference(P<berofsam著19顯8±不10異差eanthenum示表15識120±標何任parenthesesm無12±15),1015<0.0bersbetween(Pum著26顯40±1平水nwithdifferentsuperscriptlettersindicatesignificantdeanthen110.05示ecolumracketsm±134表母1273字同mbersinb不nu有1366±134,esitesandtraits,thesam具列同比對T(140)同paredtothesam間型因alearetotalaverageand基不的狀aleandfem性一eansm同點同Differentgenotypescom位一).“T”m0.05

率肉meat)3.46瘦Leanpercentage(%)1.8110uscle 6±胸肌率Breastmpercentage(%.54±tageuscle率)2.77Legm肌腿percen(%.12±11膛率Eviscerated)6.11percentage凈5±70.4(%全膛)6.22率凈(%Semi-eviscerate dpercentage 1±79.4)2.13半率屠宰TraitsDressingpercentage(%.67±91狀性重uscle 21.6ht20肌)胸weig(g102±ghtertraits Breastm重uscle ht)29slau肌腿Legmweig(g107±eand2agen重膛)87凈weight(g967±EF全Eviscerated heassociationresultsbetweenthegenotypeofM重膛ht7析凈weig(g)90±9分半10聯Semi-eviscerated關的重7狀體ghter(g)性屠Slauweight60±812宰屠與點重ht位(g)±80態Weig1374多因基別type體)2a性4 MEFGenoTable4 T♀(20型pe表因基GenotyGG1.793±21.31.28.21±100.98.12±111.9972.87±1.885±82.50.74.78±9223102±11110±155996±7128±1116966±112±1811364)♂(202.600±21.51.49.37±101.96.12±114.47b71.66±4.6480.98±1.61.22±9220102±20109±119982±3309±1112763±112±1321369T(40)2.67.01±231.73.41±111.2911.59±3.065±74.73.257±84.02.56.68±9220116±15117±±801013939±811255±912±10113550)♀(10GA2.387±22.41.30.78±101.84.69±114.3574.55±4.8783.33±3.635±93.9182±1122121±1036±1244358±1114705±113±14613900)♂(102.52.74±221.55.10±111.5711.64±3.72a5±74.64.120±83.73.17.31±9319114±18119±±10410241849±1112480±112±1261372T(200)nificant(P>asnotsig數體個本樣為字數中號括均iden值,tificationtablethedifferencew平的總母公驗0.05),withoutany體群試示表T”。“.05)>0(P著顯不異差ples表記fsam標ercaselettersindicatesignificantdifference(P<無bero,.05)um<0(P異ithdifferentsuperscriptloweanthen著顯thesesm差示nwaren表母berinp不etraits,thesam字ecolumum寫小文英同有具列同,alearetotalaverageandn狀性paredtothesam同相比escomaleandfem對間eansm型enotyp不Differen因tg基同).“T”m0.05A7918G>/g.4type>AGeno5G型g.4791因A、Ps/基G>SNg.2204T、31C>g.11析分otypeandslaughtertraits聯關狀性宰regatedgen屠與型因基nalysisofagg合5 聚表Table5 A狀性TraitsGAGA2)cdTT(11225±67CGAGG)Bab TT(116±22A1369GGGG8)a TT(24A1439±4GAGG4)a CT(2±48A1442GGGG)d CT(82C±81168GAa GA1ACC(4)60±314GAGG4)Bab CC(41379±35AGGCbc GG)3BCC(4±21280ht(g)Weig重體cBC609±92a±19A1022Bab1033±39ABab±42A105473Cd831±a3A75±310Bab1034±31ABbc28A960±t(g)eighEvisceratedw重膛凈全Bb0.629±.411c0.20BC4±10.4bcBC0.41.59±10c0.44CD3±10.1d.76D±09.18Aa0.3612.74±0.32Aa5±13.0Aa0.48.65±13e(%)ercentagusclepBreastm率肌胸Aa2.3375.95±0.75Aab4±74.6Ab1.5271.78±1.65Aab7±72.9A2.85.15±710.89Aab73.63±1.22Aab3±75.0Aab1.02.00±75Evisceratedrate(%)率膛凈全osignificantdifference.eann樣0.01),and數samelettersm體個本為字數中號1level(P<括,著顯不異差示表母字nificantdifferenceat0.0同相有eansig具1),<0.0(Pitallettersm著顯異差平水0.010.05),differentcap在示ers(P<表母字.05lev寫大同不5),<0.0(P著nificantdifferenceat0ples異eansig顯差平berofsam水0.05母ifferentsmalllettersm在示eanthenum表字,dthesesm同erow寫小同Inthesam不標ersinparen行Numb
3.2MEF2a基因多態性
研究表明,多種生理過程與MEF2基因家族相關,如骨骼發育、肌肉形成、肝臟纖維化和神經系統發育等[2]。MEF2a基因屬于MEF2基因家族一員,它在其中也扮演著至關重要的角色,NAYA等[21]報道,小鼠敲除MEF2a基因,大多數在第一周就會表現出明顯心室擴張,肌纖維碎片等現象而死亡,能存活的個體到了成年因缺乏心臟線粒體也容易發生猝死。LIEB等[22]認為,缺少MEF2基因對冠心病(CAD)不存在影響,然而在2012年,LIU等[23]對不同人群的冠心病(CAD)病例進行分析,結果雖未能證實冠心病的產生與MEF2a基因的多態性有直接關系,但在1 008個研究病例中,有5個病例在MEF2a基因外顯子11區域出現了21個堿基缺失,因此推測MEF2a基因的變異可能是造成CAD原因之一。2009年,周艷等[24]報道,MEF2a基因的3個SNPs位點與雞的部分屠宰性狀有顯著相關,可推斷MEF2a基因可作為影響雞屠宰性狀的候選基因。本研究顯示,在三穗鴨MEF2a基因外顯子11中發現的2個SNPs位點,分別定義為GG、GA兩種基因型,分析表明,GA為優勢基因型,等位基因G則為優勢等位基因,與屠宰性狀進行關聯分析表明,MEF2a基因g.47915G>A/g.47918G>A的不同基因型對全凈膛率有顯著影響,GA型顯著高于GG型,其余的性狀在兩個SNPs的不同基因型、性別間差異不顯著。
3.3MyoG、MEF2a基因與三穗鴨屠宰性狀的關聯
研究表明,MyoG與MEF2a基因具有協同作用。常國斌等[25]研究報道,對雞肌內脂肪影響最明顯的優勢單個基因,經兩基因或三基因聚合后,并未表現出相應的優勢情況;而在擴大樣本數進一步研究發現,最佳聚合基因型與相應的單個基因的有利基因型結果一致,且整體效應要高于單個基因型,表現出一定程度的累加效應[26]。其他研究也表明,單個SNP所對應基因型與性狀間關聯分析結果在不同的品種間通常是不同的,沒有多個位點聯合分析準確[27-29]。本研究以三穗鴨為研究對象,在單基因關聯分析時,3個位點的平均值最高的基因型分別是CC、GG和GA型,但是在聚合效應分析時,并不是CCGGGA基因型的平均值最高,這說明兩個基因間存在互作效應,并沒有表現出累加效應,這與常國斌等[25-26]的研究結果不一致。在基因間存在交互作用時,如果利用單基因進行分子標記輔助選擇往往會顧此失彼,不能收到良好的育種效果,因此本研究的結果表明對影響同一性狀的不同基因進行聚合效應分析是十分必要的。本研究結果所顯示的平均值最高的聚合基因型個體數量都偏少,只有4個,因此有必要進一步擴大樣本進行驗證,其次本研究只進行了兩個基因的聚合效應分析,證明兩個基因間存在互作,然而影響屠宰性狀的基因較多,所以有必要進行更多基因的聚合效應分析,同時在其它鴨品種中是否存在與本研究一致的聚合效應也需要做進一步驗證,以期得到更真實有效的分子標記,從而為鴨屠宰性狀的多基因聚合育種提供依據。再者,通過對不同模式生物的深入研究,對于人類醫學進行肌肉相關疾病的研究、治療也能提供一定的幫助或具有參考意義,與此同時,在進行人類肌肉相關疾病的研究時,也應該考慮從多基因聚合的角度去研究,也許能達到事半功倍的效果。
本試驗首次將鴨的MyoG基因和MEF2a基因進行聚合效應分析,結果單個基因的有利基因型聚合后并不是最佳基因型,說明基因間存在互作效應,但是最佳基因型在本群體中個體數偏少,有必要擴大樣本做進一步研究和進行更多個基因聚合效應分析,才能為家禽的多基因聚合育種提供有效的分子標記。
References
[1] 宋興超, 魏海軍, 楊鎰峰, 陳秀敏, 薛海龍, 岳志剛.不同物種肌細胞生成素基因序列結構與功能特性的生物信息學分析.畜牧與獸醫,2012, 44(7):64-68.
SONG X C, WEI H J, YANG Y F, CHEN X M, XUE H L, YUE Z G. Bioinformatics analysis of different species of muscle cell gene structure and function characteristics. Animal Husbandry & Veterinary Medicine, 2012, 44(7):64-68.(in Chinese)
[2] DIETRICH J B. The MEF2 family and the brain: from molecules to memory. Springer, 2013, 352(2):179-190.
[3] O'ROURKE J R, GEORGES S A, SEAY H R, TAPSCOTT S J,MCMANUS M T, GOLDHAMER D J, SWANSON M S, HARFE B D. Essential role for Dicer during skeletal muscle development. Development Biology, 2007, 311(2): 359-368.
[4] HORAK M, NOVAK J, BIENERTOVA-VASKU J. Muscle-specific microRNAs in skeletal muscle development. Development Biology,2015, 410(1): 1-13.
[5] LIU C C, ZHAO D D, TONG H L, YE F, YANG Y, LI S F, JIA M Y,YAN Y Q. Impact of bovine skeletal muscle satellite cell differentiation by small interfering RNA targeting myogenin gene.Journal of Northeast Agricultural University (English Edition), 2013,20(2):32-37.
[6] NEVILLE C M, SCHMIDT M, SCHMIDT J. Response of myogenic determination factors to cessation and resumption of electrical activity in skeletal muscle:a possible role for myogenin in denervation supersensitivity. Cellular and Molecular Neurobiology, 1992,12(6):511-527.
[7] GONG H J, XIE J, ZHANG N, YAO L, ZHANG Y. MEF2A binding to the Glut4 promoter occurs via an AMPKa2-dependent mechanism. Medicine&Science in Sports&Exercise, 2011, 43(8):1441-1450.
[8] VARGAS M A, TIRNAUER J S, GLIDDEN N, KAPILOFF M S,DODGE-KAFKA K L. Myocyte enhancer factor 2(MEF2) tethering to muscle selective A-kinase anchoring protein (mAKAP) is necessary for myogenic differentiation. Cellular Signalling, 2012, 24(8): 1496-1503.
[9] SNYDER C M, RICE A L, ESTRELLA N L. MEF2A regulates the Gtl2-Dio3 microRNA mega-cluster to moudulate WNT signaling in skeletal muscle regeneration. Development, 2013, 140(1):31-42.
[10] LIU H H, WANG J W, SI J M, JIA J, LI L, HAN C C, HUANG K L,HE H, XU F. Molecuar cloning and in silico analysis of the duck(Anas platyrhynchos) MEF2A gene Cdna and its expression profile in muscle tissues during fetal development. Genetics and Molecular Biology, 2012, 35(1):182-190.
[11] JUSZCZUKKUBIAK E, STARZY?SKI R R, WICI?SKA K,FLISIKOWSKI K. Promoter variant-dependent mRNA expression of the MEF2A in longissimus dorsi muscle in cattle. DNA and Cell Biology, 2012, 31(6):1131-1135.
[12] 中華人民共和國農業部. 家禽生產性能名詞術語和度量統計方法(NY/T 823-2004). 2004-8-25.
Ministry of Agriculture of the People's Republic of China. Performance ferms and measurement for poultry (NY/T 823-2004). 2004- 8-25.(in Chinese)
[13] LIU Y Y, LI F N, KONG X F, TAN B, LI Y H, DUAN Y H,BLACHIER F, CHIEN-AN A. HU C A A, YIN Y L. Signaling pathways related to protein synthesis and amino acid concentration in pig skeletal muscles depend on the dietary protein level, genotype and developmental stages. PLoS ONE, 2015, 10(9):1-21.
[14] WEINTRAUB H, DAVIS R, TAPSCONTT S, THAVER M,KRAUSE M, BENEZRA R, BLACKWELL T K, TURNER D, RUPP R, HOLLENBERQ S. The MyoD gene family: nodal point during specification of the muscle cell lineage. Science, 1991, 251(4995): 761-766.
[15] HSATY P, BRADLEY A, MORRIS J H, EDMONDSON D G, VENUTI J M, OLSON E N, KLEIN W H. Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature, 1993, 364(6437):501-506.
[16] 唐瑩, 王金玉, 張跟喜, 施會強, 張濤. MyoG基因外顯子1多態性與京海黃雞生長性狀的相關性分析.中國畜牧雜志, 2013, 49(23): 5-8.
TANG Y, WANG J Y, ZHANG G X, SHI H Q, ZHANG T. Relationship between polymorphisms of Exon 1 of MyoG gene and growth traits in Jinhai Yellow Chicken. Chinese Journal of Animal Science, 2013, 49(23), 5-8.(in Chinese)
[17] ZHANG G X, TANG Y, ZHANG T, WANG J Y, WANG Y J. Expression profiles and association analysis with growth traits of the MyoG and Myf5 genes in the Jinghai yellow chicken. Molecular Biology Reports, 2014, 41(11): 7331-7338.
[18] KNAPP J R, DAVIE J K, MYER A, MEADOWS E, OLSON E N,KLEIN W H. Loss of myogenin in postnatal life leads to normal skeletal muscle but reduced body size. Development, 2006, 133(4): 601-610.
[19] XUE H L, ZHOU Z X. Effects of the MyoG gene on the partial growth traits in pigs. Acta Genetica Sinica, 2006, 33 (11):992-997.
[20] 王健, 董飚, 侯慶永, 殷潔鑫. 太湖鵝MyoG基因多態性與體重的相關性分析.浙江農業學報, 2015, 27(1):28-31.
WANG J, DONG B, HOU Q Y, YIN J X. Association analysis between of MyoG gene and body weight in Taihu goose. Acta Agriculture Zhejiangensis, 2015, 27(1), 28-31.(in Chinese)
[21] NAYA F J, BLACK B L, WU H, BASSEL-DUBY R, RICHARDSON J A, HILL J A, OLSON E N. Mitochondrial deficiency and cardiac sudden death in mice lacking the MEF2A transcription factor. Nature Medicine, 2002, 8(11):1303-1309.
[22] LIEB W, MAYER B, K?NIG I R, BORWITZKY I, G?TZ A, KAIN S, HENGSTENBERG C, LINSEL-NITSCHKE P, FISCHER M,D?RING A, WICHMANN H.-E, MEITINGER T, KREUTZ R,ZIEGLER A, SCHUNKERT H, ERDMANN J. Lack of association between the MEF2A gene and myocardial infarction. Circulation,2008, 117: 185-191.
[23] LIU Y, NIU W Q, WU Z J, SU X X, CHEN Q J, LU L, JIN W. Variants in Exon 11 of MEF2A gene and coronary artery disease: evidence from a case-control study, systematic review, and Meta-analysis. PLoS ONE, 2012, 7(2):1-10.
[24] 周艷, 劉益平, 蔣小松, 杜華銳, 朱慶. 優質雞MEF2A基因的SNPs檢測及其與屠體性狀的相關研究.畜牧獸醫學報. 2009,40(8):1164-1170.
ZHOU Y, LIU Y P, JIANG X S, DU H R, ZHU Q. Study onassociation of single nucleotide polymorphism of MEF2A gene with carcassr taits in chicken. Acta Veterinaria et Zootechnica Sinica, 2009,40(8), 1164-1170.(in Chinese)
[25] 常國斌, 周瓊, 雷黎立, 張學余, 王克華, 陳蓉, 欒德琴, 陳國宏.雞肌內脂肪性狀的多基因聚合效應分析.中國家禽, 2009, 31(19): 25-28.
CHANG G B, ZHOU Q, LEI L L, ZHANG X Y, WANG K H, CHEN R, LUAN D Q, CHEN G H. Genetic analysis of polygene pyramiding in intramuscular fat traits in chicken. China Poultry, 2009, 32(19): 25-28.(in Chinese)
[26] 常國斌, 劉向萍, 陳蓉, 欒德琴, 王克華, 張穎, 馬騰, 周偉, 戴愛琴, 陳國宏. 雞肌內脂肪性狀候選基因的聚合效應及初步驗證.中國農業科學, 2011, 44(20): 4284-4294.
CHANG G B, LIU X P, CHEN R, LUAN D Q, WANG K H, ZHANG Y, MA T, ZHOU W, DAI A Q, CHEN G H. Pyramiding effect and preliminary verification of candidate genes for intramuscular fat traits in chickens. Scientia Agricultura Sinica, 2011, 44(20):4284-4294.(in Chinese)
[27] ZHANG W H, COLLINS A, MORTON N E. Does haplotype diversity predict power for association mapping of disease susceptibility? Human Genetics, 2004, 115: 157-164.
[28] CLARK A G. The role of haplotypes in candidate gene studies. Genetic Epidemiology, 2004, 27(4):321-333.
[29] BADER J S. The relative power of SNPs and haplotype as genetic markers for association tests. Pharmacogenomics, 2001, 2(1): 11-24.
(責任編輯林鑒非)
The Effect of MyoG and MEF2a Gene Pyramiding on Slaughter Traits of Ducks
ZHAO Zhong-hai, LI Hui, YI Heng-jie, YANG Sheng-lin, PENG Bang-xing, BU Xiao-yan
(College of Animal Science, Guizhou University/Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025)
【Objective】 The aim of the present study was to explore the polymerization effects of MyoG and MEF2a genes on duck slaughter traits in order to provide a research foundation for further determining the molecular genetic markers related to duck growth traits, also provide a basis of polygene pyramiding breeding of slaughter traits of ducks.【Method】 A total of 240 individuals of Sansui ducks were selected as experimental material in the study, MyoG gene and MEF2a gene were amplificated and had PRC direct sequencing to detect the single nucleotide mutation (SNPs) of all exons of two genes. Base mutation (SNPs) was detected by direct sequencing of the PCR products. GLM statistical model of SPSS 18.0 software was used to analyze the association with different genotypes corresponding to the SNPs MyoG gene and MEF2a gene with Sansui duck slaughter traits. Based on the single gene association analysis results, the polymorphic sites of MyoG and MEF2a genes withsignificant influence on slaughter traits were employed to build polymerization genotype by using software PHASE 2.0. 【Result】The result showed that eight SNPs were found in MyoG gene and MEF2a gene, and six SNPs were found in MyoG gene and two SNPs were found in MEF2a gene. In all mutations, the G/C mutation in the g.2977G>C SNP of MyoG gene resulted in the change of codon from GAG to GAC, and the coding amino acid changed from Glu to Asp; While 2 polymorphic site in the MEF2a gene, the G/A mutation at the g.47915G>A SNP and the G/A mutation at the g.47918G>A SNP led to codon change from GAA to AAA and GAT to AAT, and the coding amino acid from Glu/Lys and Asp/Asn. The other five SNPs belonged to synonymous mutations, which did not cause the variation of encoding amino acids. Besides, the SNPs fit with Hardy-Weinberg equilibrium except that g.1131C>T of MyoG and g.47915G>A,g.47918G>A of MEF2a gene which were tested by χ2. The results of correlation analysis between polymorphism sites and slaughter traits showed that the SNP of g.1131C>T and the SNP of g.2204G>A in MyoG gene had significant influence over the breast muscle percentage, the body weight and eviscerated weight, and the correspondings to homezygote genotype CC and GG were dominant genotypes. The SNP of g.47915G>A and g.47918G>A in MEF2a gene affected the eviscerated weight, and the GA genotype individuals belong to dominant genotype individuals. The g.1131C>T and g.2204G>A in MyoG gene and g.47915G>A and g.47918G>A in MEF2a gene, which relating to slaughter traits (body weight, eviscerated weight, breast muscle rate and eviscerated rate) were selected and the multiple gene polymerizations (interaction) were analyzed, the results showed that after polymerization, the eviscerated rate of eight kinds of aggregated genotype individuals were not significantly different among different genotypes, the mean value of TTGAGA genotype was the highest, followed by CCGGGA genotype. The differences of other three indexes among different genotypes reached a significant level, and weight and eviscerated weight were positively correlated, and the CCGAGA genotype was the highest, followed by CTGGGA genotype; The average rate of chest muscle of CCGGGG genotype was the highest, followed by CCGGGA genotype. The result indicated that the highest main value of genotype of single gene was CC, GG and GA. After two genes combined, CCGGGA genotype in the four indicators was not the optional combination, which showed that there exist interactive effect between MyoG gene and MEF2a gene.【Conclusion】The results revealed that one single molecular marker breeding maybe not good and cannot obtain good result from the interaction of two genes. However, regnant aggregated genotype individuals was not more than enough, more samples should be selected to investigate the aggregated effect of more genes in further study, and to obtain effective molecular markers for poultry breeding.
MyoG gene; MEF2a gene; slaughter traits; polymerization effect
2015-08-27;接受日期:2016-07-12
教育部科學技術研究重點項目(211168)、貴州省科技廳農業重大專項[黔科合重大專項字(2012)6004號]、《三穗鴨國家標準》制定與養殖技術規程編制橫向(H120183)、貴州省科技合作計劃聯合基金項目[黔科合LH字(2015)7677號]
聯系方式:趙忠海,E-mail:andyzhzhao@163.com。通信作者李輝,Fax:0851-88298003;E-mail:ellenlihui@sina.cn