焦曉寧,周錦濤,陳洪立
(1.天津工業大學紡織學院,天津 300387;2.天津工業大學 先進紡織復合材料教育部重點實驗室,天津300387)
PMMA系聚合物在鋰離子電池凝膠電解質領域中的研究進展
焦曉寧1,2,周錦濤1,陳洪立1
(1.天津工業大學紡織學院,天津 300387;2.天津工業大學 先進紡織復合材料教育部重點實驗室,天津300387)
綜述了聚甲基丙烯酸甲酯(PMMA)作為鋰離子電池凝膠電解質的特性及應用情況.PMMA基凝膠電解質與鋰金屬電極的界面穩定性好,室溫離子電導率高達10-3S/cm數量級,循環充放電性能好;但較差的機械強度限制了其應用,因此常采取共混、涂覆以及共聚等不同方式與其他高聚物、無機納米粒子、聚烯烴膜乃至非織造膜等結合,制備出復合凝膠電解質使用.指出未來研究趨勢是采用靜電紡絲技術制備出分層復合聚合物電解質.
PMMA;鋰離子電池;凝膠電解質;分層復合
鋰離子電池擁有能量大、無記憶效應等優點,在便攜式電子產品、電動汽車以及儲能系統等領域中應用廣泛[1].正負極材料、電解液和多孔隔膜組成了鋰離子電池的工作系統,其中隔膜既要保證Li+正常通過,又要確保正負極不直接接觸,起至關重要的作用[2].鋰離子電池最初采用液體電解質,因暴露出易生長枝晶、漏液等問題,逐漸被聚合物鋰離子電池代替,后者使用凝膠聚合物電解質(GPE)來代替電解液[3].GPE由高聚物、鋰鹽和增塑劑形成,同時擁有固體粘聚性和液體分散傳導性,Li+可借助微孔中的液態電解質分子在兩極間實現自由往返,電池安全性大為提高[4].GPE受熱穩定性好,且擁有不錯的離子電導率(>10-3S/ cm)和電化學穩定窗口(>4.5 V),其制備方法主要有溶液澆筑法[5]、相分離法[6-7]以及靜電紡絲法[8-10].相對于傳統方法,靜電紡絲法是最簡單、最有應用前景的方法,可用于制備厚度均勻、成分均一的纖維膜,且具有無數貫通的微孔[11],方便Li+傳輸,電化學性能因此有很大提高[12].
1973年,Fenton等最先開始研究 GPE,隨后Wright等發現聚環氧乙烯(PEO)與堿金屬鹽形成的絡合物(PEO-MX)具有電導性,但其離子電導率達不到應用水平[13].1975年Feullade和Perche發現PVDF-MX等亦具備離子電導性,1979年Armand等使用其制造電池.1985年,Iijima等[14]首次將聚甲基丙烯酸甲酯(PMMA)用于GPE,當PMMA質量分數為15%時,室溫離子電導率可達10-3S/cm數量級[15].
PMMA基GPE最大特點是與金屬鋰電極的電化學穩定性好、界面阻抗較低,而且甲基丙烯酸甲酯(MMA)單元中的羰基(-CO-)側基與碳酸酯類增塑劑中氧原子的相互作用較強,因此能包含大量液體電解質,是已知親電解液能力最高的聚合物[4,7],Li+遷移數也要優于PEO、PVDF基凝膠電解質.優異的電化學性能和成本優勢,使PMMA獲得研究者的青睞[15],然而由于機械強力不足、吸液后表面易受破壞[4],限制了其在GPE中單獨使用,而多與其他成分組合使用.
本文以PMMA系聚合物在鋰離子電池凝膠電解質中的應用為背景,介紹PMMA與其他組分不同結合方式的研究進展.
1.1 物理共混
不同聚合物組分共混可以減少結晶、促進鏈段運動,因此能提高電導率和機械性能.PMMA機械強度較弱,研究者常使用PVDF、P(VDF-HFP)、PAN等斷裂強度高的聚合物與其混合制備多孔膜,然后浸入電解液中得到GPE.
Liang等[16]將不同質量比的PVDF/PMMA混合,采用靜電紡絲制備出多孔纖維膜,結果表明當質量比為90∶10時所得GPE室溫離子電導率最高(2.54×10-3S/cm).Ding等[17]采用靜電紡絲方法制備P(VDF-HFP)/ PMMA(2∶1,w/w)GPE用于鋰離子電池,測試表明P(VDF-HFP)結晶性受到削弱,復合膜吸液率高達377%,電池漏液情況得到改善;離子電導率2.0×10-3S/cm,首次放電比容量接近145 mAh/g,150次充放電循環以后放比容量仍然達到133.5 mAh/g.Mahant等[8]將PVDF與PMMA(8∶2,w/w)進行共混然后靜電紡絲制得多孔膜,具有85%的孔隙率和285%的吸液率,電化學穩定窗口和室溫離子電導率分別達到5.0 V和2.95× 10-3S/cm.高虹等[18]在PVDF/PMMA(7∶3,w/w)共混體系中添加了聚乙二醇PEG作增塑劑,采用相轉化法制備出PVDF/PMMA/PEG聚合物隔膜,測得最佳工藝條件下制備的GPE離子電導率為2.848×10-3S/cm.趙劍蒙[19]利用同軸靜電紡絲制備出PVDF/PMMA(芯層/皮層)復合隔膜,特殊的纖維結構使得該復合膜具有不錯的機械性能和電化學性能,室溫下的離子電導率和首次放電比容量分別達到3.07×10-3S/cm和157.1 mAh/g.
Florat等[20]制備出PAN/PMMA混合靜電紡絲鋰離子電池隔膜,研究發現PAN/PMMA質量比為75∶25時所得GPE性能最好.Rao等[10]研究了靜電紡絲制備聚合物多孔膜的可行性,配制了10%的PAN/PMMA(摩爾比4∶1)混合紡絲液,所得纖維的直徑為450 nm,室溫離子電導率高達3.6×10-3S/cm,這與隔膜高孔隙率(86%)密不可分,電化學穩定窗口在5 V以上,0.1 C下首次放電容量為139 mAh/g,達到了正極材料(LiFePO4)理論容量的82.4%.Prasanth等[21]制備了PAN/PMMA/PS三組分混合靜電紡絲多孔膜,發現質量比為80∶10∶10的混合膜制成GPE的界面穩定性最好,室溫離子電導率為3.9×10-3S/cm,在Li/LiMn2O4電池充放電循環測試中,0.1 C下首次放電比容量約為120 mAh/g.
Zhong等[22]制備出PVC/PMMA靜電紡絲復合纖維膜,實驗表明PMMA的加入促進了PVC基體對電解液的吸收和保持,Li+運動效率得以提升,離子電導率高達3.36×10-3S/cm,電化學穩定窗口達5.0 V.Jung等[23]配制PMMA/PVC(不同質量比)溶液,制備出靜電紡多孔膜,并進行DSC、XRD、SEM及電化學測試分析.結果顯示PMMA質量分數為10%的GPE性能表現最優異,所組裝電池在0.5 C倍率下充放電循環100次后放電比容量僅僅縮減了2 mAh/g(從142 mAh/g降至140 mAh/g).
1.2 化學反應
除了簡單共混的方式,研究者亦通過共聚、交聯、接枝等化學改性方法引入PMMA,以增加聚合物體系的無定型相.共聚是將不同種類單體通過氧化還原反應聚合在一起,以其中一種強力高的聚合物做基體,多種物質優勢互補故整體性能更優秀.Ryoo等[5]在N2氛圍下,通過引發劑作用將2種單體(丙烯腈和甲基丙烯酸甲酯)共聚合成P(AN-MMA),并采用溶液澆筑法制備出GPE,實驗表明該電解質與金屬鋰片界面間的穩定性良好,不同溫度下的離子電導率在0.86~1.6×10-3S/cm范圍內.Lee等[24]在此基礎上研究了SiO2納米粒子對GPE電化學性能的影響,結果表明,加入SiO2后離子電導率大大增加,-15℃下為0.17×10-3S/ cm,而25℃下達1.3×10-3S/cm.
交聯主要是將共混物或共聚單體進行網絡化,以增強其力學性能.Xu等[25]通過交聯將聚乙烯基乙二醇二甲基醚(PEGDME)與PMMA制成了高機械強度和空間穩定性的均相凝膠電解質膜,實驗數據表明該膜在-50~200℃范圍內未發生相遷移,熱穩定性良好.此外,接枝在提供穩定化學鍵的同時也改善了不同聚合物間的相容性,使電解質膜性能更好并且更加穩定.例如,將PMMA接枝到P(VDF-HFP)上可以得到P(VDF-HFP)-g-PMMA梳狀共聚物,利用其制備的GPE具有較高的保液能力和不錯的電化學性能[26].
劉建生[27]使用乙酸乙烯酯(VAc)與丙烯腈(AN)單體進行乳液聚合得到交聯共聚物P(AN-co-VAc),并采用相轉化法制備P(AN-VAc)自支撐膜,最后用PMMA對其進行表面復合改性,得到P(AN-co-VAc)/ PMMA復合膜.結果顯示復合PMMA后的GPE電導率由1.4×10-3S/cm提到1.88×10-3S/cm,電化學穩定窗口則由4.8 V提升至5.2 V.
2.1 直接添加
無機納米填料具有強力高、耐高溫、絕緣和化學穩定性好等優點,利用共混、溶膠凝膠和原位聚合的方法將其添加到聚合物中,能夠改善聚合物的成膜性能,起到增強增韌的作用.而且納米顆粒比表面積大,便于Li+嵌入和脫出,既保證了較小的充放電極化程度,又兼具較高的可逆容量,因此在改善GPE熱穩定性和電化學性能方面表現出重大作用.
Zhou等[28]采用原位聚合法在PVDF/PMMA(8∶2,w/w)紡絲液中添加3%(相對于聚合物)的TiO2納米顆粒,制備出靜電紡絲纖維膜.結果表明:添加納米顆粒后,混紡膜纖維直徑由850 nm降至570 nm,吸液率、孔隙率及電化學性能(離子電導率:3.9×10-3S/cm,電化學穩定窗口∶5.1 V)均獲得提升.
Song等[29]將不同含量TiO2納米顆粒直接加入PVDF-HFP/PMMA混合液中,采用溶液澆筑法制備出GPE.結果發現加入5%TiO2后的GPE各方面性能最好,其130℃的熱收縮率由23.4%(不添加TiO2)降至14.4%,室溫下測試的離子電導率和電化學穩定窗口分別達到2.49×10-3S/cm和5.0 V,0.2 C倍率下經過50次循環后放電比容量仍能達到首次放電比容量(188.1 mAh/g)的92.1%.
2.2 核-殼結構
考慮到無機納米粒子在有機溶劑中較弱的分散能力(例如SiO2粒子表面呈親水疏油性,不利于在有機溶劑中潤濕、分散),以及與聚合物存在的性質差異,上述直接添加的方式容易出現團聚現象.而表面化學改性的方法可以利用改變化學鍵的方式來減少活性基團(-OH)數目,從而改善無機顆粒的分散性.一種典型的方法是通過制備核-殼結構使無機粒子具有聚合物的性質[30-32].
Cui等[33]采用原子轉移自由基聚合法(ATRP)得到PMMA-g-TiO2,然后將6%(相對于PVDF)的PMMA-g-TiO2溶于PVDF溶液中,利用靜電紡絲制備出復合多孔膜.測試結果表明:加入PMMA-g-TiO2后的復合膜相對于純PVDF膜性能獲得提升,浸入電解液5 h后吸液率從310%增至360%,20℃離子電導率由2.51×10-3S/cm提升至2.95×10-3S/cm,電化學穩定窗口由5.1 V提升至5.3 V.
Yang等[31]首先采用改進的St?ber法[34]在實驗室制備出SiO2納米顆粒,然后利用無皂乳液聚合得到具有核-殼結構的SiO2-PMMA亞微球,如圖1所示.再將其涂覆在PE隔膜一側,制備出功能陶瓷涂層膜(FCC).其中SiO2耐熱性能好,能夠提高FCC耐熱收縮性能,進而提升電池安全性;而PMMA形成凝膠電解質后,持液能力增強,電池性能得到提升.測試結果表明:FCC膜的熱收率由純PE膜的31.4%提高到12.9%,吸液率由57.7%提升到89.5%,離子電導率由7.80×10-4S/cm提高到1.08×10-3S/cm.

圖1 具有核-殼結構的SiO2-PMMA亞微球合成示意圖Fig.1 Synthetic scheme of core-shell structured SiO2-PMMA sub-microspheres
尚昕[3]將改性后的SiO2分散在MMA和St(苯乙烯)單體中,采用自由基聚合反應制備出SiO2/P(MMA-S)交聯型納米復合物,隨后利用相轉化法制得多孔膜.該膜吸液率為310%,拉伸斷裂強度高達40 MPa,以LiClO4-DMC/EC/EMC電解液組裝的電池在0.1 C倍率下具有高達156.8 mAh/g的首次放電比容量.
鑒于PMMA強力不足限制了實際應用,研究者采用溶液澆筑、涂覆、浸漬、化學接枝改性、靜電紡絲[9,35-37]等方法將其與PVDF、PVDF-HFP等聚合物,無機顆粒,聚烯烴隔膜乃至非織造膜分層結合的方式,以利于PMMA凝膠電解質發揮出自身優勢.
3.1 與非織造膜復合
Wu等[37]以PP非織造膜為基材制備了2種含PMMA的分層復合隔膜,分別為:①將PP非織造膜浸入溶有不同質量PMMA納米顆粒的PVDF-HFP溶液中,烘干得到復合膜(CSs);②先將PP非織造膜浸入PVDF-HFP溶液中2 min后烘干,再將含固量10%的PMMA納米顆粒水溶液涂覆在表面,烘干制得納米涂層復合隔膜(nano-CS).其中,CS(0.2)和nano-CS 2種隔膜的吸液率分別為212%和202%,孔隙率分別為77.9%和75.3%,室溫離子電導率分別為1.575×10-3S/cm和1.846×10-3S/cm,0.2 C倍率下充放電50次后的放電比容量分別為138 mAh/g和152 mAh/g,分別占首次放電比容量的97%和99%.
3.2 與聚烯烴膜復合
市售聚烯烴隔膜強力高但其材質屬于疏水性高聚物,難以完全潤濕且表面能較低,缺乏穩定的吸液能力,存在漏液風險影響使用安全[38-39].涂層、接枝共聚是此類隔膜常用的改性方法,其中引入MMA等極性基團接枝改性后的隔膜被稱為活性膜[40],具有更好的吸液能力和界面穩定性.
Kim等[41]將PMMA、TiO2納米顆粒與聚乙烯乙二醇二丙烯酸酯(PEGDA)以6∶1∶4的質量比混合,溶于1 mol/L LiPF6(EC∶EMC∶DMC質量比為1∶1∶1)電解液中并添加引發劑和催化劑,然后涂覆在PP隔膜上并采用紫外光照射3 h,最終制備出復合GPE.結果表明,加入TiO2納米顆粒后的GPE界面阻抗下降,電化學性能顯著增強,0.5 C下測試具有高達320 mAh/g的首次放電比容量.此外,盧雷[42]采用乳液聚合法將MMA單體與粘合性能優異的醋酸乙烯醋 (PVac)單體合成出聚甲基丙烯酸甲酯-醋酸乙烯酯(PMMAVac),然后通過浸泡將其附著在PE隔膜上,烘干后浸入電解液中得到GPE.
使用涂層法制備的隔膜體系機械性能好、吸液率高,但也存在操作條件控制不易、涂層厚度不均、容易掉落等缺陷,光引發接枝聚合法可以避免這些問題[43]. Swon等[44]利用光引發接枝聚合法在商業PE隔膜表面接枝PMMA,制備出不同接枝度的PE-g-PMMA膜.結果表明:隨著接枝度的增加,隔膜耐熱收縮性能穩步提升,這是因為PMMA逐漸覆蓋了PE膜的孔隙,阻止其受熱收縮;測得活性膜的電化學穩定窗口均超過5.0 V,其中接枝度為127%的隔膜在0.5 C倍率下第300次放電比容量是首次放電比容量的85%.
由于光引發接枝法需要使用高能射線,容易降解PMMA并對聚烯烴隔膜強力造成損傷,研究人員嘗試其他方法改進.Shi等[45]利用聚多巴胺作為ATFR反應的引發劑,在相對溫和條件下將MMA接枝在PE隔膜表面,成功制備出了PE-g-PMMA活性膜,其中PE作為骨架起到強力支撐作用,凝膠電解質用來增強潤濕能力和保液能力.實驗表明:接枝后隔膜孔徑、孔隙率及拉伸斷裂強度下降,最佳接枝度是22%,此時活性膜的熱穩定性和吸液能力獲得提升,室溫下測試離子電導率和首次放電比容量分別達到1.19×10-3S/cm、163.1 mAh/g,電化學性能優于純PE膜.
3.3 與聚合物分層復合
Xiao等[9]采用靜電紡絲的方法制備了PVDF/PM MA/PVDF三明治結構的自粘合復合多孔膜,如圖2所示.

圖2 PVDF/PMMA/PVDF三層復合凝膠電解質示意圖Fig.2 SEM micrographs of cross-section of PVDF/PMMA/ PVDF trilayer membrane
結果表明:三層復合膜的拉伸斷裂強度由PMMA單層膜的2.15 MPa提高到7.11 MPa,室溫離子電導率高于單層復合膜(達到了1.93×10-3S/cm),電化學穩定窗口達4.5 V.趙劍蒙[19]制備出靜電紡絲PVDF/PMMA/PVDF三層復合膜,測得層合后的隔膜平均孔徑(3.683 μm)偏小但孔隙率較高(80.14%),且拉伸斷裂強度由PMMA/PVDF直接混紡膜的11.21 MPa提升至13.7 MPa.程司辰[46]制備出靜電紡絲PMMA/PVDF/ PMMA復合膜,該復合膜吸液率高達497%,室溫下的離子電導率為3.63×10-3S/cm,界面阻抗僅為45 Ω,所組電池在0.2 C倍率下首次放電比容量則達到了147.7 mAh/g.
3.4 其他方式分層復合
Kim等[35]首先采用溶液澆筑法得到一層PMMA薄膜,然后將其浸入納米Al2O3/PVDF-HFP(質量比90∶10,聚合物PVDF-HFP起粘結作用)混合液中保持1 h,得到具有無機涂層的Al2O3/PMMA/Al2O3三層復合隔膜,并得到相應GPE,如圖3所示.測試結果表明:該隔膜的拉伸斷裂強度為9.8 MPa,而吸液率接近500%,室溫下的離子電導率為0.535×10-3S/cm.

圖3 Al2O3/PMMA/Al2O3三層復合凝膠電解質示意圖Fig.3 Schematic diagram of Al2O3/PMMA/Al2O3sandwiched GPE
Zhang等[36]在玻璃板表面依次涂上PVDF和PMMA溶液,聚合物質量比控制在0.5∶1∶0.5,制備出PVDF/PMMA/PVDF三層復合鋰電隔膜,如圖4所示.與Celgard 2 400隔膜相比,該隔膜組裝電池的充放電循環表現優勢顯著.

圖4 PVDF/PMMA/PVDF三層復合隔膜示意圖Fig.4 SEM micrograph of cross-section of sandwiched membrane of PVDF/PMMA/PVDF
PMMA系凝膠電解質親電解液能力強、界面阻抗低,表現出良好的電化學穩定性,在鋰電池應用領域中具有很好的前景.由于PMMA是非結晶聚合物,機械強力偏弱,需要與其他高強力聚合物材料結合才能穩定發揮作用.通過分層結合,以PVDF、PAN等機械強力好的物質為基,有利于不同組份發揮出各自的性能優勢.雖然PMMA在復合凝膠電解質體系中非支配地位(質量占比低于50%),但其對電解液親和力高,對電化學性能的提升做出了巨大貢獻.有鑒于此,筆者預測未來在PMMA基復合凝膠電解質的研究中將會有以下趨勢:
(1)靜電紡絲技術是目前制備多孔膜的理想方式,PMMA系GPE的制備將更多采用此法;
(2)PMMA有賴于結晶型聚合物提供強力支撐;
(3)分層復合的凝膠電解質因不同組分能夠形成優勢互補,是一個重要的研究趨勢;
(4)無機納米顆粒的添加有益于聚合物膜增強增韌、提高熱穩定性等,將會廣泛的使用.
[1] FERGUS Jeffrey W.Ceramic and polymeric solid electrolytes for lithium-ion batteries[J].Journal of Power Sources,2010,195(15):4554-4569.
[2] NUNES-PEREIRA J,LOPES A C,COSTA C M,et al.Microporous membranes of NaY zeolite/poly(vinylidene fluoridetrifluoroethylene)for Li-ion battery separators[J].Journal of Electroanalytical Chemistry,2013,689(2):223-232.
[3]尚昕.多相結構納米SiO2類復合電解質的制備與應用[D].南昌:南昌大學,2015. SHANG X.Preparation and application of multiphase structure of nano-SiO2composite electrolyte system[D].Nanchang:Nanchang University,2015(in Chinese).
[4]ZHANG Jinqiang,CHEN Shuangqiang,XIE Xiuqiang,et al. Porous poly(vinylidene fluoride-co-hexafluoropropylene)polymer membrane with sandwich-like architecture for highly safe lithium ion batteries[J].Journal of Membrane Science,2014,472:133-140.
[5]RYOO Hee-Jin,KIM Hee-Tak,LEE Young-Gi,et al.Thermal and electrochemical characteristics of plasticized polymer electrolytes based on poly(acrylonitrile-co-methyl methacrylate)[J].Journal of Solid State Electrochemistry,1998,3(1):1-6.
[6]MA Ting,CUI Zhenyu,WU Ying,et al.Preparation of PVDF based blend microporous membranes for lithium ion batteries by thermally induced phase separation I:Effect of PMMA on the membrane formation process and the properties[J].Journal of Membrane Science,2013,444:213-222.
[7]IDRIS Nurul Hayati,RAHMAN Md Mokhlesur,WANG Jia-Zhao,et al.Microporous gel polymer electrolytes for lithium rechargeable battery application[J].Journal of Power Sources,2012,201:294-300.
[8]MAHANT Yogita P,KONDAWAR Subhash B,BHUTE Monali,et al.Electrospun poly(vinylidene fluoride)/poly(methyl methacrylate)composite nanofibers polymer electrolyte for Batteries[J].Procedia Materials Science,2015,10:595-602.
[9]XIAO Qizhen,LI Zhaohui,GAO Deshu,et al.A novel sandwiched membrane as polymer electrolyte for application in lithium-ion battery[J].Journal of Membrane Science,2009,326(2):260-264.
[10]RAO Mumin,GENG Xiuyu,LIAO Youhao,et al.Preparation and performance of gel polymer electrolyte based on electrospun polymer membrane and ionic liquid for lithium ion battery[J].Journal of Membrane Science,2012,399-400:37-42.
[11]GOPALAN Anantha Iyenger,SANTHOSH Padmanabhan,MANESH Kalayil Manian,et al.Development of electrospun PVdF-PAN membrane-based polymer electrolytes for lithium batteries[J].Journal of Membrane Science,2008,325(2):683-690.
[12]RAGHAVAN Prasanth,ZHAO Xiaohui,MANUEL James,et al.Electrochemical performance of electrospun poly(vinylidene fluoride-co-hexafluoropropylene)-based nanocomposite polymer electrolytes incorporating ceramic fillers and room temperature ionic liquid[J].Electrochimica Acta,2010,55(4):1347-1354.
[13]李景虹.先進電池材料[M].北京:化學工業出版社,2004:331,349-350. LI J H.Advanced Battery Materials[M].Beijing:Chemical Industry Press,2004:331,349-350(in Chinese).
[14]IIJIMA T,TOYOGUCHI Y,EDA N.Quasi-solid organic electrolytes gelatinized with poly methylmethacrylate and their applications for lithium batteries[J].Denki Kagaku,1985,53(8):619-623.
[15]倪冰選,焦曉寧,阮艷莉.聚合物鋰離子電池用凝膠電解質的研究進展[J].天津工業大學學報,2009,28(3):48-52,57. NI B X,JIAO X N,RUAN Y L.Research progress of gel electrolyte for polymer lithium-ion battery[J].Journal of Tianjin Polytechnic University,2009,28(3):48-52,57(in Chinese).
[16]LIANG Yinzheng,CHENG Sichen,ZHAO Jianmeng,et al. Preparation and characterization of electrospun PVDF/PMMA composite fibrous membranes-based separator for lithium-ion batteries[J].Advanced Materials Research,2013,750/751/ 752:1914-1918.
[17]DING Yanhuai,ZHANG Ping,LONG Zhilin,et al.The ionic conductivity and mechanical property of electrospun P(VdFHFP)/PMMA membranes for lithium ion batteries[J].Journal of Membrane Science,2009,329(1/2):56-59.
[18]高虹,陳愛雨,王守兵.PVDF/PMMA/PEG型聚合物隔膜的制備[J].功能材料,2015(15):15138-15141,15147. GAO H,CHEN A Y,WANG S B.PVDF/PMMA/PEG polymer diaphragm preparation.[J].Journal of Functional Materials,2015(15):15138-15141,15147(in Chinese).
[19]趙劍蒙.鋰離子電池用PVDF/PMMA靜電紡復合隔膜的制備與改性研究[D].上海:東華大學,2014. ZHAO J M.Fabrication and modification of electrospun PVDF/ PMMA composite membrane as lithium-ion battery seperator[D].Shanghai:Donghua University,2014(in Chinese).
[20]FLORAT X Helan,ULAGANATHAN M,SHANKER Babu Ravi,et al.Evaluation of lithium ion conduction in PAN/PMMA-based polymer blend electrolytes for Li-ion battery applications[J].Ionics,2012,18(8):731-736.
[21]PRASANTH Raghavan,ARAVINDAN Vanchiappan,SRINIVASAN Madhavi.Novel polymer electrolyte based on cob-web electrospun multi component polymer blend of polyacrylonitrile/poly(methyl methacrylate)/polystyrene for lithium ion batteries—Preparation and electrochemical characterization[J]. Journal of Power Sources,2012,202:299-307.
[22]ZHONG Zheng,CAO Qi,WANG Xianyou,et al.PVC-PMMA composite electrospun membranes as polymer electrolytes for polymer lithium-ion batteries[J].Ionics,2011,18(1/2):47-53.
[23]JUNG Hong-Ryun,LEE Wan-Jin.Electrochemical characteristics of electrospun poly(methyl methacrylate)/polyvinyl chloride as gel polymer electrolytes for lithium ion battery[J]. Electrochimica Acta,2011,58:674-680.
[24]LEE Kyoung Hee,LEE Young Gi,PARK Jung Ki,et al.Effect of silica on the electrochemical characteristics of the plasticized polymer electrolytes based on the P(AN-co-MMA)copolymer[J].Solid State Ionics,2000,133(3):257-263.
[25]XU Jun John,YE Hui.Polymer gel electrolytes based on oligo-meric polyether/cross-linked PMMA blends prepared via in situ polymerization[J].Electrochemistry Communications,2005,7(8):829-835.
[26]LIU Y,J.LEE Y,HONG L.Synthesis,characterization and electrochemical properties of poly(methyl methacrylate)-grafted-poly(vinylidene fluoride-hexafluoropropylene)gel electrolytes[J].Solid State Ionics,2002,150(3/4):317-326.
[27]劉建生.鋰離子電池新型凝膠聚合物電解質的改性研究[D].廣州:華南理工大學,2013. LIU J S.Investigations on the preparation and performance of gel polymer electrolyte for lithium ion battery[D].Guangzhou:South China University of Technology,2013(in Chinese).
[28]ZHOU Ling,WU Na,CAO Qi,et al.A novel electrospun PVDF/PMMA gel polymer electrolyte with in situ TiO2 for Liion batteries[J].Solid State Ionics,2013,249/250:93-97.
[29]SONG Dayu,XU Chen,CHEN Yuanfu,et al.Enhanced thermal and electrochemical properties of PVDF-HFP/PMMA polymer electrolyte by TiO2nanoparticles[J].Solid State Ionics,2015,282:31-36.
[30]PARK S M,LEE Y S,KIM D W.High-performance lithium-Ion polymer cells assembled with composite polymer electrolytes based on core-shell structured SiO2particles contain-ing poly(lithium acrylate)in the shell[J].Journal of the Electrochemical Society,2014,162(2):A3071-A3076.
[31]YANG Pingting,ZHANG Peng,SHI Chuan,et al.The functional separator coated with core-shell structured silica-poly(methyl methacrylate)sub-microspheres for lithium-ion batteries[J].Journal of Membrane Science,2015,474:148-155.
[32]SHIN Won-Kyung,KIM Dong-Won.High performance ceramic-coated separators prepared with lithium ion-containing SiO2particles for lithium-ion batteries[J].Journal of Power Sources,2013,226:54-60.
[33]CUI Wei-Wei,TANG Dong-Yan,GONG Zai-Lin.Electrospun poly(vinylidene fluoride)/poly(methyl methacrylate)grafted TiO2composite nanofibrous membrane as polymer electrolyte for lithium-ion batteries[J].Journal of Power Sources,2013,223:206-213.
[34]ARRIAGADA F J,OSSEO-ASARE K.Synthesis of nanosize silica in a nonionic water-in-oil microemulsion:Effects of the water/surfactant molar ratio and ammonia concentration[J].J Colloid Interface Sci,1999,211(2):210-220.
[35]KIM Min,HAN Gui Young,YOON Ki June,et al.Preparation of a trilayer separator and its application to lithium-ion batteries[J].Journal of Power Sources,2010,195(24):8302-8305.
[36]ZHANG H P,ZHANG P,LI Z H,et al.A novel sandwiched membrane as polymer electrolyte for lithium ion battery[J]. Electrochemistry Communications,2007,9(7):1700-1703.
[37]WU Dazhao,HE Jinlin,ZHANG Mingzu,et al.Fabrication of a novel sandwich-like composite separator with enhanced physical and electrochemical performances for lithium-ion battery[J].Journal of Power Sources,2015,290:53-60.
[38]KIM Jun Young,LEE Yongbeom,LIM Dae Young.Plasmamodified polyethylene membrane as a separator for lithium-ion polymer battery[J].Electrochimica Acta,2009,54(14):3714-3719.
[39]KIM Jun Young,LIM Dae Young.Surface-modified membrane as a separator for lithium-ion polymer battery[J].Energies,2010,3(4):866-885.
[40]LI Hao,MA Xiao-Ting,SHI Jun-Li,et al.Preparation and properties of poly(ethylene oxide)gel filled polypropylene separators and their corresponding gel polymer electrolytes for Li-ion batteries[J].Electrochimica Acta,2011,56(6):2641-2647.
[41]KIM Hyung-Sun,KUM Kyong-Soo,CHO Won-Il,et al. Electrochemical and physical properties of composite polymer electrolyte of poly(methyl methacrylate)and poly(ethylene glycol diacrylate)[J].Journal of Power Sources,2003,124(1):221-224.
[42]盧雷.一種鋰離子電池新型聚合物電解質PMMA-Vac的制備及性能研究[D].廣州:華南師范大學,2007. LU L.A study on the preparation and performances of pmmavac electrolyte for lithium ion battery use[D].Guangzhou:South China Normal Univesity,2007(in Chinese).
[43]LI Shudan,GAO Kun.The study on methyl methacrylate graft-copolymerized composite separator prepared by pre-irradiation method for Li-ion batteries[J].Surface and Coatings Technology,2010,204(16/17):2822-2828.
[44]GWON Sung-Jin,CHOI Jae-Hak,SOHN Joon-Yong,et al. Battery performance of PMMA-grafted PE separators prepared by pre-irradiation grafting technique[J].Journal of Industrial and Engineering Chemistry,2009,15(5):748-751.
[45]SHI Jun-Li,FANG Li-Feng,LI Hao,et al.Improved thermal and electrochemical performances of PMMA modified PE separator skeleton prepared via dopamine-initiated ATRP for lithium ion batteries[J].Journal of Membrane Science,2013,437:160-168.
[46]程司辰.基于靜電紡絲法的PVDF基鋰離子電池隔膜的制備與表征[D].上海:東華大學,2013. CHENG S C.Preparation and characterization of electrospun PVDF-based membrane as lithium battery separator[D]. Shanghai:Donghua University,2013(in Chinese).
Research progress of PMMA-based gel electrolyte for LIBS
JIAO Xiao-ning1,2,ZHOU Jin-tao1,CHEN Hong-li1
(1.Schoool of Textiles,Tianjin Polytechnic University,Tianjin 300387,China;2.Key Laboratory of Advanced Textile Composites of Ministry of Education,Tianjin Polytechnic University,Tianjin 300387,China)
The characteristics and application of polymethyl methacrylate (PMMA)used for lithium-ion batteries gel polymer electrolyte(GPE)are summarized.One of the advantages of PMMA-based GPE is the good interface stability with lithium metal electrode,and it also has high ionic conductivity of 10-3S/cm at room temperature,and its cycle performance is better than that of some other gel electrolyte.But the weakness of mechanical strength limits its application.But the weakness of mechanial strength limits its application.The mechanial property of PMMA-based GPE can be improved by combining with other polymers,inorganic nanoparticles,polyolefin films,even nanworens to form gel electrolytes through blending,coating,copolymerization,etc.The trend of research on PMMA-based GPE is to prepare multi-layered composite porous electrolytes by electrospinning.
PMMA;lithium-ion battery(LIB);gel electrolyte;multi-layered composite
TM911.3
A
1671-024X(2016)05-0046-07
10.3969/j.issn.1671-024x.2016.05.009
2016-07-04
國家科技支撐計劃項目(2015BAE01B03)
焦曉寧(1958—),女,教授,碩士生導師,主要研究方向為功能非織造材料.E-mail:xiaoningj@tjpu.edu.cn