999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

柑橘衰退病毒基因p23 RNAi載體的構建及轉化

2016-11-17 08:14:18鄧子牛李大志戴素明
中國農業科學 2016年20期
關鍵詞:檢測

李 芳,鄧子牛,趙 亞,李大志,戴素明

(湖南農業大學園藝園林學院/國家柑橘改良中心長沙分中心,長沙 410128)

柑橘衰退病毒基因p23 RNAi載體的構建及轉化

李 芳,鄧子牛,趙 亞,李大志,戴素明

(湖南農業大學園藝園林學院/國家柑橘改良中心長沙分中心,長沙 410128)

【目的】構建柑橘衰退病毒(Citrus tristeza virus,CTV)含p23的RNAi載體,以獲得具有抗性的柑橘轉基因植株。【方法】基于轉化病毒基因介導抗性,根據NCBI公布的CTV基因組序列,查找p23保守序列,設計并克隆兩條不同長度的片段。對兩條片段和植物表達載體pBI 121進行雙酶切和連接來構建RNAi載體。初步預測所構建的載體發生RNAi抗病毒的可行性。利用農桿菌介導的瞬時表達技術將含RNAi載體的農桿菌注射入CTV指示植物墨西哥萊蒙的葉片,利用GUS組織化學染色法觀察葉片中載體發生瞬時表達的情況。發生瞬時表達的葉片接種CTV T36基因型,利用酶聯免疫反應(ELISA)檢測病毒含量。同時,提取葉片的RNA并反轉錄為cDNA,利用實時熒光定量PCR(q-PCR)檢測CTV p20,通過該基因的表達量反映葉片中的病毒含量。通過農桿菌介導的遺傳轉化將RNAi載體轉入大紅甜橙實生苗上胚軸節間莖段,抗生素篩選得到的芽嫁接至枳橙實生試管苗。提取大紅甜橙葉片的DNA,通過PCR擴增確定其是否為轉基因陽性;目的基因檢測為陽性的植株二次嫁接至溫室保存的酸橙實生苗;根據插入的p23基因序列設計q-PCR引物,檢測轉基因植株中p23的表達情況。取 CTV T36基因型寄主的帶皮芽,用腹接法接種大紅甜橙轉基因植株。取接種后新萌發枝梢上的葉片,用檢測瞬時表達葉片同樣的方法分析植株的抗病性。對于第1次接種后未檢測出病毒感染的植株,進行第2次接種并檢測分析。【結果】克隆得到CTV p23 513 bp的長片段和291 bp的短片段,與載體pBI121連接后成功構建含發夾結構的來自病原且能靶向目的基因的RNAi載體,命名為p23-RNAi。注射p23-RNAi的墨西哥萊蒙葉片經GUS染色后能夠產生藍色斑點,表明農桿菌p23-RNAi可以在葉片中發生瞬時表達;接種CTV后第15和30天,瞬時表達p23-RNAi的墨西哥萊蒙葉片ELISA檢測結果均為陰性,同時q-PCR檢測結果顯示其CTV p20的積累水平和增加速度明顯低于對照植株,表明瞬時表達的p23-RNAi在一定時間內可以對CTV的侵染產生抑制。p23-RNAi經農桿菌介導遺傳轉化大紅甜橙獲得抗性芽,通過普通PCR的擴增結果證明得到7個轉基因植株;q-PCR檢測結果進一步表明7個轉基因植株間p23的含量呈現一定差異,植株E的含量最高,其次是C、F、H、A、B和G。接種CTV后,p20的表達量在7個轉基因植株間也表現出一定差異,表達量最高的是植株A,其次是G、F、E、B、H、C,且與對照植株相比,呈現不同程度的抗病性。轉基因植株對病毒的抗性與外源基因的表達水平沒有相關性,外源基因表達水平最高的植株E并沒有表現強的CTV抗性。經過兩次病毒接種,轉基因植株C在接種后具有完全抗性。【結論】p23-RNAi載體能引起植物抗柑橘衰退病毒;瞬時表達技術可快速鑒定RNAi載體的抗病性,有利于篩選高效率的RNAi載體。

柑橘衰退病毒;p23;RNAi;大紅甜橙;瞬時表達;遺傳轉化

0 引言

【研究意義】由柑橘衰退病毒(Citrus tristeza virus,CTV)引起的柑橘衰退病嚴重影響柑橘產業發展。目前為止,該病害難以防治。田間種植柑橘無病毒苗木受蟲媒傳播影響,很難做到持久性的無毒化。弱毒株交叉保護作用(MSCP)受到株系專化性、寄主、環境等因素的影響[1],而在柑橘生產應用中受到限制。因此,尋找高效的CTV防治方法對于柑橘產業健康發展具有重要意義。【前人研究進展】RNA interference(RNAi)系統是植物天然的病毒防御系統。利用RNAi賦予植物對病毒抗性的原理,可人為將與病毒同源的dsRNA導入植物體內,使其引發植物體內的RNAi機制,阻止病毒的復制擴散。這種抗性途徑具有抗病性強、抗性持久、生物安全性高等特點,已成為植物抗病毒基因工程研究中的一種高效抗性手段[2]。SOLER等[3]將CTV的p23、p20和p25基因片段串聯構建發夾結構RNAi載體,獲得抗CTV的轉基因柑橘植株;CHENG等[4]通過兩個不同長度的p20基因片段構建發夾結構RNAi載體,也獲得抗CTV的轉基因柑橘植株。與SOLER等[3]構建的RNAi載體不同,CHENG等[4]選擇病原序列作為內含子。VOINNET等[5]報道來自病原的內含子序列能提高RNAi效率。【本研究切入點】已獲得的轉基因柑橘植株均未達到完全抗性,利用RNAi獲得柑橘對CTV的抗性有待挖掘更高效的RNAi載體。p23是柑橘衰退病毒的沉默抑制子之一[6-7],是重要的致病因子[8-9],目前,以p23兩個不同長度的片段構建發夾結構RNAi載體尚為空白。RNAi載體產生的抗CTV作用依賴柑橘穩定遺傳轉化方法進行鑒定,而該方法存在效率低、周期長等困難[10],使得高效率RNAi載體的篩選很難進行。【擬解決的關鍵問題】通過選擇合適的插入載體和酶切位點,構建以兩個不同長度的p23基因片段形成發夾結構的RNAi載體。對所構建的載體通過瞬時表達技術和穩定遺傳轉化技術鑒定其抗病作用,為篩選高效率RNAi載體提供參考。

1 材料與方法

試驗于2009—2014年在國家柑橘改良中心長沙分中心完成。

1.1 試驗材料

供試材料包括大紅甜橙 [Citrus sinensis (L.) Osb.]和枳橙 [C. sinensis (L.) Osb.×Poncirus trifoliate (L.)Raf] 種子,1年生酸橙(C. aurantium L.)實生苗,2年生墨西哥萊蒙[C. aurantifolia (Christm.) Swingle;CTV指示植物],CTV毒源為感病3年的冰糖橙(基因型為T36)植株。所有材料均由國家柑橘改良中心長沙分中心提供并保存于溫室。

植物表達載體pBI 121,轉化所用的農桿菌菌株EHA 105由國家柑橘改良中心長沙分中心提供,載體pGM-T購自天根生化科技(北京)有限公司,所用引物合成及測序均由上海生工生物工程有限公司完成。

1.2 試驗方法

1.2.1 柑橘衰退病p23 RNAi載體的構建 根據GenBank公布的CTV基因組的序列,設計用于p23 RNAi載體構建的長片段和短片段的上、下游引物(表1)。以感染CTV的冰糖橙葉片提取的核酸為模板,進行RT-PCR擴增。將擴增產物純化回收,連接克隆載體pGM-T,測序確認后分別命名為pGM-L和pGM-S。提取兩個載體的質粒,用內切酶Bam HI 和Xba I雙酶切pGM-L和植物表達載體pBI 121,溫度為37℃,回收后用T-4 DNA連接酶連接得到中間載體命名為pBI-L。用內切酶Bam HI和Sma I雙酶切pBI-L和pGM-S,溫度為30℃,回收后連接得到RNAi載體,長片段L和短片段S置于CaMV 35 s啟動子的下游,gus基因的上游(圖1)。長片段L為反向插入載體,短片段S為正向插入載體,在轉錄后兩者有部分序列可以發生堿基互補配對,形成發夾結構的臂,不能發生互補的長片段的部分序列片段則形成發夾結構的環,充當內含子結構。為檢測p23的長片段和短片段是否正確插入目的載體,提取質粒并純化,分別用限制性內切酶酶切鑒定,并且進行測序驗證,得到RNAi載體p23-RNAi。用熱激法將p23-RNAi導入農桿菌EHA105。

表1 用于RNAi載體構建的長片段L和短片段S引物Table1 The primers of segments L and S used for RNAi vector construction

圖1 CTV p23片段連接入p23-RNAiFig. 1 p23 fragments of CTV ligated into plasmid p23-RNAi

1.2.2 p23-RNAi的瞬時表達 以農桿菌EHA105為陰性對照,按照瞬時表達體系(暫未公布)將p23-RNAi用注射緩沖液重懸后在28℃培養基靜置培養2 h,用1 mL無菌注射器注射入墨西哥萊蒙的葉片。葉片用GUS組織化學染色法[11]染色觀察。

1.2.3 轉基因植株的獲得 p23-RNAi轉化大紅甜橙參照敖小平等[12]的方法獲得抗性芽,抗性芽嫁接至試管中25 d苗齡的枳橙實生苗。按照CTAB法提取葉片的DNA為模板,用載體上長片段L的引物進行PCR擴增,篩選的轉基因植株嫁接在酸橙實生苗。根據載體的發夾結構的環狀部分設計引物q-s23-h(F:CACACTCCTATTATTCTCG;R:ATGAATCCCTCGTTATCG),以CsEF1α(F:TTGGACAAGCTCAAGGC TGAACG;R:ATGGCCAGGAGCATCAATGACAGT)為內參基因,用q-PCR鑒定轉基因植株。

1.2.4 病毒接種 為檢測瞬時表達的p23-RNAi對病毒的抗性反應,摘取感染CTV的冰糖橙葉片用打孔器打出帶有主脈的圓片,瞬時表達p23-RNAi的墨西哥萊蒙葉片打出的圓片丟棄,帶毒圓片與墨西哥萊蒙葉片的主脈對合后在葉片兩面用膠帶粘好[13]。瞬時表達農桿菌EHA105的墨西哥萊蒙葉片為對照。

待轉基因大紅甜橙長至30 cm左右時接種CTV。取感染CTV冰糖橙的帶皮芽用腹接法接種至大紅甜橙枝條,每株接種3個芽且全部成活以保證接種成功。以非轉基因大紅甜橙同時接種為陽性對照,未接種的為陰性對照。第1次接種后,對于未檢測出病毒感染的轉基因植株,同樣的方法進行第2次接種CTV。

1.2.5 抗病性鑒定 取接種CTV后的轉基因大紅甜橙新萌發枝條上的成熟葉片,用酶聯免疫法和q-PCR兩種方法進行抗病性鑒定。酶聯免疫法按照試劑盒說明書(ACD VS216-K1)操作;提取葉片的RNA,反轉錄后的cDNA為模板,用q-PCR檢測CTV p20[14]的表達量,內參基因為nad5[15]。

2 結果

2.1 RNAi載體的獲得

按照圖1,將p23基因擴增得到的兩個片段插入植物表達載體pBI121,獲得RNAi載體(p23-RNAi)。該載體分別用3組雙酶切反應(Bam HI-Xba I、Bam HI-Sma I、Xba I-Sma I)進行分析,發現酶切片段分別為500、300和800 bp左右,與插入片段大小一致(圖2)。通過對載體插入片段進行測序(結果未顯示),進一步說明載體構建成功。

2.2 RNAi載體瞬時表達的有效性分析

利用農桿菌介導的瞬時表達技術,將p23-RNAi載體快速導入葉片。該載體的gus位于插入的發夾結構下游,共同受CaMV 35S啟動子控制。通過GUS染色,結果顯示注射p23-RNAi的葉片出現藍色斑點(圖3),說明瞬時表達技術能引起RNAi載體在墨西哥萊蒙葉片中的表達。

進一步對p23-RNAi瞬時表達所產生的抗病性進行分析,q-PCR結果顯示所有接種CTV的植株均檢測有病毒感染,并且p20的表達量隨著接種后時間的延長而增加(表2)。但是,在p23-RNAi瞬時表達的葉片中,p20基因積累水平和增加速度明顯低于對照。同時,ELISA檢測顯示,p23-RNAi瞬時表達的葉片均顯示陰性。由此說明,p23-RNAi能在柑橘中干擾CTV侵染。

圖2 Xba I、Bam HI、Sma I組合雙酶切p23-RNAiFig. 2 Double digestion of p23-RNAi with Bam HI, Xba I or Sac I

圖3 GUS染色檢測p23-RNAi載體的瞬時表達Fig. 3 Transient gus expression were observed with Mexican lime leaves by histochemical GUS staining

2.3 轉基因大紅甜橙的獲得

通過農桿菌遺傳轉化,將p23-RNAi穩定轉入大紅甜橙實生苗。將獲得轉基因植株進行PCR鑒定,結果顯示,7個轉基因植株A、B、C、E、F、G、H(D二次嫁接時未成活)均擴增得到特異條帶,大小為513 bp(圖4)。進一步用q-PCR對轉基因植株進行內含子結構表達分析,發現7個轉基因植株均產生內含子結構的表達,且各個植株之間表達量存在顯著差異。其中,轉基因植株E表達的內含子結構含量最高,其次是C、F、H、A、B和G(圖5)。

表2 p23-RNAi瞬時表達對CTV的抗性反應Table2 Resistance to CTV with p23-RNAi transient expression

圖4 轉基因大紅甜橙的PCR檢測Fig 4 PCR analysis of transgenic ‘Da Hong’ sweet orange

圖5 q-PCR檢測轉基因植株的△Ct值Fig. 5 △Ct value of transgenic plants with q-PCR

2.4 轉基因植株對柑橘衰退病的抗性分析

對轉基因大紅甜橙植株兩次接種病毒所產生的抗性進行分析,q-PCR結果顯示,除C外,所有接種CTV的植株均檢測到病毒感染,p20的表達量在不同的植株間表現出差異,植株B和E的表達量較低,但是C幾乎檢測不到基因表達(圖6)。ELISA檢測顯示,C的葉片和未接種的葉片均為陰性。由此說明,轉基因植株C對柑橘衰退病毒強毒株系具有完全抗性。

圖6 轉基因植株接種后p20相對表達量Fig. 6 p20 relative expression of transgenic plants inoculated with CTV

3 討論

病毒基因介導的抗性是將病毒的一段序列構建成RNAi載體,產生的dsRNA在植物內與病毒基因發生沉默產生抗性,在多種植物的抗病毒中已有報道[16-18]。CHENG等[4]曾經試圖用柑橘衰退病毒p23的長片段和短片段相連的方式構建RNAi載體以用于獲得具有抗性的轉基因酸橙,但是p23發夾結構存在限制性內切酶酶切位點Sac I,與植物表達量載體pCAMBIA 2301的酶切位點沖突,使得載體構建中止。本研究選用的p23保守區段,與CHENG等[4]的序列部分片段相同,所設計RNAi載體的長片段和同源的短片段與植物表達載體pBI 121沒有沖突的酶切位點,使得載體構建成功,可以用于p23-RNAi的抗病性檢測。

柑橘的遺傳轉化受到多種因素限制,如轉化效率低,成本費用高等[19-20],并且長時間的遺傳轉化后不一定能獲得具有優異性狀的轉基因植株[21]。農桿菌介導的瞬時表達具有操作簡單、省時、轉化效率高等優點,可以用于高效、快速的分析基因功能[22-25]。將載體p23-RNAi注射入墨西哥萊蒙葉片,目的基因在進入細胞核后的短時間內可以表達,并且持續一定的時間[26-27]。筆者課題組前期的研究證明,柑橘葉片在注射農桿菌后15 d仍然能夠檢測到目的基因。本研究采用先注射p23-RNAi載體然后接種CTV的方式,使得在病毒入侵前就能夠產生特異的siRNA,能夠產生對CTV的抗性[3]。在此筆者發現瞬時表達技術能夠檢測p23-RNAi對CTV的抗性,結果與轉基因植株一致,成功預測了載體的可行性,目前已有多個RNAi載體用于轉化病毒基因介導抗性,此方法更有利于篩選優質載體,避免盲目的遺傳轉化,獲得有效的RNAi載體和轉基因植株。

轉基因植株的抗病性與寄主和病毒沉默抑制子之間的相互作用程度,以及植株的遺傳背景、外界的環境和植物自身的生長狀態[28-29]相關,與目的基因的拷貝數沒有關聯[3,22]。本研究通過遺傳轉化p23-RNAi載體獲得7個大紅甜橙轉基因植株,不同轉基因植株間RNAi載體發夾結構部分的表達量存在差異,這種差異可能與外源基因在轉基因植株中的表達量不同有關。接種病毒后,轉基因植株表現出不同的抗病性,這種抗病性的趨勢與外源基因表達量的差異趨勢沒有相關性。p23表達量最高的轉基因植株E并沒有表現出最強的CTV抗性,而表達量稍低的植株C兩次接種后仍然具有完全抗性;同時,轉基因植株F的p23表達量與植株C相同,對病毒的抗性結果卻有較大的差異。這些研究結果進一步表明,轉基因抗性與外源基因的拷貝數沒有關聯,與前人研究結果相符。

4 結論

成功構建了柑橘衰退病的RNAi載體,瞬時表達技術檢測載體p23-RNAi對柑橘衰退病毒(CTV)具有抗病性。遺傳轉化大紅甜橙獲得的7株轉基因植株中,植株C對CTV具有完全抗性,為柑橘衰退病的防治提供了資源。

[1] 周彥, 周常勇, 李中安, 王雪峰, 劉科宏. 利用弱毒株交叉保護技術防治甜橙莖陷點型衰退病. 中國農業科學, 2008, 41(12): 4085-4091.

ZHOU Y, ZHOU C Y, LI Z A, WANG X F, LIU K H. Mild strains cross protection against stem-pitting tristeza of sweet orange. Scientia Agricultura Sinica, 2008, 41(12): 4085-4091. (in Chinese)

[2] KREUZE J F, KLEIN I S, LáZARO M U, CHUQUIYURI W C,MORGAN G L, MEJíA P G C, GHISLAIN M, VALKONEN J P. RNA silencing-mediated resistance to a crinivirus (Closteroviridae) in cultivated sweetpotato (Ipomoea batatas L.) and development of sweet potato virus disease following co-infection with a potyvirus. Molecular Plant Pathology, 2008, 9(5): 589-598.

[3] SOLER N, PLOMER M, FAGOAGA C, MORENO P, NAVARRO L,FLORES R, PE?A L. Transformation of Mexican lime with an intron-hairpin construct expressing untranslatable versions of the genes coding for the three silencing suppressors of Citrus tristeza virus confers complete resistance to the virus. Plant Biotechnology Journal, 2012, 10: 597-608.

[4] CHENG C Z, YANG J W, YAN H B, BEI X J, ZHANG Y Y, LU Z M,ZHONG G Y. Expressing p20 hairpin RNA of Citrus tristeza virus confers Citrus aurantium with tolerance/resistance against stem pitting and seedling yellow CTV strains. Journal of Integrative Agriculture, 2015, 14(9): 1767-1777.

[5] VOINNET O, LEDERER C, BAULCOMBE D C. A viral movement protein prevents spread of the gene silencing signal in Nicotiana benthamiana. Cell, 2000, 103: 157-167.

[6] LU R, FOLIMONOV A, SHINTAKU M, LI W X, FALK B W,DAWSON W O, DING S W. Three distinct suppressors of RNA silencing encoded by a 20-kb viral RNA genome. Proceedings of the National Academy of Sciences of the United States of America, 2004,101(44): 15742-15747.

[7] COSTA ?, MARQUES N, NOLASCO G. Citrus tristeza virus p23 may suppress systemic silencing but is not related to the kind of viral syndrome. Physiological & Molecular Plant Pathology, 2014, 87: 69-75.

[8] GHORBEL R, LóPEZ C, FAGOAGA C, MORENO P, NAVARRO L,FLORES R, PE?A L. Transgenic citrus plants expressing the Citrus tristeza virus p23 protein exhibit viral like symptoms. Molecular Plant Pathology, 2001, 2(1): 27-36.

[9] FAGOAGA C, LóPEZ C, MORENO P, NAVARRO L, FLORES R,PE?A L. Viral-like symptoms induced by the ectopic expression of the p23 gene of Citrus tristeza virus are citrus-specific and do not correlate with the pathogenicity of the virus strain. Molecular Plant-Microbe Interactions, 2005, 18(5): 435-445.

[10] JONES H D, DOHERTY A, SPARKS C A. Transient transformation of plants. Methods in Molecular Biology, Plant Genomics, 2009, 513: 131-152.

[11] 王關林, 方宏筠. 植物基因工程. 2版. 北京: 科學出版社, 2002: 831-834. WANG G L, FANG H Y. Plant Genetic Engineering. 2nd ed. Beijing: Science Press, 2002: 831-834. (in Chinese)

[12] 敖小平, 胡新喜, 郭琛, 焦徠, 鄧子牛, 熊興耀. 用rol B基因轉化大紅甜橙的初步研究. 湖南農業大學學報 (自然科學版), 2005,31(6): 623-626.

AO X P, HU X X, GUO C, JIAO L, DENG Z N, XIONG X Y. Genetic transformation of ‘Dahong’ sweet orange with rol B gene. Journal of Hunan Agricultural University (Natural Sciences), 2005,31(6): 623-626. (in Chinese)

[13] BLUE R L, ROISTACHER C N, CARTIA G, CALAVAN E C. Leaf-disc grafting-a rapid indexing method for detection of some citrus viruses//Proceedings of the Seventh IOCV Conference. University of California, Riverside, 1976: 207-212.

[14] 劉紅光, 王中康, 曹月青, 夏玉先, 殷幼平. 應用常規RT-PCR和熒光定量RT-PCR 檢測柑桔衰退病毒. 植物病理學報, 2008, 38(1): 24-30.

LIU H G, WANG Z K, CAO Y E, XIA Y X, YIN Y P. Detection of Citrus tristeza virus using conventional and fluorescence quantitative RT-PCR assays. Acta Phytopathologica Sinica, 2008, 38(1): 24-30. (in Chinese)

[15] MENZEL W, JELKMANN W, MAISS E. Detection of four apple viruses by multiplex RT-PCR analysis assays with coamplification of plant mRNA as internal control. Journal of Virological Methods, 2002,99: 81-92.

[16] YADAV J S, OGWOK E, WAGABA H, L. PATIL B, BAGEWADI B,ALICAI T, GAITAN-SOLIS E, TAYLOR N J, FAUQUET C M. RNAi-mediated resistance to Cassava brown streak Uganda virus in transgenic cassava. Molecular Plant Pathology, 2011, 12(7): 677-687.

[17] PATIL B L, OGWOL E, WAGABA H, MOHAMMED I U, YADAV, J S, BAGEWADI B, TAYLOR N J, KREUZE J F, MARUTHI M N,ALICAI T, FAUQUET C M. RNAi-mediated resistance to diverse isolates belonging to two virus species involved in cassava brown streak disease. Molecular Plant Pathology, 2011, 12(1): 31-41.

[18] FAGOAGA C, LóPEZ C, MENDOZA A H D, MORENO P,NAVARRO L, FLORES R, PE?A L. Post-transcriptional gene silencing of the p23 silencing suppressor of Citrus tristeza virus confers resistance to the virus in transgenic Mexican lime. Plant Molecular Biology, 2006, 60: 153-165.

[19] KAPILA J, RYCKE R D, MONTAGU M V, ANGENON G. An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Science, 1997, 122(1): 101-108.

[20] ALMEIDA W A B, MOUR?O FILHO F A A, PINO L E,BOSCARIOL R L, RODRIGUEZ A P M, MENDES B M J. Genetic transformation and plant recovery from mature tissues of Citrus sinensis L. Osbeck. Plant Science, 2003, 164: 203-211.

[21] LóPEZ C, CERVERA M, FAGOAGA C, MORENO P, NAVARRO L,FLORES R, PE?A L. Accumulation of transgene-derived siRNAs is not sufficient for RNAi-mediated protection against Citrus tristeza virus in transgenic Mexican lime. Molecular Plant Pathology, 2010,11(1): 33-41.

[22] BHASKAR P B, VENKATESHWARAN M, WU L, ANé J M,JIANG J M. Agrobacterium-mediated transient gene expression and silencing: a rapid tool for functional gene assay in potato. PLoS ONE,2009, 4(6): e5812.

[23] LLAVE C, KASSCHAU K D, CARRINGTON J C. Virus-encoded suppressor of posttranscriptional gene silencing targets a maintenance step in the silencing pathway. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(24): 13401-13406.[24] XU K D, HUANG X H, WU M M, WANG Y, CHANG Y X, LIU K,ZHANG JU, ZHANG Y, ZHANG F L, YI L M, LI T T, WANG R Y,TAN G X, LI C W. A rapid, highly efficient and economical method of Agrobacterium-mediated in planta transient transformation in living onion epidermis. PLoS ONE, 2014, 9(1): e83556.

[25] SENDIN L N, FILIPPONE M P, ORCE I G, RIGANO L, ENRIQUE R, PE?A L, VOJNOV A A, MARANO M R, CASTAGNARO A P. Transient expression of pepper Bs2 gene in Citrus limon as an approach to evaluate its utility for management of citrus canker disease. Plant Pathology, 2012, 61: 648-657.

[26] WYDRO M, KOZUBEK E, LEHMANN P. Optimization of transient Agrobacterium-mediated gene expression system in leaves of Nicotiana benthamiana. Acta Biochimica Polonica, 2006, 53(2): 289-298.

[27] KIM M J, BAEK K, PARK C M. Optimization of conditions for transient Agrobacterium-mediated gene expression assays in Arabidopsis. Plant Cell Reports, 2009, 28: 1159-1167.

[28] PANG S Z, JAN F J, CARNEY K, STOUT J, TRICOLI D M,QUEMADA H D, GONSALVES D. Post-transcriptional transgene silencing and consequent tospovirus resistance in transgenic lettuce are affected by transgene dosage and plant development. The Plant Journal, 1996, 9(6): 899-909.

[29] KALANTIDIS K, PSARADAKIS S, TABLER M, TSAGRIS M. The occurrence of CMV-specific short RNAs in transgenic tobacco expressing virus-derived double-stranded RNA is indicative of resistance to the virus. Molecular Plant-Microbe Interactions, 2002,15(8): 826-833.

(責任編輯 岳梅)

Construction and Transformation of RNAi Vector for Citrus tristeza virus Gene p23

LI Fang, DENG Zi-niu, ZHAO Ya, LI Da-zhi, DAI Su-ming
(Horticulture and Landscape College, Hunan Agricultural University/National Center for Citrus Improvement (Changsha),Changsha 410128)

【Objective】 The objective of this study is to construct RNAi vector containing p23 gene of Citrus tristeza virus(CTV), and obtain transgenic orange plants with virus resistance. 【Method】 Based on the pathogen-derived resistance and the CTV genome sequences published by NCBI, two specific conserved fragments of p23 with different lengths were cloned. Two segments and vector pBI 121 were double-digested and connected for RNAi construction. Subsequently, to initially estimate the antiviral feasibility, the Mexican lime (CTV indicator plant) leaves were injected with Agrobacterium contained the RNAi vector for transient expression, and observed using GUS histochemical staining method. The leaves were inoculated with CTV T36 isolate, and detected by enzyme-linked immunosorbent assay (ELISA). The RNA of leaves was also extracted and reverse transcript to cDNA. Quantitative real-time PCR (q-PCR) was performed to observe the CTV p20 gene expression which could reflect the virus in hosts. The RNAi vector was also transferred into the epicotyl stem of ‘DA HONG’ sweet orange seedlings via Agrobacterium-mediated transformation. Resistant buds were engrafted onto Carrizo Citrange in vitro seedlings. DNA extracted from the ‘DA HONG’ sweet orange leaves was used as the PCR template to identify the transgenic plants. Plants containing the target gene were re-engrafted onto sour orange seedlings and stored in the greenhouse. The expression of the p23 within the transgenic plants was evaluated by q-PCR. The skin buds of CTV T36 isolate hosts were collected and inoculated onto the transgenic sweet orange. The leaves from the sprouted branch tips were collected and analyzed the pathogen resistance capability with the same method that the transient expression leaves detected. Plants without detectable virus infection after the first inoculation were also inspected and analyzed by the same manner in the second round. 【Result】 Long (513 bp) and short (291 bp) fragments of the p23 were cloned. These p23 fragments are then cloned into the pBI121 vector, named p23-RNAi. This p23-RNAi vector was then delivered in the Mexican lime leaves using the Agrobacterium-mediated transient expression assay. The leaves were identified based on the presence of blue stains after GUS staining, indicating that the Agrobacterium contained vector p23-RNAi may induce transient expression in Mexican lime leaves. On the 15th and 30th day after the CTV inoculation, the ELISA detection results for the transgenic Mexican lime leaves in p23-RNAi plants were all negative, whereas the q-PCR detection results showed that the accumulation level of p20 expression was significantly lower than that of the control plants. It indicated that the transient expression of p23-RNAi may, in a defined period,inhibit the CTV infection. Introduction of p23-RNAi via Agrobacterium-mediated genetic transformation led to the production of resistant buds for the ‘DA HONG’ sweet orange, and PCR amplification confirmed a total of seven transgenic plants. The expression of the p23 in all seven transgenic plants was further confirmed by q-PCR amplification, and the gene expression level exhibited a certain degree of difference, with expression level in plant E being the highest, followed by C, F, H, A, B, and G. After inoculation with CTV, the level of expression of p20 varied among these seven transgenic plants, with plant A having the highest level of p20 expression, followed by G, F, E, B, H and C. The transgenic plants showed higher pathogen resistance, albeit to different degrees,when compared to the control plants. However, the virus resistance degrees in the transgenic plants were not closely related to the expression levels of the exogenous gene. For example, plant E, which had the highest expression level of the exogenous gene, did not exhibit powerful CTV resistance. By contrast, the transgenic plant C displayed complete resistance after the two rounds of virus inoculation. 【Conclusion】The p23-RNAi construct that generated confers plant disease resistance to CTV. Transient expression assay can be applied for the high efficiency identification of resistance and screening for high efficiency RNAi vectors.

Citrus tristeza virus (CTV); p23; RNAi; ‘DA HONG’ sweet orange; transient expression; genetic transformation

2016-04-15;接受日期:2016-08-19

國家自然科學基金(30900972,3157211)、國家公益性行業(農業)科研專項(201203076-06)、湖南省研究生科研創新項目(CX2013B290)

聯系方式:李芳,E-mail:lifang200709@126.com。通信作者戴素明,Tel:0713-84635302;E-mail:dsm531@126.com

猜你喜歡
檢測
QC 檢測
“不等式”檢測題
“一元一次不等式”檢測題
“一元一次不等式組”檢測題
“幾何圖形”檢測題
“角”檢測題
“有理數的乘除法”檢測題
“有理數”檢測題
“角”檢測題
“幾何圖形”檢測題
主站蜘蛛池模板: 色悠久久久| 婷婷开心中文字幕| 亚洲精品第五页| 五月天久久婷婷| 中文无码伦av中文字幕| 亚洲天堂2014| 亚洲第一极品精品无码| 国产91丝袜在线播放动漫 | 亚洲一区精品视频在线| 亚洲AV无码乱码在线观看裸奔 | 色综合网址| 久久精品国产免费观看频道| 丁香六月综合网| 成年片色大黄全免费网站久久| 精品99在线观看| 无码网站免费观看| 久久五月视频| 亚洲一区二区日韩欧美gif| 午夜欧美理论2019理论| 无码免费视频| 老司机精品久久| 欧美福利在线| 免费观看无遮挡www的小视频| 国产精品永久久久久| 欧美另类图片视频无弹跳第一页| 成年人国产视频| 一级毛片免费高清视频| 婷婷午夜天| 最近最新中文字幕在线第一页| 91青青草视频在线观看的| 中文国产成人精品久久| 国产精品私拍在线爆乳| 午夜三级在线| 97超级碰碰碰碰精品| 亚洲AV无码一区二区三区牲色| 欧美第一页在线| 91久久天天躁狠狠躁夜夜| 福利一区三区| 黄色a一级视频| 久久窝窝国产精品午夜看片| 亚洲欧洲自拍拍偷午夜色无码| 波多野结衣一二三| 国产乱人视频免费观看| 亚洲一区色| 亚洲欧洲日韩综合色天使| 无码乱人伦一区二区亚洲一| 亚洲综合中文字幕国产精品欧美 | 国产免费a级片| a级高清毛片| 亚洲中文无码av永久伊人| 免费女人18毛片a级毛片视频| 91国内外精品自在线播放| h视频在线播放| 免费高清自慰一区二区三区| 国产欧美性爱网| 国产精品三级av及在线观看| 91香蕉视频下载网站| 精品小视频在线观看| 国产69囗曝护士吞精在线视频 | 日本不卡在线视频| 日韩精品一区二区三区免费在线观看| 男女男精品视频| 亚洲精品无码日韩国产不卡| 国产视频入口| 欧美日韩国产综合视频在线观看| 黄片一区二区三区| 免费国产高清视频| 日本不卡在线播放| 欧美一区二区三区不卡免费| 婷婷六月综合| 亚洲精品你懂的| 亚洲成年人网| 亚洲国产在一区二区三区| 久久综合色88| 国产在线精品香蕉麻豆| 91精品国产自产91精品资源| 伊人色在线视频| 亚洲国产精品日韩专区AV| 亚洲国产精品国自产拍A| 日韩免费中文字幕| 国产粉嫩粉嫩的18在线播放91| 伊人久久大香线蕉影院|