李 向 有
(延安大學 數(shù)學與計算機學院, 陜西 延安 716000)
?
非光滑多目標分式規(guī)劃的對偶條件
李 向 有
(延安大學 數(shù)學與計算機學院, 陜西 延安 716000)
最優(yōu)性問題在研究博弈理論、目標規(guī)劃、最低風險問題等方面有重要應用,利用非光滑分析,定義了一類新的廣義不變凸函數(shù),研究了涉及此類函數(shù)的多目標半無限分式規(guī)劃問題, 得到了參數(shù)對偶問題的弱對偶和嚴格逆對偶條件,在新的凸性下得到了一些重要結論.
廣義不變凸函數(shù);多目標;對偶;分式規(guī)劃
推廣凸函數(shù)是最優(yōu)化理論一個重要的研究方向, ANTCZAK[1]在B凸函數(shù)和(p,r)凸函數(shù)的基礎上定義了可微B-(p,r)凸函數(shù),并用其研究單目標規(guī)劃問題,文獻[2-7]在B-(p,r)凸函數(shù)的基礎上推廣了不變凸函數(shù),用于研究不同類型的規(guī)劃問題,并得到了大量有益的結果. 雖然利用B-(p,r)凸函數(shù)研究規(guī)劃的文獻不少,但大多是利用可微B-(p,r)凸函數(shù)討論單目標規(guī)劃問題和多目標可微規(guī)劃問題,涉及多目標非光滑規(guī)劃問題的研究很少. 利用非光滑分析研究多目標規(guī)劃問題已成為近年來研究的熱點,文獻[8-10]利用不同的凸函數(shù)研究了非光滑多目標規(guī)劃問題,得到了許多重要結果.
本文在上述研究的基礎上,定義了一類B-(p,r,a)不變凸函數(shù)、B-(p,r,a)不變擬凸函數(shù)、B-(p,r,a)不變偽凸函數(shù),研究多目標半無限分式規(guī)劃的對偶問題,在新的凸性下,得到了一些重要結果.
若對任意x∈Rn,存在一個正數(shù)k和x的鄰域N(x),對任意y,z∈N(x),使得
‖f(y)-f(z)‖≤k‖y-z‖,
則稱實值函數(shù)f:Rn→R是局部Lipschitz的[11].
若函數(shù)f為局部Lipschitz的,那么函數(shù)f:X→R在點x處沿方向d的Clarke廣義方向導數(shù)和Clarke廣義梯度分別定義為[11]:

?f(x)={ξ∈Rn:f0(x;d)≥ξTd,?d∈Rn}.
注 對于任意x,y∈Rn,下面變量間的序關系始終成立:
已有文獻在利用B-(p,r)凸函數(shù)討論規(guī)劃問題時,只討論B-(p,r)凸函數(shù)中的1種,其他3種情況類似可證. 本文也照此思路,只給出在p,r≠0時B-(p,r,a)不變凸函數(shù)的定義.
定義1 設非空開集X?Rn,f:X→R是X上的局部Lipschitz函數(shù),p,r是任意非零實數(shù),u∈X,若?x∈X,存在向量函數(shù)η:X×X→Rn,函數(shù)b:X×X→R+(R+是非負實數(shù)),a:X×X→R,使得對?ξ∈?f(u)有

則稱f在u點為關于函數(shù)η的B-(p,r,a)不變凸函數(shù).
定義2 設非空開集X?Rn,f:X→R是X上的局部Lipschitz函數(shù),p,r是任意非零實數(shù), u∈X, 若?x∈X,存在向量函數(shù)η:X×X→Rn,函數(shù)b:X×X→R+(R+是非負實數(shù)),a:X×X→R,對?ξ∈?f(u)有

則稱f在u點為關于函數(shù)η的B-(p,r,a)不變擬凸函數(shù).
定義3 設非空開集X?Rn,f:X→R是X上的局部Lipschitz函數(shù),p,r是任意非零實數(shù),u∈X,若?x∈X,存在向量函數(shù)η:X×X→Rn,函數(shù)b:X×X→R+(R+是非負實數(shù)),a:X×X→R,使得對?ξ∈?f(u)有

則稱f在u點為關于函數(shù)η的B-(p,r,a)不變偽凸函數(shù).其中,I=(1,1,…,1)∈Rn,e(a1,a2,…,an)=(ea1,ea2,…,ean)∈Rn.
考慮下列多目標半無限分式規(guī)劃問題:

s.t h(x,u)0,
x∈X0?Rn, u∈Y?Rn,
其中,fi:Rn→R,gi:Rn→R(i=1,2,…,m),h(x,u):Rn×Rn→R均為局部Lipschitz的實值函數(shù),并假設fi(x)≥0,gi(x)>0,i=1,2,…,m,Y為無限可數(shù)參數(shù)集.記Δ={jh(x,uj)0,uj∈Y?Rn},是可數(shù)指標集,假定下面出現(xiàn)的關于h(x,u)的廣義級數(shù)都是絕對收斂的.
(FP)的對偶規(guī)劃定義為
(FD)Max v=(v1,v2,…,vm),

(1)
fi(y)-vigi(y)0, i=1,2,…,m,
(2)
τjh(y,uj)0, j∈Δ,
(3)

(4)



定理2(弱對偶) 令
(1)x,(y,λ,τ,v)分別是(FP)和(FD)的可行解;

(3) a(x,y)+c(x,y)≥0.


fi(x)-vigi(x)≤0, i=1,2,…,m,
且至少存在某個k,fk(x)-vkgk(x)<0.
結合式(2),可以得到



(5)
由式(1)可知,?ξi∈?fi(y),μi∈?gi(y),δj∈?h(y,uj),有

(6)
由式(5),(6)和a(x,y)+c(x,y)≥0,可得


即
(7)
又x,(y,λ,τ,v)分別是(FP)和(FD)的可行解,故τjh(x,uj)0,τjh(y,uj)0, 這與式(7)矛盾,故假設不成立.
證明 類似于文獻[12]定理2的證明.
定理4(嚴格逆對偶) 令
(1)x0,(y,λ,τ,v)分別是(FP)和(FD)的可行解;

(3)a(x0,y)+c(x0,y)>0.
則x0=y,即y也是(FP)的有效解.
證明 由推論1可知,x0,(y,λ,τ,v)分別是(FP)和(FD)的有效解.假設x0≠y,因為x0,(y,λ,τ,v)分別是(FP)和(FD)的可行解,所以 τjh(x0,uj)0τjh(y,uj),即有



(8)
由式(1)可知,?ξi∈?fi(y),μi∈?gi(y),δj∈?h(y,uj),有

(9)
由式(8),(9)和a(x0,y)+c(x0,y)>0,可得

即有

而這與式(2)矛盾,故x0=y,即y也是(FP)的有效解.
[1] ANTCZAK T. A class ofB-(p,r) invex functions andmathematical programming[J]. J Math Anal Appl,2003,286:187-206.
[2] ZHANG Y, ZHU B, XU Y T. A class of LipschitzB-(p,r)-invex functions and nonsmooth programming[J]. OR Transactions,2009,13(1):61-71.
[3] ANTCZAK T, SINGH V. GeneralizedB-(p,r)-invexity functions and nonlinear mathematical programming [J]. Numercial Functional Analysis and Optimization,2009,30:1-22.
[4] 萬軒,彭再云.B-(p,r)-預不變凸規(guī)劃的Mond-weil對偶問題研究[J].重慶師范大學學報,2011,28(1):1-7. WAN Xuan, PENG Zaiyun.The research of mond-weir duality for programming withB-(p,r)-preinvexity function [J]. Journal of Chongqing Normal University,2011,28(1):1-7.
[5] ANTCZAK T. Generalized fractional minimax programming withB-(p,r)-invexity[J]. Computer and Mathematics with Applications,2008,56:1505-1525.
[6] 李向有,張慶祥.廣義I型函數(shù)的對偶性條件[J].貴州大學學報,2014,31(2):22-24. LI Xiangyou, ZHANG Qingxiang.Dual conditions of generalized I type functions[J]. Journal of Guizhou University,2014,31(2):22-24.
[7] ANTCZAK T, SINGH V. Optimality and duality for minimax fractional programming with support function underB-(p,r)-Type I assumptions[J]. Mathematical and Computer Modelling,2013,57(S5/6):1083-1100.
[8] JAYSWAL A, PRASAD A K, STANCU-MINASIAN I M. On nonsmooth multiobjective fractional programming problems involving (p,r)-ρ-(η,θ) invex functions[J]. Yugoslav Journal of Operations Research,2013,23:367-386.
[9] MISHRA S K, LAI K K, SINGH V. Optimality and duality for minimax fractional programming with support function under (c,α,ρ,d)-convexity[J]. Journal of Computional and Applied Mathematics,2015,274:1-10.
[10] GUPTA R, SRIVASTAVA M. Optimality and duality for nonsmooth multiobjective programming using G-type I functions[J].Applied Mathematics and Compution,2014,240(4):294-307.
[11] CLARKE F H. Optimization and Nonsmooth Analysis[M]. New York: Wiley-Interscience,1983.
[12] KUK H, LEE G M, TANINO T. Optimality and duality for nonsmooth multiobjective fractional programming with generalized invexity[J]. Journal of Mathematical Analysis and Applications,2001,262(1):365-375.
LI Xiangyou
(InstituteofMathematicsandComputerScienceofYan’anUniversity,Yan’an716000,ShaanxiProvince,China)
Duality conditions of nonsmooth multi-objective fractional programming. Journal of Zhejiang University(Science Edition), 2016,43(6):682-684
Optimization plays an important role in game theory, goal programming, minimum risk problems, etc. By nonsmooth analysis, a new class of invex functions are defined, and multi-objective semi-infinite fractional programming problems involving the new defined invex functions are investigated. Then, weak dual conditions and strictly converse dual conditions of parameter dual problems are obtained, and some important conclusions are also drawn under the new convexity.
generalized invex functions ; multiobjective ; duality ; fractional programming

2015-08-22.
國家自然科學基金資助項目(11471007);陜西省教育廳科研項目資助課題( 14JK1840).
李向有(1976-),ORCID:http://orcid.org/0000-0002-3761-1118,男,碩士,副教授,主要從事最優(yōu)化理論與應用研究,E-mail: yadxlxy@163.com.
10.3785/j.issn.1008-9497.2016.06.011
O 221.6;O 224
A
1008-9497(2016)06-682-03