聶瑞強,楊玉靜,謝建山,2,范瑞文,許冬梅,于秀菊,段志成,董常生
(1山西農業大學動物科技學院,山西太谷030801;2山西醫科大學基礎醫學院,太原030001)
Pax6 PAI亞結構域在黑色素細胞中對MITF、TYR、TYRP1和TYRP2的影響
聶瑞強1,楊玉靜1,謝建山1,2,范瑞文1,許冬梅1,于秀菊1,段志成1,董常生1
(1山西農業大學動物科技學院,山西太谷030801;2山西醫科大學基礎醫學院,太原030001)
【目的】高度保守的PAX轉錄因子家族在黑色素細胞的分化和黑色素的生成中起重要的作用,其家族共有的PD 結構域是其與下游基因結合的主要位點,而PD結構域氨基端的PAI亞結構域在其與下游基因的結合過程中發揮重要的作用。研究表明Pax6在視網膜上皮黑色素細胞的分化中發揮至關重要的作用,本試驗借助研究Pax6 PAI亞結構域的功能來對PAX轉錄因子家族共有的PD結構域和PAI亞結構域進行研究。【方法】首先通過Psipred對Pax6 PD 結構域的結構進行分析,使用NCBI對Pax6 PD結構域與下游基因的結合位點進行分析,使用Jaspar對MITF、TYR、TYRP1和TYRP2啟動子中Pax6 PD結構域可能的作用位點進行預測。使用普通PCR克隆Pax6 PAI亞結構域,將其連入T載體,酶切后連入慢病毒載體,并送公司測序確認。將構建好的PAI亞結構域過表達載體通過細胞轉染導入到培養的小鼠黑色素細胞中,使其過量表達。收集細胞,分別通過觀察綠色熒光蛋白檢測轉染效率,使用RT-PCR 和Western blot 來檢測MITF 、TYR 、TYRP1和TYRP2在mRNA 和蛋白水平的變化,同時檢測黑色素細胞中黑色素生成量的變化?!窘Y果】通過NCBI分析可知,Pax6 PD結構域與下游基因的作用位點主要集中在氨基端的PAI 亞結構域。通過Jaspar預測分析,得知,MITF啟動子-695處存在Pax6 PD 結構域的結合位點,TYR啟動子-873和-1133處存在Pax6 PD 結構域的結合位點,TYRP1啟動子-629處存在Pax6 PD 結構域的結合位點,TYRP2啟動子-655處存在Pax6 PD 結構域的結合位點。在黑色素細胞中過表達Pax6 PAI亞結構域后,與空載組相比,試驗組MITF mRNA升高2.05倍(P<0.01),蛋白質升高1.7倍(P<0.01);TYR mRNA升高2.09倍,蛋白質升高2倍(P<0.05);TYRP1 mRNA升高2.93倍(P<0.05),蛋白質升高1.9倍(P<0.01);TYRP2 mRNA升高3.62倍(P<0.01),蛋白質升高1.37倍。同時試驗組的黑色素含量是空載組黑色素含量的1.33倍(P<0.001)。【結論】在小鼠黑色素細胞中,過表達Pax6 PAI亞結構域可以促進MITF、 TYR、TYRP1和TYRP2的表達,進而使黑色素細胞黑色素的生成量增加。
PAI 亞結構域;Pax6;黑色素
【研究意義】哺乳動物皮膚黑色素細胞是由神經嵴祖細胞定向分化而來[1],其正常分化依靠相關基因在時間和空間上的正常表達,而基因的正常表達離不開功能相互交錯的轉錄因子網絡的調控[2]。高度保守的Paired box(PAX)轉錄因子家族屬于Ι型轉錄因子,在黑色素細胞的定向分化和黑色素的產生中發揮重要的作用[3-4]。PAX家族的共同特征是都在N端含有128個氨基酸組成的paired domain(PD),PD本身就是一個獨立的結構,它包含氨基端的PAI 亞結構域和羧基端的RED 亞結構域[5-6],這兩個亞結構域都包含有螺旋-轉角-螺旋結構[7],而PAI亞結構域是PAX家族與其下游調控基因結合的主要部位[8]。【前人研究進展】BERY于2015年證明在小鼠的皮質祖細胞中富含PAX轉錄因子家族的結合位點[9]。FUJIMURA于2015年證明在視網膜色素上皮細胞的分化轉移中,Pax6調控其色素積淀和細胞增殖[10]。CARBE于2013年證明Pax6在眼的發育中發揮獨特的作用,但在大腦的發育中,Pax6可以在功能上被含有相似PD結構域結合特異性的PAX家族基因所代替[11]。HUETTL于2015年證明Pax6不僅依靠其包括paired domain 和 homeodomain(HD)的完整分子結構執行其功能,而且每一個亞結構域也有其獨特的功能[8]?!颈狙芯壳腥朦c】Pax6已被證明在黑色素細胞的分化和黑色素的生成中發揮重要作用[12-13]。Pax6不僅包含PAX家族共有的PD,還包含有homeodomain和C端富含脯氨酸、絲氨酸、蘇氨酸的PST區域。PD和HD通過識別不同的DNA靶點,既合作又獨立的來調控不同的分子機制。FAVOR發現在Pax6的編碼序列中第309個堿基C突變為T,從而使轉錄終止,形成了只含有Pax6 PAI完整結構的氨基酸序列[14],破壞了RED的螺旋-轉角-螺旋結構,保留了PAI完整的螺旋-轉角-螺旋結構。這為筆者以研究Pax6 PAI 亞結構域的功能為途徑探究PAX轉錄因子家族PAI亞結構域的功能提供了基礎?!緮M解決的關鍵問題】本試驗在細胞水平,過表達Pax6 PAI 亞結構域,來探究其能否作為反式作用因子調控下游基因的表達,并通過生物信息學的分析方法,嘗試解釋其作用機理。
試驗于2015年3月至2016年1月在山西農業大學羊駝生物工程實驗室完成。
1.1 試驗材料
黑色素細胞培養基(Sciencell,美國),Trizol(Invitrogen,美國),RIPA 蛋白裂解液(碧云天,北京),RT-PCR Kit(康為,北京),MITF 多克隆抗體,TYR 多克隆抗體,TYRP1多克隆抗體,TYRP2多克隆抗體。
1.2 試驗方法
1.2.1 小鼠Pax6 PAI亞結構域二級結構和下游基因結合位點分析 二級結構通過Psipred(http://bioinf.cs. ucl.ac.uk/psipred/)分析獲得[15],下游基因結合位點通過NCBI(http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb. cgi)分析獲得[16]。
1.2.2 小鼠MITF、TYR、TYRP1和TYRP2啟動子中Pax6作用位點預測 通過Jaspar(http://jaspar.genereg.net/)預測獲得。
1.2.3 小鼠Pax6 PAI亞結構域基因片段的克隆和真核表達載體構建 通過普通PCR克隆PAI 亞結構域基因片段,并將其連入T載體,再將其酶切后連接在慢病毒載體中,送公司測序確認。
1.2.4 細胞培養和轉染 將小鼠黑色素細胞培養于6孔板中,設置正常組、空載組和試驗組。細胞轉染時,將轉染試劑與表達載體形成的脂質體加入正常培養基中,37℃培養細胞60 h,進行轉染結果檢測。
1.2.5 黑色素含量測定 用胰酶將黑色素細胞從細胞培養板上消化下來,用PBS清洗后細胞計數。用0.2 mol·L-1NaOH溶解細胞,使用酶標儀在475 nm 波長進行測值。用烏賊墨標準品做標準曲線[17]。
1.2.6 Real-time PCR檢測 Trizol法提取轉染細胞RNA,反轉錄獲得cDNA。根據熒光定量PCR結果的CT 值計算試驗結果,目的基因的相對表達水平=2–△△CT,所有數據用GraphPad Prism5.0進行統計分析,實時熒光定量PCR 結果均用均值±標準誤(Means ± SEM)表示,其中各基因的表達量均經β-actin校正,兩組之間的數據比較全部采用GraphPad Prism5.0 統計軟件進行t檢驗,三組之間的比較全部采用單因素方差分析。
1.2.7 蛋白免疫印跡試驗 RIPA蛋白裂解液提取轉染細胞蛋白,200 ng上樣量進行SDS-PAGE 電泳,后轉至NC 膜。抗體所用濃度為1 000倍稀釋。孵育二抗后,用ECL顯色后暗室曝光,獲得有條帶的膠片,分析。用Image-ProPlus 6.0 軟件對行條帶面積和灰度值半定量分析,數據均用Means ± SEM 表示,兩組之間的數據比較全部采用GraphPad Prism5.0 統計軟件進行t檢驗,三組之間的比較全部采用單因素方差分析。
2.1 小鼠Pax6 PAI 亞結構域

圖1 Pax6 PD 結構域結構分析Fig. 1 The structure analysis of Pax6 PD domain
結構完整性分析發現,Pax6 PD 結構域 是由PAI和RED 亞結構域組成(圖1-A),PAI和RED亞結構域都含有螺旋-轉角-螺旋結構,當編碼Pax6基因cds區的第307個堿基由C突變為T后,在307—309堿基處形成了一個終止密碼子,從而使翻譯提前終止,形成了一個由Pax6前309個堿基序列翻譯出的102個氨基酸殘基組成的氨基酸序列。完整的PD含有128個氨基酸殘基,該突變位點將RED亞結構域的螺旋-轉角-螺旋結構破壞,而在形成的氨基酸序列中保留了完整的PAI亞結構域。且通過對PAX家族保守性分析可知,PD與下游基因的結合位點主要集中在前102個氨基酸序列(圖1-B)。
2.2 小鼠黑色素細胞培養及細胞轉染
細胞接種12 h后,即可見細胞貼壁伸展,24 h后細胞呈典型的樹突狀。細胞密度達到70%時,添加脂質體和載體的混合物,60 h后通過熒光顯微鏡觀察轉染結果(圖2)。
2.3 細胞轉染后相關檢測
2.3.1 Pax6 PAI亞結構域與MITF相互作用檢測 提取轉染后試驗組和空載組RNA和蛋白后,使用RT-PCR和Western blot 檢測(圖3),并使用Jaspar預測PD 結構域在MITF啟動子上的作用位點。通過分析結果顯示:在MITF轉錄起始位點前695個堿基處預測出存在PD 結構域與MITF的結合位點(圖4-A),同時通過RT-PCR和Western blot結果分析,與空載組相比,試驗組MITF mRNA升高2.05倍(P<0.01,圖4-B);蛋白質升高1.7倍(P<0.01,圖4-C)。由此得出,PAI 亞結構域可以與MITF啟動子作用促進MITF表達。

圖2 黑色素細胞培養和轉染Fig. 2 Melanocyte culture and transfection

圖3 Western blot 檢測圖Fig.3 The picture of Western blot
2.3.2 Pax6 PAI亞結構域與TYR相互作用檢測 提取轉染后試驗組和空載組RNA和蛋白后,使用RT-PCR和Western blot 檢測(圖3),并使用Jaspar預測PD結構域在TYR啟動子上的作用位點。通過統計分析獲得結果顯示:在TYR轉錄起始位點前873和1 133個堿基處預測出存在PD 結構域與TYR的結合位點(圖5-A),同時通過RT-PCR和Western blot結果分析,與空載組相比,試驗組TYR mRNA升高2.09倍(圖5-B);蛋白質顯著升高2倍(P<0.05)(圖5-C)。說明PAI亞結構域仍然可以促進TYR的表達。

圖4 MITF相關檢測Fig. 4 The detection results of MITF

圖5 TYR相關檢測Fig.5 The detection results of TYR
2.3.3 Pax6 PAI亞結構域與TYRP1相互作用檢測提取轉染后試驗組和空載組RNA和蛋白后,使用RT-PCR和Western blot 檢測(圖3),并使用Jaspar預測PD 結構域在TYRP1啟動子上是否存在作用位點。通過分析結果顯示:在TYRP1轉錄起始位點前629個堿基處預測出存在PD結構域與TYRP1的結合位點(圖6-A),同時通過RT-PCR和Western blot結果分析,與空載組相比,試驗組TYRP1 mRNA升高2.93倍(P<0.05)(圖6-B);蛋白質升高1.9倍(P<0.01)(圖6-C)。說明PAI 亞結構域仍然可以促進TYRP1的表達。
2.3.4 Pax6 PAI亞結構域與TYRP2相互作用檢測提取轉染后試驗組和空載組RNA和蛋白后,使用RT-PCR和Western blot 檢測(圖3),并使用Jaspar預測PD 結構域在TYRP2啟動子上是否存在作用位點。通過分析結果顯示:在TYRP2轉錄起始位點前655個堿基處預測出存在PD 結構域與TYRP2的結合位點(圖7-A),同時通過RT-PCR和Western blot結果分析,與空載組相比,試驗組TYRP2 mRNA升高3.62倍(P<0.01)(圖7-B);蛋白質升高1.37倍(圖7-C)。說明PAI 亞結構域仍然可以促進TYRP2的表達。

圖6 TYRP1相關檢測Fig. 6 The detection results of TYRP1
2.4 轉染后黑色素含量測定
收集空載組和試驗組黑色素細胞,通過酶標儀對黑色素含量進行測定。試驗組的黑色素含量是空載組黑色素含量的1.33倍(P<0.001)(圖8)。說明PAI 亞結構域仍然可以促進黑色素細胞中黑色素含量增多。
本試驗通過將Pax6 PAI 亞結構域在黑色素細胞中過量表達,結合生物信息學的分析方法,來探究PAX轉錄因子家族共有的PD結構域氨基端的PAI亞結構域在調控下游基因中的作用。前人的研究得出,Pax6在黑色素細胞的分化和黑色素的產生中發揮著至關重要的作用,且其與黑色素生成通路中的MITF[18-20]、TYR[21-22]、TYRP1[23-24]、TYRP2[25]和β-catenin[26-28]有著密切的聯系。故本試驗將MITF、TYR、TYRP1和TYRP2作為目標基因,使用RT-PCR和Western blot來檢測這些基因表達的變化,同時對黑色素細胞的黑色素生成量進行測定。結果顯示,通過預測發現,在MITF、TYR、TYRP1和TYRP2的啟動子中都可以找到Pax6 PD 結構域的結合位點,過量表達PAI亞結構域后,黑色素細胞中MITF、TYR、TYRP1和TYRP2的表達量在mRNA和蛋白質水平都會升高,并且黑色素細胞的黑色素生成量也會增多。

圖7 TYRP2相關檢測Fig.7 The detection results of TYRP2

圖8 過表達Pax6 PAI 亞結構域對黑色素細胞中黑色素生成的影響Fig. 8 Melanin production in melanocytes over-expressing Pax6 PAI subdomain structure
FUJIMURA在2015年通過試驗得出,Pax6可以與MITF和β-catenin協同作用促進TYR和TYRP1的表達,但是Pax6只有在MITF存在的情況下才能激活TYR和TYRP1的啟動子,Pax6在沒有MITF存在的情況下是不會激活TYR和TYRP1的啟動子[10]。PLANQUE證明Pax6與MITF協同作用調節下游基因的表達時,主要是與MITF的b-HLH-LZ 結構域相互作用[29]。YASUMOTO證明在Pax6表達存在缺陷的視網膜色素上皮細胞中,TYR的表達量降低1.58倍(P<0.05),TYRP1的表達量降低1.91倍(P<0.01)[23,30]。本試驗結果得出,在過量表達PAI亞結構域的情況下,MITF mRNA升高2.05倍,蛋白質升高1.7倍,說明PAI亞結構域仍然可以通過調控MITF的啟動子來促進MITF的表達。TYR mRNA升高2.09倍,蛋白質升高2倍;TYRP1 mRNA升高2.93倍,蛋白質升高1.9倍;TYRP2 mRNA升高3.62倍,蛋白質升高1.37倍,由此可以得出PAI 亞結構域仍然可以使TYR、TYRP1和TYRP2的表達量升高,但是本試驗不能確定PAI亞結構域能否還可以與MITF的b-HLH-LZ結構域相互作用,其促進TYR和TYRP1的表達是與MITF協同作用的結果,還是通過促進MITF的表達間接促進TYR和TYRP1的表達,這需要進一步進行試驗加以確認。同時尚未有研究報道Pax6作為轉錄因子是如何作用于TYRP2的,其促進TYRP2的表達是否也需要MITF的存在。與此同時,試驗組的黑色素含量也與空載組相比升高1.33倍,說明PAI 亞結構域仍然可以通過促進調節黑色素生成相關基因的表達來促進黑色素細胞黑色素的生成(圖9)。
PD結構域是PAX轉錄因子家族共有的結構域,而位于PD結構域氨基端的PAI亞結構域在PD結合下游基因啟動子中發揮重要的作用,而PD結構域羧基端的RED亞結構域是否也有其獨特的功能?尚待進一步深入的研究。

圖9 Pax6 PAI亞結構域調控黑色素生成通路Fig. 9 The pathway of Pax6 PAI subdomain in regulating melanogenesis
在小鼠黑色素細胞中,過表達Pax6 PAI 亞結構域可以促進MITF、TYR、TYRP1和TYRP2的表達,進而使黑色素細胞黑色素的生成量增加。
[1] COHEN M A, WERT K J, GOLDMANN J, MARKOULAKI S, BUGANIM Y, FU D, JAENISCH R. Human neural crest cells contribute to coat pigmentation in interspecies chimeras after in utero injection into mouse embryos. Proceedings of the National Academy of Sciences of the United States of America 2016, 113: 1570-1575.
[2] CHEN Y, PAN L, SU Z, WANG J, LI H, MA X, LIU Y, LU F, QU J, HOU L. The transcription factor TBX2 regulates melanogenesis in melanocytes by repressing Oca2. Molecular and Cellular Biochemistry 2016, 415(1/2):103-109.
[3] HEVER A M, WILLIAMSON K A, VAN HEYNINGEN V. Developmental malformations of the eye: The role of PAX6, SOX2 and OTX2. Clinical Genetics, 2006, 69(6):459-470.
[4] MONSORO-BURQ A H. PAX transcription factors in neural crest development. Seminars in Cell & Developmental Biology, 2015, 44: 87-96.
[5] WEI F, LI M, CHENG S Y, WEN L, LIU M H, SHUAI J. Cloning, expression, and functional characterization of the rat Pax6 5a orthologous splicing variant. Gene, 2014, 547(1):169-174.
[6] PAIXAO-CORTES V R, SALZANO F M, BORTOLINI M C. Origins and evolvability of the PAX family. Seminars in Cell & Developmental Biology, 2015, 44:64-74.
[7] EPSTEIN J A, GLASER T, CAI J, JEPEAL L, WALTON D S, MAAS R L. Two independent and interactive DNA-binding subdomains of the Pax6 paired domain are regulated by alternative splicing. Genes & Development, 1994, 8(17):2022-2034.
[8] HUETTL R E, ECKSTEIN S, STAHL T, PETRICCA S, NINKOVIC J, GOTZ M, HUBER A B. Functional dissection of the Pax6 paired domain: Roles in neural tube patterning and peripheral nervous system development. Developmental Biology, 2015,413:86-103.
[9] BERY A, MEROT Y, RETAUX S. Genes expressed in mouse cortical progenitors are enriched in Pax, Lhx, and Sox transcription factor putative binding sites. Brain Research, 2015,1633:37-51.
[10] FUJIMURA N, KLIMOVA L, ANTOSOVA B, SMOLIKOVA J, MACHON O, KOZMIK Z. Genetic interaction between Pax6 and β-catenin in the developing retinal pigment epithelium. DevelopmentGenes and Evolution, 2015, 225(2):121-128.
[11] CARBE C, GARG A, CAI Z, LI H, POWERS A, ZHANG X. An allelic series at the paired box gene 6 (Pax6) locus reveals the functional specificity of Pax genes. The Journal of Biological Chemistry, 2013, 288(17):12130-12141.
[12] ZHANG S J, LI Y F, TAN R R, TSOI B, HUANG W S, HUANG Y H, TANG X L, HU D, YAO N, YANG X. A new gestational diabetes mellitus model, hyperglycemia-induced eye malformation via inhibiting Pax6 in chick embryo. Disease Models & Mechanisms, 2016, 9:177-186.
[13] 聶瑞強, 楊玉靜, 謝建山, 范瑞文, 高文俊, 董常生. 黑色素細胞中過量表達Pax610Neu基因對MITF和TYR的影響. 中國農業科學, 2016, 49(11):2214-2221. NIE R Q, YANG Y J, XIE J S, FAN R W, GAO W J, DONG C S. The influences of over-expressing Pax610Neuon MITF and TYR in melanocytes. Scientia Agricultura Sinica, 2016, 49(11):2214-2221.(in Chinese)
[14] FAVOR J, PETERS H, HERMANN T, SCHMAHL W, CHATTERJEE B, NEUHAUSER-KLAUS A, SANDULACHE R. Molecular characterization of Pax6(2Neu) through Pax6(10Neu): an extension of the Pax6 allelic series and the identification of two possible hypomorph alleles in the mouse Mus musculus. Genetics, 2001, 159(4): 1689-1700.
[15] SHUKLA S, MISHRA R. Predictions on impact of missense mutations on structure function relationship of PAX6 and its alternatively spliced isoform PAX6(5a). Interdisciplinary Sciences, Computational Life Sciences, 2012, 4(1):54-73.
[16] MARCHLER-BAUER A, DERBYSHIRE M K, GONZALES N R, LU S, CHITSAZ F, GEER L Y, GEER R C, HE J, GWADZ M, HURWITZ D I. CDD: NCBI's conserved domain database. Nucleic Acids Research, 2015, 43(Database issue):D222-226.
[17] DONG Y, WANG H, CAO J, REN J, FAN R, HE X, SMITH G W, DONG C. Nitric oxide enhances melanogenesis of alpaca skin melanocytes in vitro by activating the MITF phosphorylation. Molecular and Cellular Biochemistry, 2011, 352(1/2):255-260.
[18] SINGH R K, MALLELA R K, CORNUET P K, REIFLER A N, CHERVENAK A P, WEST M D, WONG K Y, NASONKIN I O. Characterization of three-dimensional retinal tissue derived from human embryonic stem cells in adherent monolayer cultures. Stem Cells and Development, 2015, 24(23):2778-2795.
[19] PARVINI M, PARIVAR K, SAFARI F, TONDAR M. Generation of eye field/optic vesicle-like structures from human embryonic stem cells under two-dimensional and chemically defined conditions. In vitro Cellular & Developmental Biology Animal, 2015, 51(3): 310-318.
[20] 朱芷葳, 賀俊平, 于秀菊, 程志學, 董常生. Mitf-M在羊駝皮膚組織的表達與序列分析及免疫組織化學定位. 中國農業科學, 2012, 45(4):794-800. ZHU Z W, HE J P, YU X J, CHENG Z X, DONG C S. Expression, sequence analysis and immunohistochemical localization of Mitf-M transcription factor in alpaca skin. Scientia Agricultura Sinica, 2012, 45(4):794-800. (in Chinese)
[21] SUZUKI K T, ISOYAMA Y, KASHIWAGI K, SAKUMA T, OCHIAI H, SAKAMOTO N, FURUNO N, KASHIWAGI A, YAMAMOTO T. High efficiency TALENs enable F0 functional analysis by targeted gene disruption in Xenopus laevis embryos. Biology Open, 2013, 2(5): 448-452.
[22] YAHALOM C, SHARON D, DALIA E, SIMHON S B, SHEMESH E, BLUMENFELD A. Combined occurrence of autosomal dominant aniridia and autosomal recessive albinism in several members of a family. Ophthalmic Genetics, 2015, 36(2):175-179.
[23] RAVIV S, BHARTI K, RENCUS-LAZAR S, COHEN-TAYAR Y, SCHYR R, EVANTAL N, MESHORER E, ZILBERBERG A, IDELSON M, REUBINOFF B. PAX6 regulates melanogenesis in the retinal pigmented epithelium through feed-forward regulatory interactions with MITF. PLoS Genetics, 2014, 10(5):e1004360.
[24] 馬淑慧, 薛霖莉, 徐剛, 侯亞琴, 耿建軍, 曹靖, 赫曉燕, 王海東,董常生. 黑色素細胞中過量表達miR-137對TYRP-1和TYRP-2的影響. 中國農業科學, 2013, 46(16):3452-3459. MA S H, XUE L L, XU G, HOU Y Q, GENG J J, CAO J, HE X Y, WANG H D, DONG C S. The Influences of over-expressing miR-137 on TYRP-1 and TYRP-2 in melanocytes. Scientia Agricultura Sinica, 2013, 46(16): 3452-3459. (in Chinese)
[25] YANG S, ZHANG J, JI K, JIAO D, FAN R, DONG C. Characterization and expression of soluble guanylate cyclase in skins and melanocytes of sheep. Acta Histochemica, 2016,118:219-224.
[26] ZEMKE M, DRAGANOVA K, KLUG A, SCHOLER A, ZURKIRCHEN L, GAY M H, CHENG P, KOSEKI H, VALENTA T, SCHUBELER D. Loss of Ezh2 promotes a midbrain-to-forebrain identity switch by direct gene derepression and Wnt-dependent regulation. BMC Biology, 2015, 13:103.
[27] CANTU C, ZIMMERLI D, HAUSMANN G, VALENTA T, MOOR A, AGUET M, BASLER K. Pax6-dependent, but β-catenin-independent, function of Bcl9 proteins in mouse lens development. Genes & Development, 2014, 28(17):1879-1884.
[28] 賈小云, 金雷皓, 苗瀲涓, 丁娜, 范瑞文, 董常生. miR-663通過靶向TGF-β1調控羊駝黑色素細胞的黑色素生成. 中國農業科學, 2015,48(1):165-173. JIA X Y, JIN L H, MIAO L J, DING N, FAN R W, DONG C S. Melanin synthesis of alpaca melanocytes regulated by miR-663 through targeting TGF-β1. Scientia Agricultura Sinica, 2015, 48(1): 165-173. (in Chinese)
[29] PLANQUE N, LECONTE L, COQUELLE FM, MARTIN P, SAULE S. Specific Pax-6/microphthalmia transcription factor interactions involve their DNA-binding domains and inhibit transcriptional properties of both proteins. The Journal of Biological Chemistry, 2001, 276(31):29330-29337.
[30] YASUMOTO K, YOKOYAMA K, TAKAHASHI K, TOMITA Y, SHIBAHARA S. Functional analysis of microphthalmia-associated transcription factor in pigment cell-specific transcription of the human tyrosinase family genes. The Journal of Biological Chemistry 1997, 272(1):503-509.
(責任編輯 林鑒非)
Influences of Pax6 PAI Subdomain on MITF, TYR, TYRP1 and TYRP2 in Melanocytes
NIE Rui-qiang1, YANG Yu-jing1, XIE Jian-shan1,2, FAN Rui-wen1, XU Dong-mei1, YU Xiu-ju1, DUAN Zhi-cheng1, DONG Chang-sheng1
(1College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi;2School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001)
【Objective】 Highly conserved PAX family has important effects on the differentiation of melanocytes and production of melanin. It has mainly binding sites with target gene in PD domain that is included by all of PAX family, on the otherhand, the PAI subdomain, which is located in amino terminal of PD domain, has most important effects on PD domain which bound with target gene. Many reports show that Pax6 has the most important effects on the differentiation of retinal pigment epithelial cells. This experiment studies the function of PD domain and PAI subdomain of PAX family by analysing the function of Pax6 PAI subdomain.【Method】The structure of Pax6 PD domain was analyzed by Psipred. The target gene binding sites of Pax6 PD domain was analyzed by NCBI. The binding sites of Pax6 PD domain to the promoter of MITF, TYR, TYRP1, and TYRP2 were analyzed by Jasper. The coding sequences of Pax6 PAI subdomain was amplified by PCR and the Pax6 PAI subdomain was cloned into the T-Vector, meanwhile, confirmed by sequencing. The fragment was then subcloned into a mammalian expression vector, resulting in a construction that contained a promoter driving the expression of green fluorescent protein (GFP). The plasmid vector was confirmed by sequencing. Then, the mouse melanocytes were transfected with the vector using Liposome 2000. Three methods were used in the result test, they were quantitative real-time PCR, western blot and melanin content measurement. 【Result】The target gene binding sites of Pax6 PD domain was mainly distributed in PAI subdomain which is located in amino terminal of PD domain. There was a binding site of Pax6 PD domain at -695 base of MITF promoter; Two binding sites of Pax6 PD domain at -873 base and -1133 base of TYR promoter; One binding site of Pax6 PD domain at -629 base of TYRP1 promoter; And one binding site of Pax6 PD domain at -655 base of TYRP2 promoter. The RT-PCR and western blot results showed that the four target genes and melanin content were significantly increased. MITF mRNA was significantly increased by 2.05 times (P<0.01), TYR mRNA was increased by 2.09 times, TYRP1 mRNA was increased by 2.93 times(P<0.05), TYRP2 mRNA was increased by 3.62 times (P<0.01). Compared with the control group, MITF protein was significantly increased by 1.7 times (P<0.01), TYR protein was increased to 2 times (P<0.05), TYRP1 protein was increased by 1.9 times(P<0.01), TYRP2 protein was increased to 1.37 times. Meanwhile, the melanin content was significantly increased by 1.33 times (P<0.001).【Conclusion】Results of the study demonstrated that the Pax6 PAI subdomain still promoted the expression of MITF, TYR, TYRP1, and TYRP2, while increased the production of melanin of melanocytes.
PAI subdomain; Pax6; melanin
2016-01-26;接受日期:2016-07-29
國家高技術研究發展計劃(863計劃, 2013AA102506)、國家公益性行業(農業)科研專項(201303119)、山西農業大學創新團隊建設計劃項目(CXTD201201)
聯系方式:聶瑞強,E-mail:libernie@126.com。通信作者董常生,E-mail:cs_dong@sxau.edu.cn