999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

ON CONFORMABLE NABLA FRACTIONAL DERIVATIVE ON TIME SCALES

2016-12-07 08:58:55ZHAODafangYOUXuexiaoHUChangsong
數(shù)學(xué)雜志 2016年6期
關(guān)鍵詞:性質(zhì)

ZHAO Da-fang,YOU Xue-xiao,HU Chang-song

(School of Mathematics and Statistics,Hubei Normal University,Huangshi 435002,China)

ON CONFORMABLE NABLA FRACTIONAL DERIVATIVE ON TIME SCALES

ZHAO Da-fang,YOU Xue-xiao,HU Chang-song

(School of Mathematics and Statistics,Hubei Normal University,Huangshi 435002,China)

In this paper,we introduce and investigate the concept of conformable nabla fractional derivative on time scales.By using the theory of time scales,we obtain some basic properties of the conformable nabla fractional derivative,which extend and improve both the results in[9,10]and the usual nabla derivative.

conformable nabla fractional derivative;nabla derivative;time scales

2010 MR Subject Classification:26A33;26E70

Document code:AArticle ID:0255-7797(2016)06-1142-07

1 Introduction

Fractional Calculus is a generalization of ordinary differentiation and integration to arbitrary(non-integer)order.The subject is as old as the calculus of differentiation and goes back to times when Leibniz,Gauss,and Newton invented this kind of calculation.During three centuries,the theory of fractional calculus developed as a pure theoretical field,useful only for mathematicians.Nowadays,the fractional calculus attracts many scientists and engineers.There were several applications of this mathematical phenomenon in mechanics, physics,chemistry,control theory and so on[1-8].

Recently,the authors in[9]defined a new well-behaved simple fractional derivative called the conformable fractional derivative depending just on the basic limit definition of the derivative.Especialy,in[10],Nadia Benkhettou,Salima Hassani and Delfim Torres introduced a conformable time-scale fractional derivative,which providing a natural extension of the conformable fractional derivative.In this paper,we define the conformable nabla fractional derivative on time scales,which give another type of generalization of the conformable fractional derivative and the usual nabla derivative[11-14].

2 Preliminaries

A time scale T is a nonempty closed subset of real numbers R with the subspace topology inherited from the standard topology of R.For a,b∈T we define the closed interval[a,b]Tby[a,b]T={t∈T:a≤t≤b}.For t∈T we define the forward jump operator σ by σ(t)=inf{s>t:s∈T},where inf?=supT,while the backward jump operator ρ is defined by ρ(t)=sup{s<t:s∈T},where sup?=inf T.

If σ(t)>t,we say that t is right-scattered,while if ρ(t)<t,we say that t is leftscattered.If σ(t)=t,we say that t is right-dense,while if ρ(t)=t,we say that t is left-dense.A point t∈T is dense if it is right and left dense;isolated if it is right and left scattered.The forward graininess functionμ(t)and the backward graininess function η(t) are defined byμ(t)=σ(t)-t,η(t)=t-ρ(t)for all t∈T,respectively.If supT is finite and left-scattered,then we define Tk:=TsupT,otherwise Tk:=T;if inf T is finite and right-scattered,then Tk:=Tinf T,otherwise Tk:=T.We set

A function f:T→R is nabla(?)differentiable at t∈Tkif there exists a number f?(t)such that,for each ε>0,there exists a neighborhood U of t such that

for all s∈U.We call f?(t)the?-derivative of f at t.Throughout this paper,α∈(0,1].

3 Conformable Nabla Fractional Derivative

Definition 3.1 Let T be a time scale and α∈(0,1].A function f:T→R is conformable?-fractional differentiable of order α at t∈Tkif there exists a number Tα(f?)(t) such that,for each ε>0,there exists a neighborhood U of t such that

for all s∈U.We call Tα(f?)(t)the conformable?-fractional derivative of f of order α at t and we say that f is conformable?-fractional differentiable if f is conformable?-fractional differentiable for all t∈Tk.

Theorem 3.2 Let T be a time scale,t∈Tkand α∈(0,1].Then we have the following:

(i)If f is conformal?-fractional differentiable of order α at t,then f is continuous at t.

(ii)If f is continuous at t and t is left-scattered,then f is conformable?-fractional differentiable of order α at t with

(iii)If t is left-dense,then f is conformable?-fractional differentiable of order α at t if and only if the limitexists as a finite number.In this case,

(iv)If f is conformal?-fractional differentiable of order α at t,then

Proof (i)The proof is easy and will be omitted.

(ii)Assume that f is continuous at t and t is left-scattered.By continuity,

Hence given ε>0,there exists a neighborhood U of t such that

for all s∈U.It follows that

for all s∈U.Hence we get the desired result

(iii)Assume that f is conformable?-fractional differentiable of order α at t and t is right-dense.Then for each ε>0,there exists a neighborhood U of t such that

for all s∈U.Since ρ(t)=t we have thatfor all s∈U.It follows thatHence we get the desired result.

On the other hand,if the limitexists as a finite number and is equal to J,then for each ε>0,there exists a neighborhood U of t such that

for all s∈U.Since t is right-dense,we have that

Hence f is conformable?-fractional differentiable at t and Tα(f?)(t)=

(iv)If t is left-dense,then η(t)=0 and we have that

If t is left-scattered,then ρ(t)<t,then by(ii)

Corollary 3.3Again we consider the two cases T=R and T=Z.

(i)If T=R,then f:R→R is conformable?-fractional differentiable of order α at t∈R if and only if the limitexists as a finite number.In this case,

If α=1,then we have that Tα(f?)(t)=f?(t)=f'(t).

(ii)if T=Z,then f:Z→R is conformable?-fractional differentiable of order α at t∈Z with

If α=1,then we have that Tα(f?)(t)=f(t)-f(t-1)=?f(t),where?is the usual backward difference operator.

Example 3.4If f:T→R is defined by f(t)=C for all t∈T,where C∈R is constant,then Tα(f?)(t)≡0.

(ii)if f:T→R is defined by f(t)=t for all t∈T,then Tα(f?)(t)=ρ(t)1-α.If α=1, then Tα(f?)(t)≡1.

Example 3.5If f:T→R is defined by f(t)=t2for all t∈T:=from Theorem 3.2(ii)we have that f is conformable?-fractional differentiable of order α at t∈T with

Theorem 3.6 Assume f,g:T→R are conformable?-fractional differentiable of order α at t∈Tk,then

(i)for any constant λ1,λ2,the sum λ1f+λ2g:T→R is conformable?-fractional differentiable of order α at t with Tα((λ1f+λ2g)?)(t)=λ1Tα(f?)(t)+λ2Tα(g?)(t);

(ii)if f and g are continuous,then the product fg:T→R is conformable?-fractional differentiable of order α at t with

Proof (i)The proof is easy and will be omitted.

(ii)Let 0<ε<1.Define

then 0<∈?<1.f,g:T→R are conformable?-fractional differentiable of order α at t. Then there exists neighborhoods U1and U2of t with

for all s∈U1and

for all s∈U2.

From Theorem 3.2(i),there exists neighborhoods U3of t with|f(t)-f(s)|≤∈?for all s∈U3.

Let U=U1∩U2∩U3.Then we have for all s∈U

Thus Tα(fg)?(t)=f(t)Tα(g?)(t)+Tα(f?)(t)g(ρ(t)).The other product rule formula follows by interchanging the role of functions f and g.

(iii)From Example 3.4,we have that Tα(t)=Tα(1)?(t)=0.Therefore

and consequently Tα(

(iv)We use(ii)and(iii)to calculate

Theorem 3.7 Let c be constant and m∈N.

(i)For f defined by f(t)=(t-c)m,we have that

Proof (i)We prove the first formula by induction.If m=1,then f(t)=t-c,and clearly Tα(f?)(t)=ρ(t)1-αholds by Example 3.4 and Theorem 3.6(i).Now we assume that

holds for f(t)=(t-c)mand let F(t)=(t-c)m+1=(t-c)f(t).We use Theorem 3.6(ii) to obtain

Hence part(i)holds.

Example 3.8 If f:T→R is defined by f(t)=we have that f is conformable?-fractional differentiable of order α at t∈T with

References

[1]Miller K,Ross B.An introduction to the fractional calculus and fractional differential equations[M]. New York:Wiley,1993.

[2]Oldham K B,Spanier J.The fractional calculus[M].New York,London:Academic Press,1974.

[3]Podlubny I.Fractional differential equations[M].San Diego:Academic Press,1999.

[4]Herrmann R.Fractional calculus:an introduction for physicists[M].Singapore:World Sci.,2014.

[5]Sabatier J,Agrawal O P,Machado J A T.Advances in fractional calculus:theoretical developments and applications in physics and engineering[M].Berlin:Springer,2007.

[7]Meilanov R P,Magomedov R A.Thermodynamics in fractional calculus[J].J.Engin.Phys.Thermophys.,2014,87(6):1521-1531.

[8]Carpinteri A,Cornetti P,Alberto Sapora.Nonlocal elasticity:an approach based on fractional calculus[J].Meccanica,2014,49(11):2551-2569.

[9]Khalil R,Al Horani M,Yousef A,Sababheh M.A new definition of fractional derivative[J].J. Comput.Appl.Math.,2014,264:57-66.

[10]Benkhettou N,Hassani S,Torres D F M.A conformable fractional calculus on arbitrary time scales[J].J.King Saud Univ.Sci.,2016,28:93-98.

[11]Hilger S.Ein Makettenkalkl mit Anwendung auf Zentrumsmannigfaltigkeiten[D].Wurzburg:Universtat Wurzburg,1988.

[12]Hilger S.Analysis on measure chains-a unified approach to continuous and discrete calculus[J]. Results Math.,1990,18:18-56.

[13]Bohner M,Peterson A.Dynamic equations on time scales:an introduction with applications[M]. Boston:Birkhauser,2001.

[14]Bohner M,Peterson A.Advances in dynamic equations on time scales[M].Boston:Birkhauser,2004.

[15]Zhao Dafang,Ye Guoju.C-integral and denjoy-C integral[J].Comm.Korean.Math.Soc.,2007, 22(1):27-39.

[16]Zhao Dafang,Ye Guoju.On strong C-integral of Banach-valued functions[J].J.Chungcheong Math. Soc.,2007,20(1):1-10.

[17]Zhao Dafang.On the C1-integral[J].J.Math.,2011,31(5):823-828.

[18]Zhao Dafang,Li Biwen.A note on the C-integral[J].J.Math.,2011,31(4):594-598.

關(guān)于時標(biāo)上的適應(yīng)Nabla分?jǐn)?shù)階導(dǎo)數(shù)

趙大方,游雪肖,胡長松

(湖北師范大學(xué)數(shù)學(xué)與統(tǒng)計學(xué)院,湖北黃石435002)

本文研究了時標(biāo)上的適應(yīng)Nabla分?jǐn)?shù)階導(dǎo)數(shù)的問題.利用時標(biāo)理論,獲得了關(guān)于適應(yīng)Nabla分?jǐn)?shù)階導(dǎo)數(shù)的若干重要性質(zhì).這些結(jié)果推廣并改進了文獻[9,10]中的有關(guān)結(jié)論以及一般Nabla導(dǎo)數(shù)的性質(zhì).

適應(yīng)Nabla分?jǐn)?shù)階導(dǎo)數(shù);Nabla導(dǎo)數(shù);時標(biāo)

MR(2010)主題分類號:26A33;26E70O174.1

?date:2016-01-22Accepted date:2016-04-22

Supported by Educational Commission of Hubei Province of China (Q20152505).

Biography:Zhao Dafang(1982-),male,born at Linyi,Shandong,master,major in Henstock integral theory.

猜你喜歡
性質(zhì)
含有絕對值的不等式的性質(zhì)及其應(yīng)用
MP弱Core逆的性質(zhì)和應(yīng)用
弱CM環(huán)的性質(zhì)
一類非線性隨機微分方程的統(tǒng)計性質(zhì)
隨機變量的分布列性質(zhì)的應(yīng)用
一類多重循環(huán)群的剩余有限性質(zhì)
完全平方數(shù)的性質(zhì)及其應(yīng)用
三角函數(shù)系性質(zhì)的推廣及其在定積分中的應(yīng)用
性質(zhì)(H)及其攝動
九點圓的性質(zhì)和應(yīng)用
主站蜘蛛池模板: 中国国产A一级毛片| 国产视频入口| 2018日日摸夜夜添狠狠躁| 尤物视频一区| 波多野结衣爽到高潮漏水大喷| 国产精品夜夜嗨视频免费视频| 久久精品嫩草研究院| 国产电话自拍伊人| 免费看av在线网站网址| 国模粉嫩小泬视频在线观看| 四虎影视8848永久精品| 无码有码中文字幕| 国产成人亚洲欧美激情| 国产真实乱人视频| 欧美一级专区免费大片| 一本无码在线观看| 毛片最新网址| 国产精品va免费视频| 亚洲天堂网在线视频| 午夜免费小视频| 日本欧美成人免费| 欧美亚洲国产日韩电影在线| 国产十八禁在线观看免费| 色综合天天综合| 色偷偷av男人的天堂不卡| 亚洲成人精品在线| 亚洲天堂777| AV片亚洲国产男人的天堂| 亚洲中久无码永久在线观看软件 | 美女裸体18禁网站| 色综合手机在线| 亚洲成人免费在线| 91网在线| 欧美亚洲另类在线观看| 国产丝袜无码精品| 91九色国产porny| 亚洲国产成人久久77| 欧美午夜小视频| 亚洲一区色| 精品第一国产综合精品Aⅴ| 国产成人a在线观看视频| 国产你懂得| 国产一区二区三区在线观看视频 | 亚洲精品不卡午夜精品| 中文字幕一区二区人妻电影| 第一页亚洲| 精品亚洲国产成人AV| 国产原创第一页在线观看| a级毛片毛片免费观看久潮| 国产日韩精品欧美一区灰| 广东一级毛片| vvvv98国产成人综合青青| 国产精品欧美在线观看| 国产成熟女人性满足视频| 久久动漫精品| 99无码中文字幕视频| 这里只有精品国产| 在线免费不卡视频| 高清色本在线www| 日韩大片免费观看视频播放| 激情爆乳一区二区| 中文字幕人成乱码熟女免费| 国产欧美日韩精品综合在线| 99999久久久久久亚洲| 欧美一级大片在线观看| 国产传媒一区二区三区四区五区| 久久精品一品道久久精品| 国产人人射| 亚洲欧美另类中文字幕| 亚洲高清中文字幕在线看不卡| 国产va免费精品| 日韩黄色在线| www.91中文字幕| 国产成人精品在线| 国产二级毛片| 黄片在线永久| 国产网友愉拍精品| 日韩高清一区 | 免费视频在线2021入口| 欧美亚洲国产一区| 亚洲国产日韩一区| 亚洲欧美一区二区三区蜜芽|