朱巖,王飛飛,張亞輝,曹瑩,曾鴻鵠,劉征濤
1.桂林理工大學環境科學與工程學院,桂林541004
2.中國環境科學研究院環境基準與風險評估國家重點實驗室國家環境保護化學品生態效應與風險評估重點實驗室,北京100012
3種有機磷農藥對水生生物的乙酰膽堿酯酶抑制效應的物種敏感度分析初探
朱巖1,2,王飛飛1,張亞輝2,*,曹瑩2,曾鴻鵠1,劉征濤2
1.桂林理工大學環境科學與工程學院,桂林541004
2.中國環境科學研究院環境基準與風險評估國家重點實驗室國家環境保護化學品生態效應與風險評估重點實驗室,北京100012
通過篩選敵敵畏、馬拉硫磷和對硫磷3種有機磷農藥對水生生物的急性毒性數據和乙酰膽堿酯酶抑制效應數據,構建物種敏感度分布曲線進行了比較分析。結果表明,敵敵畏對水生生物的急性毒性和乙酰膽堿酯酶抑制效應的大小順序為:酶體內抑制效應>酶體外抑制效應>急性毒性;馬拉硫磷和對硫磷的乙酰膽堿酯酶抑制效應數據不足但趨勢相似,順序為:酶體內抑制效應>急性毒性>酶體外抑制效應。敵敵畏的急性毒性和酶體外抑制效應的5%危害濃度(HC5)分別為2.07 μg·L-1和1.53 μg·L-1,兩者相差1.4倍。在水質基準推導中,乙酰膽堿酯酶抑制效應數據對有機磷農藥的水生生物基準具有重要的參考價值。
有機磷農藥;水生生物;乙酰膽堿酯酶;物種敏感度;水質基準
朱巖,王飛飛,張亞輝,等.3種有機磷農藥對水生生物的乙酰膽堿酯酶抑制效應的物種敏感度分析初探[J].生態毒理學報,2016,11(3):211-218
Zhu Y,Wang F F,Zhang Y H,et al.A preliminary study on species sensitivity analysis of inhibition effect of three organophosphorus pesticides on acetylcholinesterase in aquatic organisms[J].Asian Journal of Ecotoxicology,2016,11(3):211-218(in Chinese)
水生生物基準作為水質基準(water quality criteria,WQC)的核心組成部分,用于保護水生態系統中水生生物的安全。推導污染物的水生生物基準的方法主要包括生物模型法、評估因子法、統計外推法等[1]。物種敏感度分布(species sensitivity distribution,SSD)[1]作為統計外推法于20世紀70年代提出,已經成為水質基準推導的主要方法之一[2]。SSD方法采用不同函數,例如對數-邏輯斯帝函數[3-4]、對數正態分布函數[5-6]和對數三角函數[7]等,將不同生物對同一物質的敏感度分布進行擬合,計算出保護一定比例[8]生物的污染物濃度作為水質基準值。目前,該方法主要針對生物個體水平的毒性數據進行統計分析。
長期以來,在推導水生生物基準中,大多采用水生生物毒性數據中存活、生長和繁殖等個體水平的“常規”毒性終點[9-10],而“非常規”的毒性終點,例如雌激素紊亂[11]、酶抑制效應、RNA或DNA[12]水平的變化被忽視。在美國的基準推導文件中,這些“非常規”的毒性終點數據往往歸于“其他數據”,但這些毒性終點往往比“常規”毒性終點更加靈敏[13],這些指標通過個體/亞個體水平表現外來脅迫效應,指示環境中痕量污染物短期或長期暴露的毒性效應[14-15]。陳朗等[16]分析了溴氰菊酯的酶類、生物化學、細胞學、遺傳學、基因及組織學等生物標記物指標的SSD曲線,指出這些指標可以作為慢性毒性數據的一種替代或補充引入到水質基準推導中,彌補“傳統指標”的不足。閆振廣等[17]采用基因表達效應分析了重金屬的物種敏感度,結果發現銅的基因表達效應較為敏感,具有作為慢性水質基準數據的應用潛力,而鋅與鎘的基因表達效應與慢性毒性數據相比沒有明顯優勢。
有機磷農藥(organphosphorus pesticides,OPs)具有低成本、藥效高、品種多等特點,是目前生產和使用最為廣泛的一類農藥[18]。有機磷農藥伴隨降雨和坡地漫流進入環境水體中,對水生生物和人體健康構成危害。乙酰膽堿酯酶(acetylcholinestetase, AChE)作為有機磷農藥的靶標酶,已經積累了很多毒性數據。本文通過篩選敵敵畏、馬拉硫磷和對硫磷3種有機磷農藥對水生生物的急性毒性數據和AChE抑制效應數據,利用物種敏感度分布法比較分析3種有機磷農藥的急性毒性數據與AChE抑制效應的敏感性,計算得到保護95%水生生物的有機磷農藥濃度(HC5)。探討了在水質基準推導中,有機磷農藥對AChE抑制效應數據是否具有補充有機磷農藥對水生生物急性毒性數據的潛力。
1.1 數據搜集與篩選
本文中3種有機磷農藥對水生生物的毒性數據主要來自美國環保署(USEPA)[19]的毒性數據庫ECOTOX(http://cfpub.epa.gov/ecotox),同時利用Web of Science、Sciencedirect、Wiley、Springer和中國知網等文獻數據庫搜索公開發表的中英文文獻,并以所得文獻的引用文獻作為補充。廣泛搜集了敵敵畏(dichlorvos)、對硫磷(parathion)和馬拉硫磷(malathion)3種有機磷農藥對水生生物的毒性數據。搜索所用關鍵詞包括“敵敵畏”、“馬拉硫磷”、“對硫磷”、“水生生物”、“乙酰膽堿酯酶”、“有機磷農藥”、“水質基準”、“生態風險”、“風險評估”、“物種敏感度”等。
參考美國水生生物基準技術指南[16]的數據篩選原則,將搜集到的數據進行篩選,篩選標準為:數據的毒性終點為半數致死濃度(LC50)或半數效應濃度(EC50),暴露時間2~4 d,不同暴露時間的數據以時間較長的優先;同一文獻中對同一種生物的多個毒性數據,當暴露時間相同時,選擇最敏感的數據;同一物種不同生命階段的毒性數據以敏感生命階段的數據優先。
1.2 數據處理
將搜集且篩選過的數據按照濃度由小到大進行排序并編號,同一物種的多個同類毒性數據取幾何平均值作為該物種的急性毒性值或AChE抑制效應數據。計算每個物種的累計概率:

式中,P為累積概率,i是物種排序的秩,N是樣本數。將排序后的累積概率和濃度的對數轉換值應用數據分析軟件Origin 9.0,選用某一特定概率模型進行參數擬合構建物種敏感度分布曲線。當累積概率為0.05時,對應的濃度就是水生生物被危害的比例為5%時的污染物濃度(HC5)。采用對數-正態分布(公式2)和對數-邏輯斯蒂函數(公式3)對SSD曲線進行擬合,采用決定校正系數(Adj.R2)和加權卡方檢驗系數(Reduced Chi-Sqr)來判斷模型的擬合優度,選擇最佳擬合模型。

式中,y為累計概率,x為有機磷農藥濃度對數轉換值(μg·L-1),α、β、μ和σ均為曲線參數,erf()為誤差函數。
2.1 有機磷農藥對AChE的抑制效應
敵敵畏、對硫磷和馬拉硫磷3種典型有機磷農藥對水生生物的急性數據,其中包括敵敵畏的69種生物的急性毒性數據,馬拉硫磷的43種生物的急性毒性數據,對硫磷的11種生物的急性毒性數據(見附表1~3)。
本文搜集的AChE抑制效應數據明顯少于急性毒性數據,共涉及26種水生生物,包括19種生物的敵敵畏毒性數據、8種生物的馬拉硫磷毒性數據和5種生物的對硫磷毒性數據,其中以敵敵畏的AChE抑制效應數據最為豐富(見表1~2)。26種水生生物中,魚類占19種。

表1 乙酰膽堿酯酶(AChE)體外暴露于3種有機磷農藥的半數效應濃度/半數抑制濃度(EC50/IC50)值Table 1 The EC50/IC50values of AChE fromin vitroexposure to three organophosphorus pesticides(OPs)
26種水生生物的離體實驗中,根據試驗方法的不同分為體內染毒和體外染毒。有10篇文獻中采用體外染毒的方法:提取生物體內的AChE與不同種類、濃度的有機磷農藥混合,在一定條件下培養后,測定有機磷農藥對AChE的抑制效應[20-22];有8篇文獻中采用體內染毒的方法:將待測生物暴露在不同種類、濃度的有機磷農藥中,經過一定時間后,提取并測定酶活,得到有機磷農藥在不同暴露時間內對AChE的抑制效應[23-28]。現有的數據表明,在AChE的體外抑制中,敵敵畏的16種水生生物中,最敏感的是歐洲魚銜,最不敏感的是鯽魚,兩者相差約350倍;馬拉硫磷的4種水生生物中,最敏感的是黑頭軟口鰷,最不敏感的是鰱魚,兩者相差約10倍;對硫磷的2種淡水水生生物中,最敏感的是大型溞,最不敏感的是羅非魚,兩者相差5倍。在AChE的體內抑制中,敵敵畏毒性相關的3種淡水水生生物中,最敏感的是大型溞,最不敏感的是搖蚊幼蟲,兩者相差約35倍;馬拉硫磷毒性相關的4種淡水水生生物中,最敏感的是側邊底鳉,最不敏感的是藍鮎,兩者相差1萬倍;對硫磷毒性相關的4種淡水水生生物中,最敏感的是大型溞,最不敏感的是金頭鯛,兩者相差約110倍。另外,體外染毒方法中暴露時間也相差很大,最短為3 min(鰱魚),最長為1 h(太平洋牡蠣)。
2.2 SSD最佳擬合函數

表2 乙酰膽堿酯酶(AChE)體內暴露于3種有機磷農藥的半數效應濃度/半數抑制濃度(EC50/IC50)值Table 2 The EC50/IC50values of AChE fromin vivoexposure to three organophosphorus pesticides(OPs)

表3 2個數學函數對SSD曲線的統計參數Table 3 The statistics of two mathematical functions for SSD curves
通過對數-正態分布函數和對數-邏輯斯蒂函數擬合構建SSD曲線,2個函數擬合的統計參數(見表3)。整體而言,2個函數擬合的參數值比較接近,其校正決定系數均大于0.937,加權卡方檢驗系數均較小。對數-邏輯斯帝函數對敵敵畏和馬拉硫磷毒性數據擬合的校正決定系數大于對數-正態分布函數擬合值,并且對數-邏輯斯帝函數擬合的加權卡方檢驗系數小于對數正態分布函數擬合值;對數-邏輯斯帝函數對對硫磷毒性數據擬合的矯正檢驗系數和加權卡方檢驗系數均小于對數-正態分布函數的擬合值。綜上所述,本文中SSD曲線的擬合采用對數-邏輯斯蒂函數。

圖1 馬拉硫磷、敵敵畏和對硫磷對水生生物的急性和酶抑制效應數據的SSD曲線
2.3 急性毒性數據與AChE抑制效應數據的對比
為比較急性毒性數據和AChE抑制效應數據之間的敏感度差異,利用對數-邏輯斯蒂函數分別對有機磷農藥敵敵畏、對硫磷和馬拉硫磷的急性毒性和AChE抑制效應數據進行分布擬合,根據所獲得的參數得到SSD曲線,它可以直觀地表示不同水生生物對有機磷農藥的敏感度分布情況(見圖1)。其中馬拉硫磷和對硫磷的AChE抑制效應數據太少(n< 10)僅在圖中顯示位置,沒有構建SSD曲線[1]。由圖1可以看出,在橫坐標相同的情況下,對硫磷和馬拉硫磷對水生生物急性毒性的SSD曲線斜率相對較小,而敵敵畏的SSD曲線斜率則較大,表明大部分水生生物對敵敵畏的敏感度相對接近,而不同種水生生物對于馬拉硫磷和對硫磷的敏感度則差異較大。對于急性毒性和AChE抑制效應這2類數據的敏感度來說,不同的有機磷農藥顯示出差異性。敵敵畏的數據敏感度排序為“酶體內抑制效應>酶體外抑制效應>急性毒性效應”;在低濃度區間,對硫磷對AChE的體內抑制效應數據與急性毒性數據接近,馬拉硫磷與敵敵畏類似;在高濃度區間,馬拉硫磷對AChE的抑制效應數據與急性毒性數據接近;從趨勢上看,3種有機磷農藥的共同之處都是AChE的體內抑制效應比AChE的體外抑制效應更靈敏。
為便于對3種有機磷農藥的急性毒性和AChE抑制效應數據進行量化對比,分別對能保護95%的水生生物的污染物濃度(HC5)進行計算,HC5是計算保護水生生物的水質基準的重要依據。由于欠缺馬拉硫磷和對硫磷的AChE抑制效應數據,只有敵敵畏的數據比較豐富,可以進行擬合計算HC5。敵敵畏的急性毒性和AChE體外抑制效應的HC5分別為2.07 μg·L-1和1.53 μg·L-1,兩者相差1.4倍。
總體而言,3種有機磷農藥對AChE的體內抑制效應比體外抑制效應更靈敏。這可能是由于在體外染毒方法中沒有考慮到有機磷農藥在生物體內代謝作用的影響,使得測定農藥對AChE的毒性數據與實際環境中同濃度農藥對AChE的毒性數據有一定偏差。例如,對氧磷對AChE的毒性大于對硫磷,但由于對硫磷在生物體內可以轉化為對氧磷,使得體內抑制所得到的IC50遠遠小于體外抑制所得到的IC50[45]。那么,幾乎可以肯定對硫磷對水生生物的AChE抑制效應還存在更小的IC50值,即AChE抑制效應的敏感度還會提升。
本文選擇了對確定水質基準具有重要參考價值的HC5對敏感度進行定量分析,對硫磷和馬拉硫磷對水生生物體內的AChE抑制效應數據不足無法計算HC5。由于數據量的限制,僅將敵敵畏對水生生物體內AChE的抑制效應數據進行推算來比較數據靈敏度。敵敵畏的急性毒性和AChE體外抑制效應的HC5分別為2.07 μg·L-1和1.53 μg·L-1,兩者相差1.4倍,比較接近。陳朗等[16]對于溴氰菊酯,采用酶類、生物化學、細胞、遺傳、基因及組織學等生物標記物指標的最低可觀測效應濃度(LOEC)的SSD曲線,計算得到HC5值為1.3 ng·L-1,與水生生物的基準連續濃度(CCC)值0.9 ng·L-1相近,與基準最大濃度(CMC)值7.5 ng·L-1,相差較大,因此作者指出這些生物標記物指標可以作為水生生物基準中慢性數據的替代或補充。因此,鑒于試驗動物福利和AChE體外抑制試驗數據的快速可獲得性上來說,在推導水質基準中,AChE抑制效應數據可以作為有機磷農藥的急性毒性數據的補充,具有重要的參考價值。
一般認為,在分子水平上的AChE對污染物脅迫發生應激響應要早于個體、種群或群落[46]。由于AChE的檢測手段能更好地評價有機磷農藥對水生生物的危害程度,但現階段的數據量難以支持其在實際水環境中的應用。只有通過積累更多有機磷農藥對水生生物的AChE抑制數據,才能正確評價AChE抑制效應指標在水質基準研究中的作用。因此有機磷農藥對水生生物的AChE抑制效應在水質基準上具有廣泛的研究前景。
(References):
[1] Posthuma L,Suter II G W,Traas T P.Species Sensitivity Distributions in Ecotoxicology[M].Boca Raton:CRC Press,2001
[2] Wheeler J,Grist E,Leung K,et al.Species sensitivity distributions:Data and model choice[J].Marine Pollution Bulletin,2002,45(1):192-202
[3] Aldenberg T,Slob W.Confidence limits for hazardous concentrations based on logistically distributed NOEC toxicity data[J].Ecotoxicology and Environmental Safety, 1993,25(1):48-63
[4] Awkerman J A,Raimondo S,Barron M G.Development of species sensitivity distributions for wildlife using interspecies toxicity correlation models[J].Environmental Science&Technology,2008,42(9):3447-3452
[5] Aldenberg T,Jaworska J S.Uncertainty of the hazardous concentration and fraction affected for normal species sensitivity distributions[J].Ecotoxicology and Environmental Safety,2000,46(1):1-18
[6] Maltby L,Brock T C,Brink P J.Fungicide risk assessment for aquatic ecosystems:Importance of interspecific variation,toxic mode of action,and exposure regime[J]. Environmental Science&Technology,2009,43(19): 7556-7563
[7] Stephen C E,Mount D I,Hansen D J,et al.Guidelines for deriving numerical national water quality criteria for the protection of aquatic organisms and their uses[R]. Washington DC:United States Environmental Protection Agency,Office of Research and Development,1985
[8] Klepper O,Bakker J,Traas T P,et al.Mapping the potentially affected fraction(PAF)of species as a basis for comparison of ecotoxicological risks between substances and regions[J].Journal of Hazardous Materials,1998,61 (1):337-344
[9] 閆振廣,孟偉,劉征濤,等.我國淡水生物氨氮基準研究[J].環境科學,2011,32(6):1564-1570
Yan Z G,Meng W,Liu Z T,et al.Development of freshwater aquatic life criteria for ammonia in China[J].Environmental Science,2011,32(6):1564-1570(in Chinese)
[10] 閆振廣,孟偉,劉征濤,等.我國典型流域鎘水質基準研究[J].環境科學研究,2010(10):1221-1228
Yan Z G,Meng W,Liu Z T,et al.Development of aquatic criteria for cadmium for typical basins in China[J].Research of Environmental Sciences,2010(10):1221-1228 (in Chinese)
[11] 雷炳莉,金小偉,黃圣彪,等.太湖流域3種氯酚類化合物水質基準的探討[J].生態毒理學報,2009,4(1):40-49
Lei B L,Jin X W,Huang S B,et al.Discussion of quality criteria for three chlorophenols in Taihu Lake[J].Asian Journal of Ecotoxicology,2009,4(1):40-49(in Chinese)
[12] Fedorenkova A,Vonk J A,Lenders H R,et al.Ecotoxicogenomics:Bridging the gap between genes and populations[J].Environmental Science&Technology,2010,44 (11):4328-4333
[13] Stephen C E,Mount D I,Hansen D J,et al.Guidelines for deriving numerical national water quality criteria for the protection of aquatic organisms and their uses[R]. Washington DC:United States Environmental Protection Agency,Office of Research and Development,1985
[14] Neumann N F,Galvez F.DNA microarrays and toxicogenomics:Applications for ecotoxicology[J].Biotechnology Advances,2002,20(5):391-419
[15] Zhang W,Song Y,Gong P,et al.Earthworm cytochrome p450 determination and application as a biomarker for diagnosing PAH exposure[J].Journal of Environmental Monitoring,2006,8(9):963-967
[16] 陳朗,宋玉芳,張偉東,等.基于多指標的中國淡水擬除蟲菊酯水質基準[J].生態學雜志,2015,34(10):2879-2892
Chen L,Song Y F,Zhang W D,et al.Derivation of freshwater quality criteria by multi-index for pyrethroids in China[J].Chinese Journal of Ecology,2015,34(10): 2879-2892(in Chinese)
[17] 閆振廣,楊霓云,王曉南,等.基于基因表達效應的物種敏感度分析初探[J].中國科學:地球科學(中文版), 2012,42(5):673-679
[18] 張一賓,孫晶.國內外有機磷農藥的概況及對我國有機磷農藥發展的看法[J].農藥,1999,38(7):1-3
[19] US EPA.National Recommended Water Quality Criteria [EB/OL].(2012-08-02)[2015-11-30].http://water.epa.gov/ scitech/swguigance/standards/current/index.cfm
[20] Bruijn J D,Hermens J.Inhibition of acetylcholinesterase and acute toxicity of organophosphorous compounds to fish:A preliminary structure-activity analysis[J].Aquatic Toxicology,1993,24(3):257-274
[21] Sturm A,Assis H D S,Hansen P D.Cholinesterases of marine teleost fish:Enzymological characterization and potential use in the monitoring of neurotoxic contamination[J].Marine Environmental Research,1999,47(4): 389-398
[22] Galgani F,Bocquene G.In vitro inhibition of acetylcholinesterase from four marine species by organophosphates and carbamates[J].Bulletin of Environmental Contamination and Toxicology,1990,45(2):243-249
[23] McHenery J G,Saward D,Seaton D D.Lethal and sublethal effects of the salmon delousing agent dichlorvos on the larvae of the lobster(Homarus gammarusL.)and herring(Clupea harengusL.)[J].Aquaculture,1991,98(4): 331-347
[24] Karen D J,Klaine S J,Ross P E,et al.Further considerations of the skeletal system as a biomarker of episodic chlorpyrifos exposure[J].Aquatic Toxicology,2001,52 (3):285-296
[25] McHenery J,Francis C,Davies I,et al.Threshold toxicity and repeated exposure studies of dichlorvos to the larvae of the common lobster(Homarus gammarusL.)[J].A-quatic Toxicology,1996,34(3):237-251
[26] Henery J M,Adams L G,Moore D,et al.Experimental and field studies of effects of dichlorvos exposure on acetylcholinesterase activity in the gills of the mussel,Mytilus edulisL.[J].Aquatic Toxicology,1997,38(1):125-143
[27] Bris L H,Maffart P,Bocquené G,et al.Laboratory study on the effect of dichlorvos on two commercial bivalves [J].Aquaculture,1995,138(1):139-144
[28] Stien X,Percic P,Barelli G M,et al.Evaluation of biomarkers in caged fishes and mussels to assess the quality of waters in a bay of the NW mediterranean sea[J].Environmental Pollution,1998,99(3):339-345
[29] 丁運華,譚笑燕,何玉君,等.羅非魚乙酰膽堿酯酶的組織分布動力學特性及農藥敏感性分析[J].廣東農業科學,2015,42(12):111-115
Ding Y H,Tan X Y,He Y J,et al.Tissue distribution,kinetic characters and sensitivity to insecticides of acetylcholinesterase inOreochromis aurea[J].Guangdong Agricultural Sciences,2015,42(12):111-115(in Chinese)
[30] 丁運華,嚴松溪,謝汝朋,等.幾種淡水魚肌肉乙酰膽堿酯酶的鹽析提取及農藥敏感性研究[J].熱帶農業科學,2011,31(6):21-23
Ding Y H,Yan S X,Xei R P,et al.Extraction and insecticides susceptibility of acetylcholinesterase from muscle tissues of fresh water fishes[J].Chinese Journal of Tropical Agriculture,2011,31(6):21-23(in Chinese)
[31] Olson D,Christensen G.Effects of water pollutants and other chemicals on fish acetylcholinesterase(in vitro)[J]. Environmental Research,1980,21(2):327-335
[32] 賈玉玲,彭惠民,彭方毅,等.鯽魚腦AChE制備及對幾種有機磷農藥敏感性研究[J].環境科學與技術,2010, 33(6):23-27
Jia Y L,Peng H M,Peng F Y,et al.Preparation of acetylcholinesterase by crucian carp brain and its sensitivity to several organophosphorus pesticides[J].Environmental Science and Technology,2010,33(6):23-27(in Chinese)
[33] Assis C R D,Linhares A G,Oliveira V M,et al.Comparative effect of pesticides on brain acetylcholinesterase in tropical fish[J].Science of The Total Environment,2012, 441:141-150
[34] Chuiko G.Comparative study of acetylcholinesterase and butyrylcholinesterase in brain and serum of several freshwater fish:Specific activities and in vitro inhibition by DDVP,an organophosphorus pesticide[J].Comparative Biochemistry and Physiology Part C:Pharmacology,Toxicology and Endocrinology,2000,127(3):233-242
[35] Assis C R D,Castro P F,Amaral I P G,et al.Characterization of acetylcholinesterase from the brain of the amazonian tambaqui(Colossoma macropomum)and in vitro effect of organophosphorus and carbamate pesticides[J]. Environmental Toxicology and Chemistry,2010,29(10): 2243-2248
[36] Bocquené G,Bellanger C,Cadiou Y,et al.Joint action of combinations of pollutants on the acetylcholinesterase activity of several marine species[J].Ecotoxicology,1995,4 (4):266-279
[37] Sturm A,Wogram J,Segner H,et al.Different sensitivity to organophosphates of acetylcholinesterase and butyrylcholinesterase from three-spined stickleback(Gasterosteus aculeatus):Application in biomonitoring[J].Environmental Toxicology and Chemistry,2000,19(6):1607-1615
[38] Key P B,Fulton M H.Correlation between 96-h mortality and 24-h acetylcholinesterase inhibition in three grass shrimp larval life stages[J].Ecotoxicology and Environmental Safety,2006,63(3):389-392
[39] Aker W G,Hu X,Wang P,et al.Comparing the relative toxicity of malathion and malaoxon in blue catfishIctalurus furcatus[J].Environmental Toxicology,2008,23(4): 548-554
[40] Chen C,Wang Y,Zhao X,et al.The combined toxicity assessment of carp(Cyprinus carpio)acetylcholinesterase activity by binary mixtures of chlorpyrifos and four other insecticides[J].Ecotoxicology,2014,23(2):221-228
[41] Fulton M,Scott G.The effect of certain intrinsic and extrinsic variables on the acute toxicity of selected organophosphorus insecticides to the mummichog,Fundulus heteroclitus[J].Journal of Environmental Science&Health Part B,1991,26(5-6):459-478
[42] Sturm A,Hansen P D.Altered cholinesterase and monooxygenase levels inDaphnia magnaandChironomus ripariusexposed to environmental pollutants[J].Ecotoxicology and Environmental Safety,1999,42(1):9-15
[43] Arufe M I,Arellano J M,Albendín G,et al.Toxicity of parathion on embryo and yolk-sac larvae of gilthead seabream(Sparus aurataL.):Effects on survival,cholinesterase,and carboxylesterase activity[J].Environmental Toxicology,2010,25(6):601-607
[44] Ferrari A,Venturino A,de D’Angelo A M P.Time course of brain cholinesterase inhibition and recovery following acute and subacute azinphosmethyl,parathion and carbaryl exposure in the goldfish(Carassius auratus)[J]. Ecotoxicology and Environmental Safety,2004,57(3): 420-425
[45] Guilhermino L,Lopes M C,Carvalho A P,et al.Inhibition of acetylcholinesterase activity as effect criterion in acute tests with juvenileDaphnia magna[J].Chemosphere, 1996,32(4):727-738
[46] Markert B A,Breure A M,Zechmeister H G.Bioindicators and biomonitors:Principles,concepts,and applications[J].Amsterdam:Elsevier,2003◆
A Preliminary Study on Species Sensitivity Analysis of Inhibition Effect of Three Organophosphorus Pesticides on Acetylcholinesterase in Aquatic Organisms
Zhu Yan1,2,Wang Feifei1,Zhang Yahui2,*,Cao Ying2,Zeng Honghu1,Liu Zhengtao2
1.College of Environmental Science and Engineering,Guilin University of Technology,Guilin 541004,China
2.State Key Laboratory for Environmental Criteria and Risk Assessment,State Environmental Protection Key Laboratory of Ecological Effects and Risk Assessment of Chemicals,Chinese Research Academy of Environmental Sciences,Beijing 100012,China
30 November 2015 accepted 21 January 2016
The data of the acute toxicity and acetylcholinesterase(AChE)inhibition effect of aquatic organisms of three organophosphorus pesticides(OPs),including dichlorvos,parathion and malathion,were selected and analyzed by species sensitivity distribution.The results showed that the order of acute toxicity and AChE inhibition effect for dichlorvos wasin vivoAChE inhibition>in vitroAChE inhibition>acute toxicity.The trends of speciessensitivity distribution of malathion and parathion were similar based on their insufficient data.The orders of acute toxicity and AChE inhibition effect of malathion and parathion werein vivoAChE inhibition>actue toxicity>in vitroAChE inhibition.The 5%hazard concentration(HC5)of acute toxicity and inhibition effect of dichlorvos were 2.07 μg·L-1and 1.53 μg·L-1,respectively,which differs by 1.4 times from each other.The data of AChE inhibition effect of OPs could be of great reference value when deriving the water qulity criteria.
organophosphate pesticide;aquatic organism;acetylcholinesterase;species sensitivity;water quality criteria
2015-11-30 錄用日期:2016-1-21
1673-5897(2016)3-211-08
X171.5
A
10.7524/AJE.1673-5897.20151130006
簡介:張亞輝(1979—),女,副研究員,主要從事污染物聯合毒性及毒性評估與預測研究,發表學術論文20余篇。
國家水體污染控制與治理科技重大專項(2012ZX07501-003);科技基礎性工作專項(2014FY120600);國家自然科學基金(51268008,21407139)
朱巖(1990-),男,碩士研究生,研究方向為水處理理論與技術,E-mail:zhuyan_craes@foxmail.com;
*通訊作者(Corresponding author),E-mail:zhangyahui@craes.org.cn