999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

On Pseudo Weakly J-clean Rings

2016-12-16 05:45:26胡小美陳煥艮
關(guān)鍵詞:杭州浙江

胡小美, 陳煥艮

(杭州師范大學理學院, 浙江 杭州 310036)

?

On Pseudo Weakly J-clean Rings

A ringRis called a pseudo weakly J-clean ring if every elementa∈Rcan be written in the form ofa=e+w+(1-e)Raora=-e+w+(1-e)Rawhereeis an idempotent andwbelongs to the Jacobson radical. This paper explores various properties of pseudo weakly J-clean rings. A ringRis pseudo weakly J-clean if and only ifR[[x]], Hurwitz series ringH(R), trivial extensionT(R,M) andS(R,σ) are pseudo weakly J-clean, respectively. Furthermore, it proves that the following are equivalent, for anyn∈N,Sn(R) is pseudo J-clean, for anyn∈N,R[x]/(xn) is pseudo weakly J-clean, where (xn) is the ideal generated byxn. In particular, it characterizeS=R[D,C] is pseudo weakly J-clean under certain conditions. Also it shows that 2 is a unit inR, thenRis pseudo J-clean if and only ifRC2is pseudo J-clean.

pseudo weakly J-clean ring; Hurwitz series ring;S=R[D,C] ring; group ring; Jacobson radical; idempotent

1 Introduction

Following Qua[1], we call a ringRis pseudo weakly clean if every elementa∈Rcan be written in the form ofa=e+u+(1-e)Raora=-e+u+(1-e)Rawhereeis an idempotent anduis a unit. On the other hand, J-clean rings are studied by Chen[2]. A ringRis called a J-clean ring if every elementa∈Rcan be written in the form ofa=e+jwhereeis an idempotent andjbelongs to Jacobson radical. If we add an extra condition thatej=jeon the above definition it is called a strongly J-clean ring. Now, we combine pseudo weakly rings and weakly J-clean rings together and consider a new type of rings. We call a ringRis pseudo J-clean if every elementa∈Rcan be written in the form ofa=e+w+(1-e)Rawhereeis an idempotent andwbelongs to Jacobson radical and an elementa∈Ris said to be pseudo weakly J-clean if existe∈Id(R) andw∈J(R) such thata=e+w+(1-e)Raora=-e+w+(1-e)Ra.

We explore various properties of pseudo weakly J-clean rings, we proves that the direct product ringR=∏k∈IRkis pseudo weakly J-clean if and only if eachRkis pseudo weakly clean and at most oneRkis not a pseudo J-clean ring. A ringRis pseudo weakly J-clean if and only ifR[[x]], Hurwitz series ringH(R), trivial extensionT(R,M) andS(R,σ) are pseudo weakly J-clean, respectively. Furthermore, we prove that the following are equivalent: the ringTn(R) ofn×nupper triangular matrices overRis pseudo J-clean;QM2(R) is pseudo J-clean; For anyn∈N,Sn(R) is pseudo J-clean; For anyn∈N,R[x]/(xn) is pseudo weakly J-clean, where (xn) is the ideal generated byxn. In particular, the following conditions are equivalent:S=R[D,C] is pseudo weakly J-clean;DandCis pseudo weakly J-clean;S′=R{D,C} is pseudo weakly J-clean. Also we show that 2 is a unit inR, thenRis pseudo J-clean if and onlyRC2is pseudo J-clean.

Throughout this paper, the rings that we discussed are associative rings with an identity.Id(R) denotes the idempotents ofR,J(R) denotes the Jacobson radical ofR,U(R) denotes the unit ofRand we useTn(R) to stand for the ring of alln×nupper triangular matrices over a ringR.

2 Equivalent Characterizations

Definition 1 A ringRis called a pseudo weakly J-clean ring if every elementa∈Rcan be written in the form ofa=e+w+(1-e)Raora=-e+w+(1-e)Rawheree∈Id(R) andw∈J(R).

The ringRis said to be pseudo weakly J-clean if all of its elements are pseudo weakly J-clean.

Theorem 1 Every homomorphic image of a pseudo weakly J-clean ring is pseudo weakly J-clean.

WecallaringispseudoJ-cleanifthereexistanidempotenteandaJacobsonradicalwinRsuchthata=e+w+(1-e)Raforanya∈R.

Proposition1LetRbearing.Thenthefollowingconditionsareequivalent:

1)RisapseudoJ-clean;

2)Everyelementx∈Rhastheformx=-e+w+(1-e)rxwherew∈J(R), e∈Id(R),andr∈R.

Proof1) 2).Letx∈R.SinceRispseudoJ-clean,wehave-x=w′+e+(1-e)r(-x),herew′∈J(R), e∈Id(R)andr∈R.Thenx=-w′-e+(1-e)rx.Set-w′=w,wegetx=w-e+(1-e)rx.

2) 1).Letx∈R.Then-x=-e+w+(1-e)r(-x)forsomew∈J(R), e∈Id(R)andr∈R.Wemusthavex=-w+e+(1-e)rx,because-w∈J(R),itshowsthatxispseudoJ-clean.

Theorem2ThedirectproductringR=∏k∈IRkispseudoweaklyJ-cleanifandonlyifeachRkispseudoweaklyJ-cleanandatmostoneRkisnotapseudoJ-cleanring.

Proof( ):SupposethatR=∏k∈IRkispseudoweaklyJ-clean.ByTheorem1,wecanknowthateachRkispseudoweaklyJ-cleanbecauseeachRkisahomomorphicimageofR.SupposethatRiandRj(i≠j)arenotpseudoJ-clean.SinceRiisnotpseudoJ-clean,thenbyProposition1,thereexistsxi∈Risuchthatxi≠w-e+(1-e)rxiforanyw∈J(Ri), e∈Id(Ri)andr∈Ri.ButRiisapseudoweaklyJ-cleanring,wemusthavexi=wi+ei+(1-ei)rixiforsomewi∈J(Ri), ei∈Id(Ri)andri∈Ri.NowsinceRjisnotpseudoJ-cleanbutpseudoweaklyJ-clean,thereisanxj∈Rj,wehavexj=wj-ej+(1-ej)rjxjforsomewj∈J(Rj), ej∈Id(Rj)andrj∈Rjbutxj≠w+e+(1-e)rxjforanyw∈J(Rj), e∈Id(Rj)andr∈Rj.Lety=(yk)∈Rsuchthat

Thenwegety≠w±e+(1-e)ryforanyw∈J(R), e∈Id(R)andr∈R,whichimpliesthatyisnotpseudoweaklyJ-clean;whichcontradictstheassumptionthatRispseudowealkJ-clean.Hence,wecangetatmostoneRkisnotapseudoJ-cleanring.

(?):IfeveryRiispseudoJ-clean,thisissimilartotheproofof[3,Proposition2.3]thatR=∏k∈IRkisalsopseudoJ-clean,soitispseudoweaklyJ-clean.SupposethatRi0ispseudoweaklyJ-cleanbutnotpseudoJ-cleanandalltheotherRiarepseudoJ-clean.Letx=(xi)∈R=∏k∈IRk.Thenxi0=wi0±ei0+(1-e)ri0xi0foreachxi0∈Ri0,herewi0∈J(Ri0), ei0∈Id(Ri0)andri0∈Ri0.Ifxi0=wi0+ei0+(1-e)ri0xi0,thenfori≠i0andRiispseudoJ-clean,wemusthavexi=wi+ei+(1-ei)rixiwherewi∈J(Ri), ei∈Id(Ri)andri∈Ri.Ifxi0=wi0-ei0+(1-e)ri0xi0,thenfori≠i0andRiispseudoJ-clean,thenbyProposition1thatwecanwritexi=wi-ei+(1-ei)rixiwherewi∈J(Ri), ei∈Id(Ri)andri∈Ri.Hence, x=w+e+(1-e)rxorx=w-e+(1-e)rxwherew=w(j)∈U(R), e=(ej)∈Id(R)andr=(rj)∈R.Therefore, xispseudoweaklyJ-clean.Thiscompletestheproof.

Corollary1ThedirectproductringR=∏k∈IRkispseudoJ-cleanifandonlyifeachRkispseudoJ-clean.

ProofItisobvious.

Theorem3LetRbearing.ThenRispseudoweaklyJ-cleanifandonlyifR[[x]]ispseudoweaklyJ-clean.

ProofSupposethatRispseudoweaklyJ-clean,foranya∈R,wehavea=e+w+(1-e)r(x)ora=-e+w+(1-e)r(x).Ifa=e+w+(1-e)r(x),then

f(x)= a0+a1x+a2x2+…=e+w+(1-e)ra0+(a1x+a2x2+…)=

e+w+(a1x+a2x2+…)-(1-e)r(a1x+a2x2+…)+(1-e)rf(x)=

e+α(x)+(1-e)rf(x).

Similarly,ifa=-e+w+(1-e)r(x),thenf(x)=-e+α(x)+(1-e)rf(x).Itiseasytoknowα(x)∈J(R[[x]]),hence, R[[x]]ispseudoweaklyclean.

Conversely,supposethatR[[x]]ispseudoweaklyJ-clean.ThenitfollowsbytheisomorphismR?R[[x]]/(x)andTheorem1thatRispseudoweaklyJ-clean.

Corollary2LetRbearing. R[[x1,…, xn]]ispseudoweaklyJ-cleanifandonlyifRispseudoweaklyJ-clean.

ProofByinductionandTheorem3.

Proposition2LetRbearing.ThenthepolynomialringR[x]isneverpseudoweaklyJ-cleanring.

ProofSupposethatx∈R[x]ispseudoweaklyJ-clean,thenx=e+w+(1-e)rxorx=-e+w+(1-e)rxforsomew∈J(R[x]), e∈Id(R[x])andr∈R[x].Wemaywritee=e0+e1x+…+enxnandw=w0+w1x+…+wnxnwhere(en, wn)≠(0, 0).Then

x=w+e+rx-erx=(w0+w1x+…+wnxn)+(e0+e1x+…+enxn)+rx-(e0+e1x+…+enxn)rx

or

x=w-e+rx-erx=(w0+wx1x+…+wnxn)-(e0+e1x+…+enxn)+rx-(e0+e1x+…+enxn)rx.

1=x(1+w)-1=b0x+b1x2+b2x3+…+blxl+1.

Lemma1[4]LetRbearing.ThentheHurwitzseriesx=(x0, x1, x2,…)isaunitinH(R)ifandonlyifx0isaunitinR.

Theorem4LetRbearing.ThentheHurwitzseriesx=(x0, x1, x2,…)isintheJacobsonradicalofH(R)ifandonlyifx0isintheJacobsonradicalinR.

ProofLetx=(xn)∈H(R), r=(rn)∈H(R).Ifx=(xn)∈J(H(R)),then1-ax=(1-r0x0,…)∈U(H(R)).ItfollowsfromtheLemma1,wecanknow1-r0x0∈U(R).Therefore, x0∈J(R).Conversely,ifx0∈J(R),foranyr∈R,wehave1-rx0∈U(R),therefore, 1-r0x0∈U(R).ItfollowsfromtheLemma1,wecanknow1-ax=(1-r0x0,…)∈U(H(R)).Hence, x=(xn)∈J(H(R)).

Theorem5LetRbearing.ThenH(R)ispseudoweaklyJ-cleanifandonlyifRispseudoweaklyJ-clean.

ProofByTheorem1,everyhomomorphicimageofapseudoweaklyJ-cleanringispseudoweaklyJ-clean,soR?H(R)/kerφispseudoweaklyJ-clean,whereφ:H(R)→R.

Conversely,supposethatRispseudoweaklyJ-clean.Letx=(xn)∈H(R).Thenx0∈R.Hence, x0=±e+w′+(1-e)rx0fore∈Id(R)andw′∈J(R).Thusx=λR(e)+w+λR[(1-e)rx]=(e, 0, 0,…)+w+((1-e)rx, 0, 0,…)orx=-λR(e)+w+λR[(1-e)rx]=-(e, 0, 0,…)+w+((1-e)rx, 0, 0,…),wherew∈J(H(R)).

Proposition3LetRbeapseudoJ-cleanring.Thenthefollowingstatementshold:

1)TheringTn(R)ofn×nuppertriangularmatricesoverRispseudoJ-clean;

2)QM2(R)ispseudoJ-clean;

4)For anyn∈N,R[x]/(xn) is pseudo J-clean, where (xn) is the ideal generated byxn.

3)Theproofissimilartothatof1).

4)NotethatR[x]/(xn)?Sn(R),weobtaintheresultby3).

GivenaringRanda(R, R)-bimoduleM,thetrivialextensionofRbyMistheringT(R, M)=R⊕Mwiththeusualadditionandthefollowingmultiplication: (r1, m1)(r2, m2)=(r1r2, r1m2+m1r2).AsweallknowJ(R×M)={(r, m)|r∈J(R), m∈RMR}.

Proposition4LetRbearing.ThenRispseudoweaklyJ-cleanifandonlyifT(R, M)ispseudoweaklyJ-clean.

ProofIfRisweaklyJ-clean,forany(x, m)∈T(R, M)sinceRisweaklyJ-clean, x=e+w+(1-e)rxorx=-e+w+(1-e)rx,wheree∈Id(R), w∈J(R).Wehave(x, m)=(e+w+(1-e)rx, m)or(x, m)=(-e+w+(1-e)rx, m).Hence(x, m)=(e, 0)+(w, m)+((1-e)rx, 0)or(x, m)=-(e, 0)+(w, m)+((1-e)rx, 0)where(e, 0)∈Id(T(R, M))and(w, m)∈J(T(R, M)),soT(R, M)ispseudoweaklyJ-clean.

Conversely,ifT(R, M)ispseudoweaklyJ-clean,foranyx∈R, (x, 0)∈T(R, M),wehave(x, 0)=(e, *)+(w, *)+((1-e)rx, 0)or(r, 0)=-(e, *)+(w, *)+((1-e)rx, 0)where(e, *)2=(e2, *)=(e, *)and(w, *)∈J(T(R, M))thatisx=e+w+(1-e)rxorx=-e+w+(1-e)rxwheree∈Id(R)andw∈J(R),soRispseudoJ-weakly.

Theorem 6 LetRbe a ring. ThenRis pseudo weakly J-clean if and only ifS(R,σ) is pseudo weakly J-clean.

3 Related Rings

Inthissection,wefurtherconsiderpseudoweakJ-cleannessofvariousrelatedrings.WenowconsidertheconnectionofpseudoweakJ-cleannessandweakJ-cleanness.

Letu=α+βγa=-1+s-βxs+βx+βm∈-1+J(R).Thensubstitutingα=u-βγaintotheequationαa=fα+1,weget

ua-βγa2= f(u-βγa)+1=fu+1 u-1(ua-βγa2)=u-1(fu+1)

a-u-1βγa2=u-1fu+u-1a-u-1fu-u-1=u-1βγa2.

Wesetu-1=-1+w′, w′∈J(R),itfollowsthat

a-u-1fu-(-1+w′)-u-1βγ= u-1βγ(a-1)(a+1)

a+1-u-1fu-(w′+u-1βγ)=u-1βγ(a-1)(a+1).

Fromtherelationfβ=0,wecanknowβ=eβ.Wehave

a+1-u-1fu-(w′+u-1βγ)= u-1eβγ(a-1)(a+1)=u-1eu(u-1βγ)(a-1)(a+1)=

(1-u-1fu)(u-1βγ)(a-1)(a+1)∈(1-u-1fu)R(a+1).

Setu-1fu=g1∈Id(R), w1=w′+u-1βγ∈J(R),andweknowb=a+1,sob-g1-w1∈(1-g1)Rb,asdesired.

Letv=α+βγaandbyusingsimilartothoseabove,wecanknowv=α+βγa=-1+s+βxs-βx-βm∈-1+J(R)andwesetv-1=-1+w″, w″∈J(R),itfollowsthat

a+v-1fv-(-1+w″)-v-1βγ= v-1βγ(a-1)(a+1)

a+1+v-1fv-(w″+v-1βγ)=v-1βγ(a-1)(a+1).

Fromtherelationfβ=0,wecanknowβ=eβ.Wehave

a+1+v-1fv-(w″+v-1βγ)= v-1eβγ(a-1)(a+1)=v-1ev(v-1βγ)(a-1)(a+1)=

(1-v-1fv)(v-1βγ)(a-1)(a+1)∈(1-v-1fv)R(a+1).

Setv-1fv=g2∈Id(R), w2=w″+v-1βγ∈J(R),andweknowb=a+1,sob+g2-w2∈(1-g2)Rb,asdesired.

LetDbearing, CbeasubringofDand1D∈C,write:

S=R[D, C]={(d1,…, dn, c, c,…)|di∈D, c∈C, n≥1},

S′=R{D, C}={(d1,…, dn, cn+1, cn+2,…)|di∈D, cj∈C, n≥1}.

Here, the addition and multiplication are defined componentwise, bothS=R[D,C] andS=R{D,C} are rings with identities.

Lemma 2 1)J(S)=R[J(D),J(D)∩J(C)];

2)J(S′)=R{J(D),J(D)∩J(C)}.

Proof See [5, Proposition 2.1.14].

Theorem 8 LetS=R[D,C]. Then the following conditions are equivalent:

1)S=R[D,C] is pseudo weakly J-clean;

2)Dis pseudo weakly J-clean and for anya∈C, there existw∈J(D)∩J(C),e∈Id(C), such thata-w±e∈(1-e)Ca;

3)S′=R{D,C} is pseudo weakly J-clean.

3)?2).Itissimilarto1)?2).

GivenagroupGandaringA,thegroupringR=AG,consistsofallfunctionsr:G→Awithfinitesupport.Thesupportofris{g∈G|r(g)≠0}. Risendowedwithringoperationbydefining:

Let us verify thatR(0, 1, -, +, ·) is in fact a ring.

We first consider some cases where a group ring is isomorphic (as a ring) to a direct product of copies of the coefficient ring.

Proposition 5 LetRbe a ring and let 2 be a unit inR. ThenRis pseudo J-clean if and only ifRC2is pseudo weakly J-clean.

Proof LetC2={x|x2=1} and defineφ:RC2→R×Rbyφ(a+bx)=(a+b,a-b) wherea,b∈R. Thenψis a ring homomorphism. Since 2 is a unit inR, we have thatψis bijective. Therefore,RC2?R×R. IfRis pseudo J-clean, it follows by Corollary 1 thatRC2?R×Ris pseudo weakly J-clean; Conversely, ifRC2?R×Ris pseudo weakly J-clean, it follows by Theorem 1 thatR×Ris pseudo weakly J-clean. Therefore,Ris pseudo J-clean by Theorem 2.

Proposition 6 LetRbe a ring and let 2 be a unit inR. ThenRis pseudo J-clean if and only ifRC2is pseudo J-clean.

Proof As in the proof of Proposition 5, it may be shown thatRC2?R×R. It then follows by Corollary 1 thatRis pseudo J-clean if and only ifRC2is pseudo J-clean.

By Proposition 5 and Proposition 6 we have the following.

Corollary 3 LetRbe a ring and let 2 be a unit inR. Then the following are equivalent:

1)Ris pseudo J-clean;

2)RC2is pseudo weakly J-clean;

3)RC2is pseudo J-clean.

Proposition 7 LetRbe a ring and let 2 be a unit inR. Then the following are equivalent:

1)Ris pseudo J-clean;

3) 2). It is obvious.

[1] QUA K T. Weakly clean and related rings[D]. Kuala Lumpur: The University of Malaya,2015.

[2] CHEN H Y. On strongly J-clean rings[J]. Comm Algebra,2010,38(10):3790-3804.

[3] STER J. Weakly clean rings[J]. J Algebra,2014,401(401):1-12.

[4] KEIGHER W F. On the ring of Hurwize series[J]. Comm Algebra,1997,25(25):1845-1859.

[5] CHENG G P. The structure of ringR[D,C] and its characterizations[D]. Nanjing: Nanjing University,2006.

HU Xiaomei, CHEN Huanyin

(School of Science, Hangzhou Normal University, Hangzhou 310036, China)

一個環(huán)R叫做 pseudo weakly J-clean 環(huán),如果R中的每一個元素都可以寫成a=e+w+(1-e)Ra或a=-e+w+(1-e)Ra的形式,其中e是冪等元,w屬于Jacobson根.文章探究了pseudo weakly J-clean環(huán)的各種性質(zhì).環(huán)R是pseudo weakly J-clean環(huán)當且僅當冪級數(shù)環(huán)R[[x]], Hurwitz級數(shù)環(huán)H(R),平凡擴張T(R,M)和S(R,σ)分別是pseudo weakly J-clean環(huán).更進一步證明以下幾點是等價的:任意的n∈N,Sn(R)是 pseudo J-clean;任意的n∈N,R[x]/(xn)是pseudo J-clean, (xn)是由xn生成的理想.特別的,闡述了在某種條件下S=R[D,C]是pseudo weakly J-clean;并且得出結(jié)論:當2是R中的可逆元時,R是pseudo J-clean當且僅當群環(huán)RC2是pseudo J-clean.

pseudo weakly J-clean環(huán);Hurwitz級數(shù)環(huán);S=R[D,C]環(huán);群環(huán);Jacobson根;冪等元

關(guān)于Pseudo Weakly J-clean環(huán)

胡小美, 陳煥艮

(杭州師范大學理學院, 浙江 杭州 310036)

Foundation item:Supported by the Natural Science Foundation of Zhejiang Province(LY17A010018).

CHEN Huanyin(1963—), male, Professor, Ph.D., majored in algebra of basic mathematics.E-mail:huan- yinchen@aliyun.com

10.3969/j.issn.1674-232X.2016.06.012

O153.3 MSC2010: 13F25; 16S34; 16U10 Article character: A

1674-232X(2016)06-0623-09

Received date:2016-02-06

猜你喜歡
杭州浙江
走,去杭州亞運會逛一圈兒
科學大眾(2023年17期)2023-10-26 07:38:38
杭州
幼兒畫刊(2022年11期)2022-11-16 07:22:36
Mother
杭州亥迪
掃一掃閱覽浙江“助企八條”
Dave Granlund's Cartoons
浙江“最多跑一次”倒逼“放管服”
G20 映像杭州的“取勝之鑰”
傳媒評論(2017年12期)2017-03-01 07:04:58
杭州
汽車與安全(2016年5期)2016-12-01 05:21:55
浙江“雙下沉、兩提升”之路
主站蜘蛛池模板: 97国产成人无码精品久久久| 午夜国产大片免费观看| 久久青草免费91观看| 中文字幕亚洲另类天堂| 免费人欧美成又黄又爽的视频| 日本在线亚洲| 人人看人人鲁狠狠高清| 中文字幕亚洲精品2页| 天天操精品| 99热精品久久| 亚洲成人一区在线| 亚洲日本中文字幕乱码中文| 国产v精品成人免费视频71pao| 国产麻豆精品久久一二三| 夜夜操狠狠操| 天堂成人在线| 精品人妻无码区在线视频| 日本久久网站| 中文字幕人成人乱码亚洲电影| 国产精品综合久久久| 午夜限制老子影院888| 日韩高清在线观看不卡一区二区 | 九九九精品视频| 色欲不卡无码一区二区| 九九视频免费在线观看| 亚洲精品男人天堂| 久久青草精品一区二区三区 | 无码AV高清毛片中国一级毛片| 精品一区二区无码av| 国产精品私拍在线爆乳| 蜜桃视频一区| 国产永久在线观看| 香蕉在线视频网站| 国产在线自揄拍揄视频网站| 中文字幕首页系列人妻| 日韩黄色在线| 2021最新国产精品网站| 亚洲午夜福利精品无码不卡| 国产乱子伦视频三区| 亚洲精品777| 国产精品专区第1页| 亚洲欧美综合另类图片小说区| 亚洲高清无码精品| 亚洲熟妇AV日韩熟妇在线| 97狠狠操| 日韩精品高清自在线| 最新精品久久精品| 在线观看视频99| 亚洲人成色77777在线观看| 一级黄色网站在线免费看| 国产免费久久精品44| 99国产精品国产| аⅴ资源中文在线天堂| 亚洲第一区在线| 亚洲美女AV免费一区| 女人毛片a级大学毛片免费| 欧美激情视频一区| 二级特黄绝大片免费视频大片| 91小视频在线观看| 欧美一区中文字幕| 国产成人精品亚洲日本对白优播| 免费不卡视频| 国产无遮挡猛进猛出免费软件| 国产精品人人做人人爽人人添| 夜夜爽免费视频| 精品久久香蕉国产线看观看gif| 国产91久久久久久| 欧美啪啪网| 亚洲精品国产首次亮相| 91亚洲视频下载| 亚洲欧美天堂网| 天天摸天天操免费播放小视频| 成·人免费午夜无码视频在线观看| 中文字幕第1页在线播| 91麻豆国产视频| 亚洲精品免费网站| 午夜啪啪网| www欧美在线观看| 538国产视频| 性网站在线观看| 91毛片网| 亚洲免费福利视频|