孫洋
(大榭大橋有限公司,浙江 寧波 315812)
寧波大榭第二大橋單索面主梁局部分析及施工扭轉變形控制措施
孫洋
(大榭大橋有限公司,浙江 寧波 315812)
根據寧波大榭第二大橋主梁關鍵節點——塔梁結合部位的局部應力分析結果,對大跨度單索面斜拉橋鋼梁的合理設計進行了探討。
大榭第二大橋;單索面斜拉橋;主梁;局部分析
寧波大榭對外第二公路通道工程主橋(以下簡稱大榭二橋)為雙塔單索面鋼箱梁斜拉橋,橋寬29.5 m,總長808 m,跨徑布置為50 m+158 m+ 392m+158 m+50 m。全橋采用塔墩固結、塔梁分離的結構體系(支承、半漂浮體系)[1]。索塔結構形式獨特,采用“帆”型橋塔,下塔柱為鋼筋混凝土結構,上塔柱為鋼結構。主梁采用鋼箱梁,標準梁段為單箱多室截面,橋塔開洞處為分離式雙箱單室截面。斜拉索采用扇形單索面,梁上索距10.5 m,塔上索距2.2 m[2]。圖1為主橋總體布置圖。
由于該橋采用單索面的結構形式,而且跨徑較大,因此其整體抗扭性能較弱。尤其是橋塔根部處的梁段,由于有塔柱貫穿通過,主梁頂底板均有大面積開洞(約4.7 m×7.75 m),大大削弱了其抗扭能力,截面抗扭剛度下降了約40%。因此有必要對該處主梁進行局部分析,考查其在運營階段的受力情況,尤其是在扭矩最不利工況下的應力分布。這里選取以近大榭側橋塔中軸線為中心,左右各22.85 m長的梁段為研究對象,進行局部有限元分析。詳見圖2、圖3。
2.1計算模型
采用通用有限元程序ANSYS對上述局部梁段建立板殼有限元模型(見圖4)。所有鋼板均采用板殼單元Shell63模擬;模型兩側各有一段由梁單元Beam44模擬的剛臂,剛臂一端與板殼模型邊界用剛域耦合,另一端施加外力。剛臂梁單元的截面幾何屬性與主梁標準斷面相當,彈性模量為鋼材的100倍,可以滿足傳力要求。剛臂桿端力為全橋桿系模型總體計算中相應截面上的內力。主梁支座處對應位置各節點的平動自由度均被約束。
2.2計算條件
主要分析該梁段在運營階段的受力狀態,主要考慮的荷載因素有結構自重、二期鋪裝、混凝土壓重以及單側重車偏載組合下產生的最不利桿端力。其中車輛采用單側三列重車最大偏載布置。
3.1正常使用狀態最不利工況效應分析
在局部鋼箱梁節段自身恒載和重車偏心3車道扭矩最不利工況對應的剛臂桿端力的共同作用下,鋼箱梁頂板受力如圖5所示。
頂板大部分區域的vonMises應力在75 MPa以下,靠近一側外腹板以及該側支座上方橫隔板位置可達100 MPa左右;頂板孔洞,尤其是靠近主跨一側的孔洞角點處有較大程度的應力集中,局部小范圍Mises應力峰值可達150~175 MPa左右,該處的順、橫橋向正應力均較大,約100~120 MPa。在雙向彎矩、扭矩和軸力的共同作用下,頂板應力分布情況較為復雜,從順、橫橋向正應力可以看出頂板發生雙向彎曲以及板平面內的扭轉。
鋼箱梁底板應力分布與頂板應力相似。底板其他大部分區域應力水平都較低,vonMises應力一般都在75 MPa以下,在受力較大的斜底板附近可達120 MPa左右。扭矩作用產生的箱梁橫向彎曲使底板受到50 MPa以內的橫橋向交替拉、壓應力。
3.2扭轉效應分析
為分析梁段在扭矩作用下的受力性能和重載偏載的扭轉效應,僅考慮重車偏心工況中的扭矩作用和梁段自重,各板件的應力分布如圖6所示。

圖1 主橋總體布置圖(單位:mm)

圖2 局部分析梁段示意圖(單位:mm)

圖3 主梁橫斷面示意圖(單位:mm)

圖4 有限元模型示意圖

圖5 最不利工況下鋼箱梁頂板應力(單位:kPa)
與前小節中的計算結果相比可見,兩種情況下,鋼箱梁各板件的應力分布規律相似,桿端僅有扭矩作用時,應力值略低,但降低幅度很小,說明活載偏載作用下扭矩是比縱向彎曲更重要的影響因素。
3.3鋼箱梁頂底板開洞影響分析
進一步考查鋼箱梁頂、底板不開洞時,鋼箱梁各板件的應力分布情況,并與之前的計算結果比較,研究開洞對鋼箱梁整體受力的影響。將前文計算模型的頂、底板孔洞填實,其他條件不變的情況下,鋼箱梁各板件的應力分布如圖7所示。
通過比較可見,鋼箱梁不開孔洞時,各板件受力比較均勻,應力水平普遍較低,大部分區域Mises應力均在50 MPa以下,個別位置可達50~75 MPa,除梁底支座附近(Mises應力約 100~125 MPa)以外無應力集中現象;從頂、底板順、橫橋向正應力分布可以看出,鋼箱梁兩個方向彎曲變形比較均勻協調,傳力順暢,而扭矩產生的效應(如翹曲和由其引起的橫向彎曲)相對不明顯,只是在扭矩較大一側的梁端外腹板中產生較大的扭轉剪應力。
綜上所述,鋼箱梁頂、底板開孔洞對其整體各方向的受力產生較大的不利影響。

圖6 不計活載彎曲效應的鋼箱梁頂板應力(單位:kPa)

圖7 無開孔截面鋼箱梁頂板應力(單位:kPa)

圖8 圓弧開孔鋼箱梁頂板應力(單位:kPa)
3.4改善孔洞角點處應力集中的措施分析
如前所述,在外力尤其是扭矩的作用下,鋼箱梁孔洞的角點處會產生一定程度的應力集中,這在結構設計中是不希望出現的,因此需要設法降低應力集中的水平。
增大孔洞的圓弧半徑和加強孔洞邊緣的局部加勁,兩種方法從理論上說可以降低孔洞角點處應力集中水平,下面對這兩種措施做進一步分析。
3.4.1增大孔洞倒角半徑
采用圓弧過渡方式,可改善局部應力集中情況。圖8示出在恒載和桿端力共同作用下,采用長圓形孔洞時頂板的應力分布情況。
對比圖5和圖8,頂板大部分區域的應力水平以及分布規律與其相同,但在孔洞邊緣處,應力集中峰值明顯下降,降幅約25~50MPa。但這種方法受到橋塔構造及外形尺寸的限制,有一定的局限性。
3.4.2加強孔洞邊緣的局部加勁
沿孔洞邊緣設置一卷加勁肋,以達到降低應力集中的目的。孔洞邊緣到臨近的內腹板、橫隔板的距離為300~400 mm,從構造上來講,焊接加勁肋是可行的。以下分別采用不同尺寸的加勁肋(板肋))得出相應的頂板應力分布情況,以考查設置加勁肋是否可以減小應力集中峰值,以及加勁肋剛度變化對其的影響。
(1)加勁肋尺寸為180 mm×10 mm

圖9 鋼箱梁頂板應力(單位:kPa)

圖10 鋼箱梁頂板應力(單位:kPa)

圖11 鋼箱梁頂板應力(單位:kPa)
在恒載和桿端力共同作用下,當加勁肋尺寸為180 mm×10 mm時,頂板應力分布如圖9所示。對比可見,孔洞角點處應力集中狀況沒有得到明顯改善。
(2)加勁肋尺寸為220 mm×20 mm
在恒載和桿端力共同作用下,當加勁肋尺寸為220 mm×20 mm時,頂板應力分布如圖10所示。對比可見,孔洞角點處應力集中峰值有所降低,降幅約為25~30 MPa。
(3)加勁肋尺寸為220 mm×30 mm
當加勁肋尺寸改為220 mm×30 mm時,頂板應力分布如圖11所示,對比可見,應力集中峰值與加勁肋尺寸采用220 mm×20 mm時相當,沒有進一步降低。
綜上可見,采用孔洞邊緣設置加勁肋的方法是行之有效的,但加勁肋剛度(尺寸)的取值要在合理的范圍內。剛度過小,則達不到預期的約束鋼板變形的作用;尺寸過大,應力集中峰值也不能進一步降低,造成材料上的浪費。
3.5施工過程中的扭轉變形控制措施
從先前的計算結果中可以看到,開孔截面的主梁與非開孔截面相比,在扭轉荷載作用下,開孔截面由于截面抗扭能力較小,其工作性能并不理想。因此需要在施工過程中,避免因施工臨時荷載產生梁端扭矩。在施工過程中,根據中跨與邊跨施工臨時支撐方式的不同,采用了兩種方案控制梁端扭轉。
(1)邊跨主梁扭轉控制
在邊跨主梁斜拉索張拉前,安放在臨時支架上,并在支架上控制橋面線形。支架支撐方式如圖12所示。

圖12 支架示意
在臨時支點處,設置壓力傳感器和調平裝置,控制主梁空間線形,防止拼裝時出現扭轉誤差。
(2)中跨主梁扭轉控制
中跨主梁采用橋面吊機吊裝的方式進行施工,如圖13所示。
為保證吊裝過程中主梁無扭轉變形,采用了連續千斤頂提升工藝,主梁吊裝過程平穩,吊裝力明確可控,有效地避免了因不均勻的提升荷載造成梁端扭轉。實際施工過程中,還準備了預留壓重措施,能夠對主梁扭轉進行主動調整,防止扭轉效應積累。

圖13 中跨主梁吊裝
通過以上有限元局部分析計算,可得出如下結論:
(1)正常使用狀態下,在恒載(包括結構自重、二期鋪裝及混凝土壓重)和按扭矩最不利布置的活荷載共同作用下,所考查的橋塔下方鋼箱梁節段中各鋼板受力均滿足要求,Mises應力一般不超過175 MPa。
(2)扭矩除了引起鋼箱梁扭轉外,還使其發生翹曲和橫橋向彎曲。鋼箱梁頂、底板均交替出現順橋向翹曲拉、壓應力和橫橋向彎曲拉、壓應力,但應力水平不高。在扭矩作用下,由于局部變形以及傳力路徑不連續,頂、底板孔洞角點處都有明顯的應力集中現象。
(3)采用增大鋼箱梁孔洞倒角半徑(包括采用長圓形孔洞)或者沿孔洞邊緣設置加勁肋的方法可以降低孔洞角點處的應力集中峰值。
(4)為防止主梁恒載下發生扭轉,可在施工階段采取措施,進行有效控制。
[1]馬骉,葛競輝,顧民杰,等.寧波大榭第二大橋總體設計及研究[C]//第十九屆全國橋梁學術會議論文集(上冊).上海:中國土木工程學會橋梁及結構工程分會 ,2010.
[2]顧民杰.寧波大榭第二大橋主塔設計關鍵技術[J].中國市政工程,2012(6):18-20.
U448.27
B
1009-7716(2016)06-0101-05
2016-02-19
孫洋(1977-),男,吉林白城人,高級工程師,從事橋梁建設、管理與研究工作。