999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

BOUNDEDNESS FOR SOME SCHRDINGER TYPE OPERATORS ON MORREY SPACES WITH VARIABLE EXPONENT RELATED TO CERTAIN NONNEGATIVE POTENTIALS

2016-12-07 08:58:56WANGMinSHULishengQUMengCHENGMeifang
數(shù)學(xué)雜志 2016年6期

WANG Min,SHU Li-sheng,QU Meng,CHENG Mei-fang

(School of Mathematics and Computer Science,Anhui Normal University,Wuhu 241003,China)

WANG Min,SHU Li-sheng,QU Meng,CHENG Mei-fang

(School of Mathematics and Computer Science,Anhui Normal University,Wuhu 241003,China)

In this paper,the boundedness of some Schrdinger type operators and the commutators is considered.Using the boundedness of them on Lpspace,we obtain the boundedness of some schrdinger type operators and the commutators on Morrey with variable exponents.

Morrey spaces;commutators;Schrdinger type operators;variable exponent

2010 MR Subject Classification:42B20;42B35

Document code:AArticle ID:0255-7797(2016)06-1149-11

1 Introduction

In this paper,we consider the schrdinger differential operator

where V(x)is a nonnegative potential belonging to the reverse Hlder class Bqfor q≥

A nonnegative locally Lqintegrable function V(x)on Rnis said to belong to Bq(q>1) if there exists a constant C>0 such that the reverse Hlder inequality

holds for every ball in Rn,see[1].

Shen[1]established Lpestimates for schrdinger type operators with certain potentials.Kurata,Nishigaki and Sugano[2]considered the boundedness of integral operators on generalized Morrey spaces and its application to Schrdinger operators.Recently,paper[3] by Tang and Dong proved the boundedness of some Schrdinger type operators on Morrey spaces related to certain nonnegative potentials.

It is well known that function spaces with variable exponents were intensively studied during the past 20 years,due to their applications to PDE with non-standard growth conditions and so on,we mention e.g.[4,5].A great deal of work was done to extend the theory of potential,singular type operators and their commutators on the classical Lebesgue spaces to the variable exponent case(see[6-8]).Also,many results about potential,singular type operators and their commutators were studied on Morrey Spaces with variable exponent(see [9-12]).Hence,it will be an interesting problem whether we can establish the boundedness of some schrdinger type operators on Morrey spaces with variable exponent related to certain nonnegative potentials.The main purpose of this paper is to answer the above problem.

To meet the requirements in the next sections,here,the basic elements of the theory of the Lebsegue spaces with variable exponent are briefly presented.

Let p(·):Rn→[1,∞)be a measurable function.The variable exponent Lebesgue space Lp(·)(Rn)is defined by

Lp(·)(Rn)is a Banach space with the norm defined by

We denote p-:=ess

Let P(Rn)be the set of measurable function p(·)on Rnwith value in[1,∞)such that 1<p-≤p(·)≤p+<∞.

where the supremum is taken over all balls B containing x.B(Rn)is the set of p(·)∈P(Rn) satisfying the condition that M is bounded on Lp(·)(Rn).

We say a function p(·):Rn-→R is locally log-Hlder continuous at the origin,if there exists a constant C such that

for all x∈Rn.If,for some p(∞)∈R and C>0,there holds

for all x∈Rn,then we say p(·)is log-Hlder continuous at infinity.

Definition 1.1[9]For any p(·)∈B(Rn),let kp(·)denote the supremum of those q>1 such that p(·)/q∈B(Rn).Let ep(·)be the conjugate of kp'(·).

Definition 1.2[9]Let p(·)∈L∞(Rn)and 1<p(x)<∞.A Lebesgue measurable function u(x,r):Rn×(0,∞)→(0,∞)is said to be a Morrey weight function for Lp(·)(Rn) if there exists a constant C>0 such that for any x∈Rnand r>0,u fulfills

We denote the class of Morrey weight functions by Wp(·).

Next we define the Morrey spaces with variable exponent related to the nonnegative potential V.

For x∈Rn,the function mV(x)is defined by

Definition 1.3 Let p(·)∈B(Rn),u(x,r)∈Wp(·)and-∞<α<∞.For f∈(Rn)and V∈Bq(q>1),we say the Morrey spaces with variable exponent related to the nonnegative potential V is the collection of all function f satisfying

In particular,when α=0 or V=0,the spaces(Rn)is the Morrey spaces with variable exponent Mp(·),u(Rn)introduced in[9].It is easy to see thatMp(·),u(Rn)for α>0 and Mp(·),u(Rn)?(Rn)for α<0.If p(x)is a constant, u(x,r)=rλand λ∈[0,n/p),we have

Now it is in this position to state our results.

for any k∈N,where Ckdenotes a positive constant depend on k.In the rest of this paper, we always assume that T is one of the schrdinger type operators?(-△+V)-1?,?(-△+ V)-1/2and(-△+V)-1/2?with V∈Bn.

Theorem 1.1 Suppose V∈Bn,-∞<α<∞,p(x)∈B(Rn).If u∈Wp(·),then

Let b∈BMO(see its definition in[14]),we define the commutator of T by

Theorem 1.2 Suppose V∈Bn,b∈BMO,-∞<α<∞,p(x)∈B(Rn).If

then

Remark 1 We can easily show that u fulfills(1.3)implies u∈Wp(·)

Next,we consider the boundedness of fractional integrals related to schrdinger operators.

The L-fractional integral operator is defined by

By Lemma 3.3 in[15],one can get the kernel Kβ(x,y)of Iβsatisfy the following inequality

for any k∈N and 0<β<n.

Theorem 1.3 Suppose V∈Bn/2,-∞<α<∞,p(x),q(x)∈B(Rn)satisfy p+<If exists q0satisfying

Remark 2 Wq(·)?Wp(·).Indeed,for j≥0,by inequality(2.3)in the next section,we have

Therefore,using inequality(1.1),we obtain Wq(·)?Wp(·).

Let b∈BMO,we define the commutator of Iβby[b,Iβ]f=bIβf-Iβ(bf).

Theorem 1.4 Suppose V∈Bn/2,b∈BMO,-∞<α<∞,p(·)∈

If p+<and

then

For brevity,C always means a positive constant independent of the main parameters and may change from one occurrence to another.B(x,r)={y∈Rn:|x-y|<r},χBkbe the characteristic function of the set Bkfor k∈Z.|S|denotes the Lebesgue measure of S.The exponent p'(x)means the conjugate of p(x),that is,1/p'(x)+1/p(x)=1.

2 Proofs of Theorems

In order to prove our result,we need some conclusions as follows.

Lemma 2.1[16]Let p(·)∈P(Rn).Then the following conditions are equivalent:

(1)p(·)∈B(Rn);

(2)p'(·)∈B(Rn);

(3)p(·)/q∈B(Rn)for some 1<q<p-;

(4)(p(·)/q)'∈B(Rn)for some 1<q<p-.

Lemma 2.1 ensures that kp(·)is well-defined and satisfies 1<kp(·)≤p-.Moreover, p+≥ep(·).

Lemma 2.2[17]If p(·)∈P(Rn),then for all f∈Lp(·)(Rn)and all g∈Lp'(·)(Rn)we have

where rp:=1+1/p--1/p+.

Lemma 2.3[6]If p(·)∈B(Rn),then there exists C>0 such that for all balls B in Rn,

Lemma 2.4[9]Let p(x)∈B(Rn)and 1<p-≤p+<∞.There exist C1,C2>0 such that for any B∈B,

Lemma 2.5[9]Let p(x)∈B(Rn).For any 1<q<kp(·)and 1<s<kp'(·),there exist constants C1,C2>0 such that for any x0∈Rnand r>0,we have

The next lemma can be get by inequality(1.4)and Corollary 2.12 in[6].

Lemma 2.6[6]Let β>0,p(x),q(x)∈P(Rn)satisfy p+<.If exists q0satisfyingfor some C>0.

Theorem 1 in[8]and inequality(1.4)are rewrited as the following lemma.

Lemma 2.7 Suppose that p(·)∈.then we have

for f∈Lp(·)(Rn)and b∈BMO(Rn).

Using Corollary 2.5 and Corollary 2.10 in[6]and the inequality(1.2),we can get the following result.

Lemma 2.9[18]Let k be a positive integer.Then we have that for all b∈BMO(Rn) and all i,j∈Z with i>j,

Lemma 2.10[1,3]Suppose V∈Bqwith q≥n/2.Then there exist positive constants C and k0such that

(1)mV(x)~mV(y)if|x-y|≤

(2)mV(y)≤C(1+|x-y|mV(x))kOmV(x);

(3)mV(y)≥

We will give the proofs of Theorems 1.3 and 1.4 below.The arguments for Theorems 1.1 and 1.2 are similar,we omit the details here.

Proof of Theorem 1.3 Without loss of generality,we may assume that α<0.Let f∈Mp(·),u.For any z∈Rnand r>0,we write f(x)=f0(x)+fj(x),where f0= fχB(z,2r),fj=fχB(z,2j+1r)B(z,2jr)for j≥1.Hence we have

By Lemma 2.6,we obtain

Because inequality(1.1)and Lemma 2.5 imply that u(x,r)≥Cu(x,2r).Therefore,we obtain

Furthermore,for any j≥1,x∈B(z,r)and y∈B(z,2j+1r)B(z,2jr),we note that |x-y|≥|y-z|-|x-z|>C2jr.Thus we get

Using Lemma 2.10,we derive the estimate

Thus we get that

Lemma 2.2 ensures that

for some constant C>0.

Subsequently,taking the norm‖·‖Lq(·)(Rn),we have

Applying Lemma 2.3 with B=B(z,2j+1r),we obtain

Using the above inequality on(2.2),we obtain

In view of the fact that for any ball B,we have

Lemma 2.4 implies that

for some constants C1>C2>0 independent of B.

Hence using(2.3)with B=B(z,2j+1r),we have

Therefore

Thus we arrive at the inequality

Taking k=(-[α]+1)(k0+1),we obtain

As u∈Wq(·)and α<0,we have

Proof of Theorem 1.4 Without loss of generality,we may assume that α<0.Let f∈Mp(·),u.For any z∈Rnand r>0,write f(x)=f0(x)+fj(x),where f0=fχB(z,2r), fj=fχB(z,2j+1r)B(z,2jr)for j≥1.Hence we have

First,we estimate D1.

Lemma 2.7 shows that‖[b,Iβ]f0‖Lq(·)(Rn)≤C‖b‖BMO‖f0‖Lp(·)(Rn).Thus,we find that

because inequality(1.1)and Lemma 2.5 imply that u(z,2r)≤Cu(z,r).

Next,we estimate D2.

For any j≥1,x∈B(z,r)and y∈B(z,2j1r)B(z,2jr),we note that|x-y|≥|y-z|-|x-z|>C2jr.Using inequality(2.1)and Lemma 2.2,we obtain

Subsequently,taking the norm‖·‖Lq(·)(Rn)and using Lemma 2.9,we have

The arguments here are quite similar to the proof of Theorem 1.3,so we have

Taking k=(-[α]+1)(k0+1),we obtain

As u fulfills(1.3)and α<0,we obtain

Consequently we have proved Theorem 1.4.

References

[1]Shen Z.Lpestimates for Schrdinger operators with certain potentials[J].Ann.Inst.Fourier(Grenoble),1995,45(2):513-546.

[2]Kurata K,Nishigaki S,Sugano S.Boundedness of integral operators on generalized Morrey spaces and its application to Schrdinger operators[J].Proc.Amer.Math.Soc.,2000,128(4):1125-1134.

[3]Tang L,Dong J.Boundedness for some Schrdinger type operators on Morrey spaces related to certain nonnegative potentials[J].J.Math.Anal.Appl.,2009,355(1):101-109.

[4]Chen Y,Levine S,Rao M.Variable exponent,linear growth functionals in image restoration[J]. SIAM J.Appl.Math.,2006,66(4):1383-1406.

[6]Cruz-Uribe D,Fiorenza A,Martell J M,et al.The boundedness of classical operators on variable Lpspaces[J].Ann.Acad.Sci.Fenn.Math.,2006,31(1):239-264.

[7]Huang A,Xu J.Multilinear singular integrals and commutators in variable exponent Lebesgue spaces[J].Appl.Math.J.Chin.Univ.,2010,25(1):69-77.

[8]Izuki M.Commutators of fractional integrals on Lebesgue and Herz spaces with variable exponent[J]. Rend.Circ.Mat.Palermo.,2010,59(3):461-472.

[9]Ho K P.The fractional integral operators on Morrey spaces with variable exponent on unbounded domains[J].Math.Inequal.Appl.,2013,16:363-373,.

[10]Almeida A,Hasanov J,Samko S.Maximal and potential operators in variable exponent Morrey spaces[J].Geor.Math.J.,2008,15:195-208.

[11]Xuan Z,Shu L.Boundedness for commutators of Caldern-Zygmund operator on morrey spaces with variable exponent[J].Anal.The.Appl.,2013,29(2):128-134.

[12]Kokilashvili V,Meskhi A.Boundedness of maxmial and singular operators in Morrey spaces with variable exponent[J].Armenian Math.J.,2008,1:18-28.

[13]Nekvinda A.Hardy-Littlewood maximal operator on Lp(x)(Rn)[J].Math.Inequal.Appl.,2004,7: 255-265.

[14]Stein E M.Harmonic analysis:real-variable methods,orthogonality,and oscillatory integrals[M]. Princeton,NJ:Princeton Univ.Press,1993.

[15]Tang L.Weighted norm inequalities for Schrdinger type operators[J].Forum Math.:2013,27(4): 2491-2532.

[16]Diening L.Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces[J].Bulletin des Sci.Math.,2005,129(8):657-700.

[18]Izuki M.Boundedness of commutators on Herz spaces with variable exponent[J].Rend.Circ.Mat. Palermo,2010,59(2):199-213.

王敏,束立生,瞿萌,程美芳

(安徽師范大學(xué)數(shù)學(xué)計算機(jī)科學(xué)學(xué)院,安徽蕪湖241003)

本文考慮了一類Schrdinger型算子和其交換子的有界性問題.利用其在Lp空有界性間上的,獲得了一類Schrdinger型算子和其交換子在變指數(shù)Morrey空間上的有界性.

Morrey空間;交換子;Schrdinger型算子;變指數(shù)

MR(2010)主題分類號:42B20;42B35O174.2

?date:2014-04-15Accepted date:2014-09-15

Supported by NSFC(11201003);University NSR Project of Anhui Province (KJ2014A087)and Anhui Provincial Natural Science Foundation(1408085MA01).

Biography:Wang Min(1990-),male,born at Wuwei,Anhui,postgraduate,major in harmonic analysis.

主站蜘蛛池模板: 久久婷婷国产综合尤物精品| 久久久久中文字幕精品视频| 日韩精品无码不卡无码| 最新亚洲人成网站在线观看| 人妻丰满熟妇αv无码| 国产三级成人| 国产激爽大片在线播放| 国产九九精品视频| 国产黄在线观看| 亚洲精品无码在线播放网站| 精品亚洲麻豆1区2区3区| 午夜视频日本| 国产精品制服| 国产成人精品三级| 亚洲一区二区三区国产精华液| 欧洲熟妇精品视频| 欧美成人精品在线| 久久这里只精品国产99热8| 欧美人人干| 国产成人资源| 日韩国产黄色网站| 97成人在线视频| 久久亚洲国产一区二区| 日韩精品无码免费一区二区三区| 国产h视频免费观看| 激情国产精品一区| a网站在线观看| 欧美日本不卡| 欧美国产成人在线| 蜜芽国产尤物av尤物在线看| 少妇精品久久久一区二区三区| 亚洲国产清纯| 免费va国产在线观看| 一级毛片免费不卡在线| 国产一在线| 亚洲日韩精品伊甸| 无码精油按摩潮喷在线播放| 日韩大片免费观看视频播放| 国模在线视频一区二区三区| 日韩无码黄色网站| 亚洲欧美国产五月天综合| 国产粉嫩粉嫩的18在线播放91| 日本精品视频一区二区 | 亚洲欧洲自拍拍偷午夜色无码| 毛片网站观看| 日韩精品高清自在线| 亚洲色偷偷偷鲁综合| 国产成人精品一区二区三区| 青草国产在线视频| 激情六月丁香婷婷四房播| 亚洲精品人成网线在线 | 97青草最新免费精品视频| 久久综合干| 亚洲精品手机在线| 亚洲国产成人在线| 成人毛片免费在线观看| 国产一级毛片高清完整视频版| 国内精品免费| 中文字幕有乳无码| 日韩中文字幕亚洲无线码| AV在线麻免费观看网站 | 久久毛片免费基地| AV不卡在线永久免费观看| 永久免费无码成人网站| 久久综合结合久久狠狠狠97色| 欧美成a人片在线观看| 国产呦精品一区二区三区下载| 久久久久人妻一区精品| 人人看人人鲁狠狠高清| 毛片网站免费在线观看| 美女被操91视频| A级毛片无码久久精品免费| 国产流白浆视频| 日本黄网在线观看| 中文字幕在线看视频一区二区三区| 欧美成人在线免费| 91福利免费视频| 国产精品午夜福利麻豆| 久热re国产手机在线观看| 亚国产欧美在线人成| 中文天堂在线视频| 国产91小视频|