999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于2-甲基-8-羥基喹啉的鏑單分子磁體的晶體結構及磁性

2016-11-28 09:36:37王慧娜劉穎昕李榮周琦付文升
無機化學學報 2016年2期
關鍵詞:重慶

王慧娜 劉穎昕 李榮 周琦 付文升

(重慶師范大學,重慶市綠色合成與應用重點實驗室,重慶401331)

基于2-甲基-8-羥基喹啉的鏑單分子磁體的晶體結構及磁性

王慧娜劉穎昕李榮周琦*付文升*

(重慶師范大學,重慶市綠色合成與應用重點實驗室,重慶401331)

以2-甲基-8-羥基喹啉(HL)為配體合成了2個含有鏑離子的配位化合物[Dy2L4(HL)4(H2O)2](ClO4)2·2H2O(1)和[Dy2L6(C2H5OH)] ·H2O(2)。雖然在這兩個配位化合物中配體都是2-甲基-8-羥基喹啉,但其參與配位的方式不同。這導致2個化合物中鏑離子所處的配位環境不同,進而對化合物的磁性產生了影響。

配位化合物;分子磁體;鑭系金屬;磁弛豫作用

Over the past decade,single-molecule magnet (SMM)has received considerable attention due to potential applications in high density data storage and quantum computer[1-5].The early research of singlemolecule magnet mainly focused on 3d transition metalclusters,especiallyon Mn element.A considerable amount of Mn clusters with various structures has been synthesized,such as[Mn32],[Mn84][6-10].Besides, their magnetic properties have been studied extensively.Although 3d transition metal clusters have high ground state spins,the feeblish magnetic anisotropy limits further increase energy barrier of SMM[11-12]. Thus,4f lanthanide ion with strong magnetic anisotropy is introduced into 3d transition metal clusters in order to form 3d-4f heteronuclear metal clusters that maycombinethelargemagneticanisotropyof lanthanide ions with the high spin-states of transition ions[13-17].In recent years,design and synthesis of 4f compounds which only contain lanthanide metal have become the topic on single-molecule magnet research, and a number of lanthanide metal clusters have been synthesized,such as[Tb2],[Dy2],[Dy3],[Dy4],[Dy5],[Dy6][18-23].These compounds could play a significant role in SMM area owing to their large magnetic moments and huge magnetic anisotropy.This combination may lead to a high barrier for their spin reversal.

Ithasbeendemonstratedthattheoverall electronic structure of lanthanide ion is very sensitive to its coordination environment.Even subtle ligand changescandrasticallyinfluenceontheoverall physical properties of the lanthanide compounds,and the SMM behaviour of lanthanide ions is highly dependent on the ligands[24-31].We also investigated the effect of different ligands on the magnetic exchange interactions and the relaxation dynamics[32-33].As we noticed that the same ligand could lead to different coordinationenvironment,wewonderwhatwill happen in the compounds contain the same ligands. For example,2-methyl-8-hydroxylquinolinate(HL)can coordinate to metal ions with two modes,chelating or not.Itwillcertainlyleadtoaquitedifferent coordination environment(coordination numbers and geometries),and in turn,it may make a difference in the magnetic behaviours.

In this paper,we synthesized two dysprosium coordination compounds with binuclear structure using HL as ligand,namely[Dy2L4(HL)4(H2O)2](ClO4)2·2H2O (1)and[Dy2L6(C2H5OH)]·H2O(2).As we anticipated, the coordination environment of the Dy3+ions was significantly different.The Dy3+ion in both of the compounds is eight-coordinated.In compound 1,the dinuclear core is bridged by two O ions,giving rise to a[Dy2O2]core.In compound 2,the two Dy ions are bridged by three O ions,which form a[Dy2O3]core. Magnetic measurements demonstrate that the compounds exhibit weak intra-binuclear antiferromagnetic interaction.Compound 1 show frequency-dependent ac-susceptibility indicative of slow magnetic relaxation.On the contrary,no out-of-phase ac susceptibility (χ″)signal was observed in 2.

1 Experimental

1.1Reagents and physical peasurements

All reagents and solvents were commercially available and were used without further purification. Elemental analyses of carbon and hydrogen were carried out on a Perkin-Elmer 240C elemental analyzer. IR spectra as KBr pellets were recorded with a Magna 750 FT-IR spectrophotometer using reflectance technique over the range of 4 000~400 cm-1.X-ray powder diffraction(XRPD)patterns were taken on a Rigaku D/max 2550 X-ray Powder Diffractometer with Cu Kα radiation(λ=0.154 18 nm,U=30 kV,I=40 mA).All magnetization were obtained with a Quantum Design MPMS SQUID VSM magnetometer.The variabletemperaturemagneticsusceptibilitywasmeasured with an external magnetic field of 1 000 Oe.Samples were restrained in eicosane to prevent torqueing. Pascal′sconstantswereusedtoestimatethe diamagnetic corrections,which were subtracted from the experimental susceptibilities to give the molar paramagnetic susceptibilities(χM).

1.2Synthesis

[Dy2L4(HL)4(H2O)2](ClO4)2·2H2O(1):A mixture of Dy(ClO4)3·6H2O(0.25 mmol,0.14 g)and HL(1.0 mmol, 0.159 g)in a mixture of ethanol(8 mL)and acetonitrile(2 mL)was stirred for 30 min,then the resulting mixture were filtered.The filtrate was heated at 60℃for 7 days in a Teflon-lined steel autoclave(20 mL). Yellow block-shaped crystals formed and were collected in 40%yield.IR(KBr,cm-1):3 233(m),3 178(m),3 061 (w),1 645(m),1 586(s),1 454(s),1 432(m),1 348(s), 1 121(m),1 001(w),935(m),855(m),813(s),716(m), 576(m).Anal.Calcd.for C80H76N8Cl2Dy2O20(%):C 51.51, H 4.11,N 6.01.Found(%):C,51.28,H 4.09,N 5.91.

[Dy2L6(C2H5OH)]·H2O(2):A mixture of Dy(ClO4)3· 6H2O(0.25 mmol,0.14 g)and HL(0.75 mmol,0.119 g)in ethanol(10 mL)was stirred for 30 min,then the resulting mixture were filtered.The filtrate was heated at 80℃for 3 days in a Teflon-lined steel autoclave (20 mL).Yellow block-shaped crystals formed were collected in 37%yield.IR(KBr,cm-1):3 245(m), 3 089(w),3 061(w),1 606(m),1 569(s),1 494(s),1 465 (s),1 381(s),1 118(s),1 024(m),911(w),826m),816 (s),733(m),489(m).Anal.Calcd.for C62H56N6Dy2O8(%): C 55.65,H 4.22,N 6.28.Found(%):C,55.38,H 4.15,N 6.22.

1.3X-ray crystallography

The data collection and structural analysis of crystals 1 and 2 were performed on a Rigaku RAXISRAPID equipped with a narrow-focus,5.4 kW sealed tube X-ray source(graphite-monochromated Mo Kα radiation,λ=0.071 073 nm).The data processing was accomplished with the PROCESS-AUTO processing program.The data were collected at a temperature of 293(2)K.Direct methods were used to solve the structure using the SHELXTL crystallographic software package[34].All non-hydrogen atoms were easily found from the difference Fourier map.All non-hydrogen atoms wererefinedanisotropically.Thehydrogen atoms were set in calculated positions.Crystal data for compounds are listed in Table 1,and selected bond lengths and angles for compounds are listed in Table 2 and Table 3.

CCDC:1054513,1;1052697,2.

Table 1Crystallographic data for the compounds 1 and 2

aR1=

Table 2Main bond lengths(nm)and angles(°)of compound 1

Table 3Main bond lengths(nm)and angles(°)of compound 2

2 Results and discussion

Fig.1(a)Coordination environment of Dyion in compound 1;(b)Coordination environments of Dyions in compound 2; (c)Molecular structure of compound 1;(d)Molecular structure of compound 2

2.1Crystal structure

Compound 1 crystallizes in the monoclinic space group P21/c and the structure is shown in Fig.1a.The dysprosium ion is coordinated by two bridging ligand (O1,O1A),two chelating ligand(O2,N2,O3,N3), one terminal ligand(O4)and one water molecules (O5).The eight-coordinated Dy ions are characterized by distorted biaugmented trigonal prism geometry,as calculated using the SHAPE software.Besides,there is one isolated water molecule and one perchlorate which is the counterion in the asymmetric structure unit.The centrosymmetric dinuclear core is composedof two eight coordinate dysprosium ions bridged by two ions bridged by two oxygen ions,giving rise to a Dy2O2core with a Dy-Dy distance of 0.404 3(1)nm and a Dy-O-Dy angle of 113.9(2)°.Similar Ln2O2structures havebeenalsoreported,such as[Dy2(hmi)2(NO3)2(MeOH)2],[Dy2(ovph)2(NO3)2(H2O)2],[Tb2(valdien)2(NO3)2]and[Gd2(Hsabhea)2(NO3)2][26,31,37].The shortest intermol-ecularDy-Dyseparationdistance is 1.139 7(5)nm.Only two HL molecules coordinate to metal ions with a chelating mode,and the rest were not.

Compound 2 crystallizes in the triclinic space group P1 and the structure is shown in Fig.1b.The Dy3+ions are eight-coordinated and characterized by a triangular dodecahedron environment(calculated by means of SHAPE software).Dy1 is coordinated by three chelating ligands(O1,O2,O3,N1,N2 and N3) and two bridging oxygen atoms(O4 and O5).Dy2 is coordinated by three chelating ligands(O4,O5,O6, N4,N5 and N6),one bridging oxygen atoms(O3),and one terminal ethanol(O7).Two eight coordinate dysprosium ions are bridged by three oxygen atoms, giving rise to a Dy2O3core with a Dy-Dy distance of 0.351 2(1)nm.The Dy-O-Dy angles are 96.84(15)°, 95.58(13)°and 97.33(13)°,respectively.The shortest intermolecular Dy-Dy separation distance is 0.866 9(5) nm.In contrast with compound 1,all the ligands coordinating to Dy3+ions have a chelating mode.

Although both of 1 and 2 contain two eight coordinate dysprosium ions,the coordination environments of Dy3+ions are different.In compound 1,the Dy3+ions are characterized by a distorted dodecahedral environment,and the Dy2O2core is centrosymmetric. On the other hand,in compound 2,the Dy3+ions are characterized by a square antiprism environment,and the Dy2O3core is non-centrosymmetric.We expected thatthedifferencesofcoordinationenvironments could influence on the magnetic properties of the compounds.

2.2Magnetic properties

Thesolid-statevariable-temperaturedirectcurrent(dc)magnetic susceptibility measured for the compounds have been carried out in an applied magnetic field of 1 000 Oe in the temperature range of 2~300 K.The plots of χMT vs T are shown in Fig.2. For compounds 1 and 2,the room temperature χMT values are 27.98 and 27.46 cm3·K·mol-1,respectively, ingoodagreementwiththatexpectedfortwo uncoupled Dy ions(6H15/2,S=5/2,L=5,J=15/2,g=4/3, χMT=14.17 cm3·K·mol-1).Upon decreasing the temperature,the χMT slightly decreases between 300 K and 25 K,then further decreases sharply until reaches values of 11.28 and 13.45 cm3·K·mol-1at 2 K, respectively.The overall behaviours of χMT are caused by thermal depopulation of the Stark sublevels and significant magnetic anisotropy of the dysprosium ions. The weak antiferromagnetic interactions between the metal centres may also make some contribution[35].

Fig.2Temperature dependence of χMT for compounds 1 and 2 at 1 000 Oe

Field-dependence measurements of the magnetization up to 5 T were performed at 2 K.For compounds 1 and 2,the values of the magnetization at 5 T are 10.59μBand 10.22μB,respectively,lower than the expected saturation value of 20μBfor two Dy ions.The spin orbit coupling and crystal-field effect may make the contributions[36].The lack of saturation on the M vs H data confirms low lying excited states.

To further investigate magnetization dynamics of the compounds,alternating-current(ac)susceptibility measurements have been carried out(dc field 0 Oe, ac field 3.0 Oe,frequency 10~800 Hz).As shown in Fig.3,frequency-dependentonalternating-current magnetic susceptibilities are observed in compound 1. Thisindicatesthepresenceofslowmagnetic relaxation at low temperature,which reveals thesingle-molecule magnet behavior.

Fig.3Temperature dependence of the in-phase(a)and out-of-phase(b)ac susceptibility and frequency dependence of in-phase(c)and out-of-phase(d)ac susceptibilities for compound 1 under zero dc field

Fig.4 (a)ln(τ)versus T-1plot for compound 1 under zero dc field;(b)Cole-Cole plots measured for compound 1

Therelaxationtimewasextractedfromthe frequency-dependent data,and the Arrhenius plot obtained from these data is showed in Fig.4a The relaxation follows a thermally activated mechanism withanenergybarrierof17.2Kandapreexponential factor of τ0=5.91×10-5s,in agreement with that for DyⅢsingle-molecule magnet with binuclear structure(ΔE/kB17~198 K,τ010-8~10-5s)[37-38].The data plotted as Cole-Cole plots can be fitted to the generalized Debye model with α parameters below 0.20(Fig.3b),indicating the presence of a single relaxation process[39-40].On the contrary,no out-ofphase signals were observed in compound 2(Fig.5). Thus,it may be inferred that the different coordination modes of the ligand can drastically influence on thedynamicmagneticbehaviorsofthelanthanide compounds.

Fig.5Temperature dependence of the in-phase and outof-phase ac susceptibility for 2 under zero dc field

3Conclusions

In summary,we have synthesized two dysprosium coordination compounds,[Dy2L4(HL)4(H2O)2](ClO4)2· 2H2O(1)and[Dy2L6(C2H5OH)]·H2O(2)with the same ligandsHL.Magneticmeasurementsrevealthat compound 1 does show a single-molecule magnet behavior with the energy barrier ΔE/kB=17.1 K and the pre-exponential factor τ0=5.95×10-5s,while no out-of-phase signals are observed in compound 2.It may be inferred that the different coordination modes of the ligand lead to a difference in the dynamic magnetic behaviors of the lanthanide coordination compounds.

Supporting information is available at http://www.wjhxxb.cn

References:

[1]Leuenberger M N,Loss D.Nature,2001,410:789-791

[2]Hill S,Edwards R S,Aliaga-Alcalde N,et al.Science,2003, 302:1015-1018

[3]Yamanouchi M,Chiba D,Matsukura F,et al.Nature,2004, 428:539-542

[4]Saitoh E,Miyajima H,Yamaoka T,et al.Nature,2004,432: 203-206

[5]Bogani L,Wernsdorfer W.Nat.Mater,2008,7:179-186

[6]Maheswaran S,Chastanet G,Teat S J,et al.Angew.Chem. Int.Ed.,2004,43:2117-2121

[7]Scott R T W,Milios C J,Vinslava A,et al.Dalton Trans, 2006:3161-3163

[8]Wang W G,Zhou A J,Zhang W X,et al.J.Am.Chem.Soc., 2007,129:1014-1015

[9]Stamatatos T C,Foguet-Albiol D,Wernsdorfer W,et al.Chem. Commu.,2011,47:274-276

[10]Ako A M,Hewitt I J,Mereacre V,et al.Angew.Chem.Int. Ed.,2006,45:4926-4929

[11]Milios C J,Vinslava A,Wood P A,et al.J.Am.Chem.Soc., 2007,129:8-9

[12]Milios C J,Vinslava A,Wernsdorfer W,et al.J.Am.Chem. Soc.,2007,129:2754-2755

[13]Benelli C,Gatteschi C.Chem.Rev.,2002,102:2369-2387

[14]Osa S,Kido T,Matsumoto N,et al.J.Am.Chem.Soc., 2004,126:420-421

[15]Kong X J,Ren Y P,Long L S,et al.J.Am.Chem.Soc., 2007,129:7016-7017

[16]Mereacre V M,Ako A M,Clérac R,et al.J.Am.Chem. Soc.,2007,129:9248-9249

[17]Ako A M,Mereacre V,Clérac R,et al.Chem.Commun., 2009,45:544-546

[18]Yue Y,Sun J,Yan P,et al.Inorg.Chem.Commun.,2015, 51:42-45

[19]Hewitt I J,Lan Y,Anson C E,et al.Chem.Commun.,2009, 45:6765-6767

[20]Lin P H,Burchell T J,Ungur L,et al.Angew.Chem.Int. Ed.,2009,48:9489-9492

[21]Blagg R J,Muryn C A,McInnes E J,et al.Angew.Chem. Int.Ed.,2011,50:6530-6533

[22]Rinehart J D,Fang M,Evans W J,et al.Nat.Chem.,2011, 3:538-542

[23]Rinehart J D,Fang M,Evans W J,et al.J.Am.Chem.Soc., 2011,133:14236-14269

[24]Sessoli R,Powell A K.Coord.Chem.Rev.,2009,253:2328-2341

[25]Long J,Habib F,Lin P H,et al.J.Am.Chem.Soc.,2011, 133:5319-5328

[26]Ke H.,Xu G F,Guo Y N,et al.Chem.Commun.,2010,46: 6057-6059

[27]Tian H,Wang M,Zhao L,et al.Chem.Eur.J.,2012,18: 442-445

[28]Ma Y,Xu G F,Yang X,et al.Chem.Commun.,2010,46: 8264-8266

[29]Guo Y N,Xu G F,Wernsdorfer W,et al.J.Am.Chem.Soc., 2011,133:11948-11951

[30]Xu G F,Wang Q L,Gamez P,et al.Chem.Commun.,2010, 46:1506-1508

[31]Pointillart F,Klementieva S,Kuropatov V,et al.Chem. Commun.,2012,48:714-716

[32]Yang F,Zhou Q,Zeng G,et al.Dalton Trans.,2014,43:1238-1245

[33]Zhou Q,Yang F,Liu D,et al.Inorg.Chem.,2012,51:7529-7536

[34]Sheldrick G M.SADABS,Siemens Area Detector Absorption Correction,University of G?ttingen,Germany,2005.

[35]Kahn M L,Ballou R,Porcher P,et al.Chem.Eur.J..2002, 8:525-531

[36]Osa S,Kido T,Matsumoto N,et al.J.Am.Chem.Soc., 2004,126:420-421

[37]Song Y M,Luo F,Luo M B,et al.Chem.Commun.,2012, 48:1006-1008

[38]Zou L,Zhao L,Chen P,et al.Dalton Trans.,2012,41:2966-2971

[39]Aubin S M J,Sun Z,Pardi L,et al.Inorg.Chem.,1999,38: 5329-5340

[40]Cole K S,Cole R H.J.Chem.Phys.,1941,9:341-351

Structures and Magnetic Properties of Single-Molecule Magnet Based on Dyand 2-Methyl-8-quinolinol Ligand

WANG Hui-NaLIU Ying-XinLI RongZHOU Qi*FU Wen-Sheng*
(Chongqing Key Laboratory of Green Synthesis and Applications,Chongqing Normal University,Chongqing 401331,China)

Two dysprosium coordination compounds,[Dy2L4(HL)4(H2O)2](ClO4)2·2H2O(1)and[Dy2L6(C2H5OH)]·H2O (2),have been synthesized and characterized.Both compounds contain the same ligands 2-methyl-8-hydroxylquinolinate(HL),while the different coordination modes lead to quite different coordination environments. Magnetic measurements reveal that the different coordination modes of the ligand lead to a difference in the dynamic magnetic behaviors.Compound 1 does show a single-molecule magnet behavior,while no out-of-phase signals are observed in compound 2.CCDC:1054513,1;1052697,2.

coordination compound;molecule magnet;lanthanide metal;magnetic relaxation

O614.342

A

1001-4861(2016)02-0343-08

10.11862/CJIC.2016.047

2015-09-09。收修改稿日期:2015-12-30。

國家自然科學基金(No.21271192,21501017)、重慶市教委科學技術研究項目(No.KJ1500304)和重慶市科委國際合作項目(No.cstc2014gjhz0030)資助。

*通信聯系人。E-mail:fuwensheng@hotmail.com,lnwoq172@163.com;會員登記號:S06N0386S1202。

猜你喜歡
重慶
重慶人的浪漫
重慶客APP
新基建,重慶該怎么干?
公民導刊(2022年4期)2022-04-15 21:03:14
平凡英雄 感動重慶
當代黨員(2022年6期)2022-04-02 03:14:56
重慶人為什么愛吃花
數說:重慶70年“賬本”展示
當代黨員(2019年19期)2019-11-13 01:43:29
“逗樂坊”:徜徉相聲里的重慶味
視覺重慶
城市地理(2016年6期)2017-10-31 03:42:32
重慶非遺
在這里看重慶
今日重慶(2017年5期)2017-07-05 12:52:25
主站蜘蛛池模板: 都市激情亚洲综合久久| 久久99精品久久久久纯品| 日本欧美午夜| 精品久久久久久久久久久| 精品一区二区三区波多野结衣| 日韩大片免费观看视频播放| 亚洲第一成年免费网站| 国产亚洲欧美在线人成aaaa| 在线看片国产| 久久香蕉国产线| 中文字幕天无码久久精品视频免费| 精品无码专区亚洲| 国内精品伊人久久久久7777人| 国产毛片片精品天天看视频| 色网站免费在线观看| 日韩欧美国产成人| www.亚洲一区二区三区| 国产拍在线| 欧美精品v日韩精品v国产精品| 色综合手机在线| 99在线视频精品| 亚洲天堂网在线播放| 狠狠色噜噜狠狠狠狠奇米777 | 喷潮白浆直流在线播放| 91精品最新国内在线播放| 伊人久久久久久久久久| 午夜无码一区二区三区| 久久无码av三级| 国产精品播放| 性欧美精品xxxx| 无码区日韩专区免费系列| 久久人搡人人玩人妻精品一| 亚洲综合精品第一页| 欧美精品色视频| 日本道中文字幕久久一区| 成人日韩精品| 精品久久久无码专区中文字幕| 国内精品视频在线| 日本精品视频| 少妇高潮惨叫久久久久久| 欧美亚洲第一页| 国产精品成| 亚洲另类色| 激情无码视频在线看| 91亚洲免费视频| 亚洲精品国产乱码不卡| AV不卡在线永久免费观看| 三级国产在线观看| 成人免费一级片| 日韩免费中文字幕| av尤物免费在线观看| www欧美在线观看| 色哟哟国产成人精品| 色噜噜狠狠色综合网图区| 亚洲国产一成久久精品国产成人综合| 精品国产自在现线看久久| 国产成人综合日韩精品无码首页| 亚洲一级毛片免费观看| 91年精品国产福利线观看久久| 国产美女精品人人做人人爽| 欧美在线国产| 国产爽歪歪免费视频在线观看| 视频一本大道香蕉久在线播放 | Jizz国产色系免费| 91久久夜色精品国产网站| 国产视频一区二区在线观看| 99精品免费在线| 少妇被粗大的猛烈进出免费视频| 国产精品免费电影| 黄色国产在线| 国产成人AV男人的天堂| 精品一區二區久久久久久久網站| 欧美高清国产| 欧美一区精品| 欧美国产菊爆免费观看 | 亚洲天堂视频在线播放| 在线观看国产黄色| 一级做a爰片久久毛片毛片| 亚洲精品国偷自产在线91正片| 99热这里只有精品国产99| 中文字幕永久视频| 性色一区|