999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

ENDOMORPHISM ALGEBRAS IN THE YETTER-DRINFEL'D MODULE CATEGORY OVER A REGULAR MULTIPLIER HOPF ALGEBRA

2016-12-07 08:58:47YANGTaoLIUGuangjinZHOUXuan
數(shù)學(xué)雜志 2016年6期
關(guān)鍵詞:南京

YANG Tao,LIU Guang-jin,ZHOU Xuan

(1.School of Science,Nanjing Agricultural University,Nanjing 210095,China)

(2.School of Veterinary Medicine,Nanjing Agricultural University,Nanjing 210095,China)

(3.School of Mathematics and Information Technology,Jiangsu Second Normal University, Nanjing 210013,China)

ENDOMORPHISM ALGEBRAS IN THE YETTER-DRINFEL'D MODULE CATEGORY OVER A REGULAR MULTIPLIER HOPF ALGEBRA

YANG Tao1,LIU Guang-jin2,ZHOU Xuan3

(1.School of Science,Nanjing Agricultural University,Nanjing 210095,China)

(2.School of Veterinary Medicine,Nanjing Agricultural University,Nanjing 210095,China)

(3.School of Mathematics and Information Technology,Jiangsu Second Normal University, Nanjing 210013,China)

Endomorphism algebras in Yetter-Drinfel’d module category over a regular multiplier Hopf algebra are studied in this paper.By the tools of multiplier Hopf algebra and Homological algebra theories,we get that two endomorphism algebras are isomorphic in the Yetter-Drinfel’d module category,which generalizes the results of Panaite et al.in Hopf algebra case.

multiplier Hopf algebra;Yetter-Drinfel’d module;Yetter-Drinfel’d module category

2010 MR Subject Classification:16T05;16T99

Document code:AArticle ID:0255-7797(2016)06-1111-09

1 Introduction

Multiplier Hopf algebra,introduced by Van Daele[1],can be naturally considered as a generalization of Hopf algebra when the underlying algebra is no longer assumed to have a unit.Yetter-Drinfel'd module category,as an important content in Hopf algebras theory, was also studied by Van Daele and his collaborators.All the objects they discussed are (non-degenerate)algebras(see[2]).

However,in the well-known Hopf algebras case,the objects of Yetter-Drinfel'd module category are only vector spaces satisfying some certain conditions.So in[3],the authors gave a new category structure for regular multiplier Hopf algebra A:(α,β)-Yetter-Drinfel'd module categoryAyDA(α,β),in which the objects were vector spaces,generalizing the former notions.

In this paper,we focus our work on(α,β)-Yetter-Drinfel'd module,mainly consider some algebras in Yetter-Drinfel'd modules category and get some isomorphisms.

The paper is organized in the following way.In Section 2,we recall some notions which we will use in the following,such as multiplier Hopf algebras,modules and complete modules for a multiplier Hopf algebras,comodules and(α,β)-Yetter-Drinfel'd modules.

In Section 3,we consider algebras inAyDA(α,β).Let α,β∈Aut(A),and M∈AyDA(α,β)be finite dimensional.Consider the object M'∈AyDA(αβ-1α,α),coinciding with M as left A-modules,and having a right A-comodule structure given by

2 Preliminaries

Throughout this paper,all spaces we considered are over a fixed field k.We consider A as an algebra with a nondegenerate product,it is possible to construct the multiplier algebra M(A).M(A)is an algebra with identity such that A sits in M(A)as an essential two-sided ideal,it can be also characterized as the largest algebra with identity containing A as an essential ideal.More details about the concept of the multiplier algebra of an algebra,we refer to[1].

An algebra morphism(or homomorphism)?:A-→M(A?A)is called a comultiplication on A if(a?b)=?(a)(1?b)and(a?b)=(a?1)?(b)are elements of A?A for all a,b∈A and if?is coassociative in the sense that the linear mappings:A?A-→A?A obey the relation where id denotes the identity map.

A pair(A,?)of an algebra A with nondegenerate product and a comultiplication?on A is called a multiplier Hopf algebra ifandare bijective(see[1]),(A,?)is regular if and only if the antipode of(A,?cop)is bijective.

Let(A,?,ε,S)be a regular multiplier Hopf algebra and M a vector space.Then M is called a(left-right)(α,β)-Yetter-Drinfel'd module over regular multiplier Hopf algebra A,if

(1)(M,·)is a left unital A-module,i.e.,A·M=M.

(2)(M,Γ)is a(right)A-comodule,where Γ:M→M0(M?A)denotes the right coaction of A on M,M0(M?A)denote the completed module.

(3)Γ and·satisfy the following compatible conditions

By the definition of Yetter-Drinfel'd modules,we can define(left-right)Yetter-Drinfel'd module categoryAyDA(α,β).The other three Yetter-Drinfel'd module categories are similar (more details see[3-5]).

AyDA(id,id)=AyDA,the left-right Yetter-Drinfel'd module category.

3 Endomorphism Algebras

Let A be a regular multiplier Hopf algebra,in this section,we mainly consider(left-right) Yetter-Drinfel'd module categoryAyDAover regular multiplier Hopf algebra A.

Definition 3.1 Let A be a multiplier Hopf algebra and C a unital algebra.C is called a left A-module algebra,if

(1)(C,·)is a left unital A-module,

(2)the module action satisfies

C is called right A-comodule algebra,if

(1)(C,ρ)is a right A-comodule,

(2)the comodule structure map ρ satisfies:for all a∈A,

Let C be a unital associative algebra inAyDA.That means C is an object inAyDA, and the multiplication C?C→C and a unit map ι:k→C satisfying associativity and unit axioms.

Proposition 3.2 C is a unital algebra inAyDAif and only if C is an object inAyDAand C is a left A-module algebra and a right Aop-comodule algebra.

We denote by Copthe usual opposite algebra,with the multiplication c·c'=c'c for all c,c'∈C,and bythe A-opposite algebra,which means C as an object inAyDA,but with the multiplicationfor all c,c'∈C,i.e.,the opposite of C in the categoryAyDA.

Proposition 3.3 By above notation,if C is an algebra inAyDA,thenis an algebra inAyDA.

Proposition 3.4 If C,D are algebras inAyDA,then C?D is also an algebra inAyDAwith the following structures

Proof It is obvious.Indeed,this algebra structure on C?D given above is just the braided tensor product of C and D in the braided tensor categoryAyDA.

We now introduce the endomorphism algebras associated to(α,β)-Yetter-Drinfel'd modules.

Proposition 3.5 Let α,β∈Aut(A)and M∈AyDA(α,β)be finite dimensional.Then

(1)End(M)is an algebra inAyDAwith structures

for all a,a'∈A,u∈End(M)and m∈M.

(2)End(M)opis an algebra inAyDAwith structures

for all a,a'∈A,u∈End(M)opand m∈M.

Proof We only prove(1)here,(2)is similar.For(1),we first show that End(M)is an object inAyDA.In the following,we show the main process:the compatible condition ofAyDA,i.e.,

It holds,since

and

Then we need to show that the product defined in(1)is A-linear and A-colinear.

and

It is easy to get a·id=ε(a)id and ρ(id)=id?1,where id is the unit in End(M).This completes the proof.

Remark here that

are equivalent.

Proposition 3.6 Let α,β∈Aut(A),and M∈AyDA(α,β).Define a new object M'as follows:M'coincides with M as left A-modules,and has a right A-comodule structure

given by

for all a'∈A and m∈M,where

and ρ is the comodule structure of M.Then

Proof We can get the conclusion by direct computation.

this implies M'∈AyDA(αβ-1α,α).

Theorem 3.7 Let α,β∈Aut(A),and M∈AyDA(α,β)be finite dimensional.Consider the object M'∈AyDA(αβ-1α,α)as above.Define the map

for all u∈End(M)and m∈M'.Then τ is an isomorphism of algebras inAyDA.

Proof Similar to the proof of Proposition 4.10 in[6].

First,τ is a homomorphism,since for u,v∈End(M),

Second,τ is A-linear,since

Third,τ is A-colinear.To prove this,we have to show that ρτ=(τ?l)ρ,where ρ is the A-comodule structure of End(M')op.Denote ρ(v)(1?a)=v(0)?v(1)a,we have to prove

for all a∈A,

Finally,we will show that τ is bijective,we define

for v∈End(M')op.We can check that ττ-1=τ-1τ=id and τ-1is A-linear and A-colinear.

This completes the proof.

The definition of τ is meaningful.Because for finite i,there is an e∈A such that eai=aifor all i=1,···,n.Here

where ρ is the right A-comodule structure of End(M).

From Proposition 3.5 and the notion◇M defined in Section 3 of[5],we can get the following results:

Proposition 3.8 Let α,β∈Aut(A),and M∈AyDA(α,β)be finite dimensional.Then End(M)opEnd(◇M)as algebras inAyDA.

Proof Denote the map ?:End(M)op-→End(◇M)by ?(u)=u?for u∈End(M)op.It is an algebra isomorphism.

The map ? is A-linear,the proof is similar as in Proposition 4.11 in[6].Then we need to show ? is A-colinear.Indeed,by Proposition 3.5 and the structures of◇M,we can compute as follows:for all u∈End(M)op,f∈◇M,m∈M,and a∈A,

and

From all above,we use the adapted Sweedler notation,it seems that the definitions and proofs are similar as in the(weak)Hopf algebra case(see,e.g.[7]).However,we should notice the‘cover’technique introduced in[8].

References

[1]Van Daele A.Multiplier Hopf algebras[J].Trans.American Math.Soc.,1994,342(2):917-932.

[2]Delvaux L.Yetter-Drinfel’d modules for group-cograded multiplier Hopf algebras[J].Commun.Algebra,2008,36(8):2872-2882.

[3]Yang T,Wang S H.Constructing new braided T-categories over regular multiplier Hopf algebras[J]. Commun.Algebra,2011,39(9):3073-3089.

[4]Delvaux L,Van Daele A,Wang Shuanhong.Bicrossproducts of multiplier Hopf algebras[J].J.Algebra,2011,343(1):11-36.

[5]Yang T,Zhou X,Ma T S.On braided T-categories over multiplier Hopf algebras[J].Commun. Algebra,2013,41(8):2852-2868.

[6]Panaite F,Van Oystaeyen F.Quasi-elementary H-Azumaya algebras arising from generalized(anti) Yetter-Drinfel’d modules[J].Appl.Categ.Struct.,2009,19(5):803-820.

[7]Zhou X,Yang T.Kegel’s theorem over weak Hopf group coalgebras[J].J.Math.,2013,33(2):228-236.

[8]Van Daele A.Tools for working with multiplier Hopf algebras[J].Arabian J.Sci.Engin.,2008, 33(2C):505-527.

正則乘子Hopf代數(shù)上Yetter-Drinfel'd模范疇中的自同構(gòu)代數(shù)

楊濤1,劉廣錦2,周璇3

(1.南京農(nóng)業(yè)大學(xué)理學(xué)院,江蘇南京210095)
(2.南京農(nóng)業(yè)大學(xué)動(dòng)物醫(yī)學(xué)院,江蘇南京210095)
(3.江蘇第二師范學(xué)院數(shù)學(xué)與信息技術(shù)學(xué)院,江蘇南京210013)

本文研究了正則乘子Hopf代數(shù)上Yetter-Drinfel’d模范疇中自同構(gòu)代數(shù)的問(wèn)題.利用乘子Hopf代數(shù)以及同調(diào)代數(shù)理論中的方法,獲得了Yetter-Drinfel’d模范疇中兩個(gè)自同構(gòu)代數(shù)是同構(gòu)的結(jié)果,推廣了Panaite等人在Hopf代數(shù)中的結(jié)果.

乘子Hopf代數(shù);Yetter-Drinfel’d模;Yetter-Drinfel’d模范疇

MR(2010)主題分類(lèi)號(hào):16T05;16T99O153.3

?date:2014-03-24Accepted date:2014-11-11

Supported by National Natural Science Foundation of China(11226070; 11326063).

Biography:Yang Tao(1984-),male,born at Huaian,Jiangsu,doctor,major in Hopf algebras.

猜你喜歡
南京
南京比鄰
“南京不會(huì)忘記”
南京大闖關(guān)
江蘇南京卷
南京·九間堂
金色年華(2017年8期)2017-06-21 09:35:27
南京·鴻信云深處
金色年華(2017年7期)2017-06-21 09:27:54
南京院子
電影(2017年1期)2017-06-15 16:28:04
又是磷復(fù)會(huì) 又在大南京
南京:誠(chéng)實(shí)書(shū)店開(kāi)張
南京、南京
主站蜘蛛池模板: 亚洲国产系列| 四虎影视库国产精品一区| 久久超级碰| 99热这里只有精品国产99| 国产精鲁鲁网在线视频| 亚洲国产精品一区二区第一页免| 国产又黄又硬又粗| 自慰高潮喷白浆在线观看| 午夜人性色福利无码视频在线观看| 九九视频在线免费观看| 国产精品亚欧美一区二区| 国产亚洲视频免费播放| 干中文字幕| 亚洲欧美另类专区| 日韩久草视频| 国产成人亚洲无码淙合青草| 日韩福利在线观看| 国精品91人妻无码一区二区三区| 97视频在线观看免费视频| 色欲国产一区二区日韩欧美| 最新国产精品鲁鲁免费视频| 国产精品偷伦视频免费观看国产| 国产黑人在线| 国产精品护士| 91av成人日本不卡三区| 亚洲国产黄色| 欧美亚洲日韩中文| 自偷自拍三级全三级视频| 香蕉视频在线观看www| 国产高清在线丝袜精品一区| 午夜一区二区三区| 四虎综合网| 精品国产成人av免费| 午夜少妇精品视频小电影| 强奷白丝美女在线观看| 中文天堂在线视频| 91在线精品免费免费播放| 日本亚洲欧美在线| 在线观看国产黄色| 国产精品九九视频| 久久久久九九精品影院| av天堂最新版在线| 欧美成人日韩| 日韩欧美国产另类| 这里只有精品在线播放| 精品国产黑色丝袜高跟鞋| 国产激情在线视频| 国产毛片片精品天天看视频| 国产精品视频导航| 亚洲婷婷在线视频| 精品丝袜美腿国产一区| 91精品视频在线播放| 成人精品区| 国产黄色片在线看| 免费jjzz在在线播放国产| 嫩草国产在线| 日韩午夜伦| 亚洲国产亚洲综合在线尤物| 亚洲免费黄色网| 91国语视频| 丝袜久久剧情精品国产| 欧美视频免费一区二区三区| 欧美在线伊人| 久久久无码人妻精品无码| 精品久久久久无码| 亚洲成人高清无码| 国产人成乱码视频免费观看| 国产成人精品男人的天堂下载| 色婷婷色丁香| 国产99精品视频| 免费无遮挡AV| 理论片一区| a网站在线观看| 国产精品亚洲一区二区在线观看| 国产剧情一区二区| 黄色网页在线播放| 99在线观看免费视频| 波多野结衣无码AV在线| 欧美一级高清片欧美国产欧美| 国产aaaaa一级毛片| 99免费视频观看| 在线免费观看AV|