董貝貝 張智申 謝克亮 于泳浩
【摘要】 目的 探討血紅素結合蛋白(HPX)是否通過上調血紅素氧合酶-1(HO-1)改善大鼠腦缺血再灌注(IR)損傷。方法 60只雄性SD大鼠, 7~8周齡, 體重250~280 g, 采用隨機數字表法分為五組:假手術(Sham)組、缺血再灌注(MCAO)組、溶劑(疊氮鈉)(MCAO+Vehicle)組、HPX(MCAO+HPX)組和HO-1抑制劑組(MCAO+HPX+ZnppⅨ)組, 每組12只。采用大腦中動脈栓塞(MCAO)法制備大鼠缺血再灌注模型, MCAO組、MCAO+Vehicle組、MCAO+HPX組、MCAO+HPX+ZnppⅨ組大鼠分別在IR即刻經側腦室單次注射生理鹽水(10 μl, 0.9%)、疊氮鈉(10 μl, 0.1%)、HPX(10 μl, 1.86 g/L)和10 μl HPX+ZnppⅨ混合液(HPX 1.86 g/L+疊氮鈉0.1%)。IR后24 h、7 d分別采用Carcia評分法評價大鼠神經行為學評分(NBS), 采用實時熒光定量聚合酶鏈式反應(RT-PCR)法檢測半暗帶區腦組織中HO-1 mRNA水平。結果 IR后24 h Sham組、MCAO組、MCAO+Vehicle組、MCAO+ HPX組、MCAO+HPX+ZnppⅨ組大鼠的NBS評分分別為(15.50±2.43)、(5.17±1.60)、(5.00±2.10)、(10.83±1.47)、(5.33±1.97)分, 比較差異有統計學意義(F=34.819, P<0.05);IR后7 d Sham組、MCAO組、MCAO+Vehicle組、MCAO+ HPX組、MCAO+HPX+ZnppⅨ組大鼠的NBS評分分別為(16.83±1.60)、(8.83±3.31)、(9.17±3.19)、(12.50±3.08)、(9.33±2.07)分, 比較差異有統計學意義(F=13.113, P<0.05)。與Sham組相比, MCAO組大鼠IR后24 h、7 d缺血半暗帶區腦組織HO-1 mRNA水平顯著增加(P<0.05);與MCAO組相比, MCAO+Vehicle組大鼠IR后24 h、7 d缺血半暗帶區腦組織HO-1 mRNA水平無明顯變化(P>0.05);與MCAO+Vehicle組大鼠相比, MCAO+HPX組大鼠IR后24 h、7 d缺血半暗帶區腦組織HO-1 mRNA水平顯著升高(P<0.05)。結論 HPX可通過上調HO-1表達改善大鼠腦缺血再灌注后神經行為學表現。
【關鍵詞】 腦缺血再灌注損傷;血紅素結合蛋白;血紅素氧合酶-1
DOI:10.14163/j.cnki.11-5547/r.2016.29.193
Hemopexin in HO-1 up-regulation for improving rat neuroethology after cerebral ischemia reperfusion injury DONG Bei-bei, ZHANG Zhi-shen, XIE Ke-liang, et al. Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
【Abstract】 Objective To investigate whether or not hemopexin (HPX) can improve rat cerebral ischemia reperfusion(IR) injury by its heme oxygenase-1 (HO-1) up-regulation. Methods A total of 60 male SD rats, aging 7~8 weeks and weighting 250~280 g, were divided by random number table into sham operation (Sham) group, ischemia reperfusion (MCAO) group, solvent (sodium azide) (MCAO+Vehicle) group, HPX (MCAO+HPX) group and HO-1 inhibitor (MCAO+HPX+ ZnppⅨ) group, with 12 rats in each group. Middle cerebral artery occlusion (MCAO) was applied to prepare model of rat ischemia reperfusion. MCAO group, MCAO+Vehicle group, MCAO+HPX group and MCAO+HPX+ZnppⅨ group received respectively single injection through paracele immediate at IR by normal saline (10 μl, 0.9%), sodium azide (10 μl, 0.1%), HPX (10 μl, 1.86g/L) and 10 μl HPX+ZnppⅨ (HPX 1.86 g/L+ sodium azide 0.1%). Carcia evaluation was applied in 24 h and 7 d after IR for neurobehavior score (NBS), along with real-time fluorescent quantitative polymerase chain reaction (RT-PCR) for HO-1 mRNA level in ischemic penumbra brain tissue. Results In 24 h after IR, Sham group, MCAO group, MCAO+Vehicle group, MCAO+HPX group and MCAO+HPX+ZnppⅨ group had NBS scores respectively as (15.50±2.43), (5.17±1.60), (5.00±2.10), (10.83±1.47) and (5.33±1.97) points, and the difference had statistical significance (F=34.819, P<0.05). In 7 d after IR, Sham group, MCAO group, MCAO+Vehicle group, MCAO+HPX group and MCAO+HPX+ZnppⅨ group had NBS scores respectively as (16.83±1.60), (8.83±3.31), (9.17±3.19), (12.50±3.08) and (9.33±2.07) points. Their difference had statistical significance (F=13.113, P<0.05). Comparing with Sham group, MCAO group had obviously higher HO-1mRNA level in ischemic penumbra brain tissue after 24 h and 7 d of IR (P<0.05). Comparing with MCAO group, MCAO+Vehicle group had no obvious change in HO-1 mRNA level in ischemic penumbra brain tissue after 24 h and 7 d of IR (P>0.05). Comparing with MCAO+Vehicle group, MCAO+HPX group had remarkably higher HO-1 mRNA level in ischemic penumbra brain tissue after 24 h and 7 d of IR (P<0.05). Conclusion HPX can improve rat neurobehavioral manifestation after ischemia reperfusion by its HO-1 up-regulation.
【Key words】 Cerebral ischemia reperfusion injury; Hemopexin; Heme oxygenase-1
對腦卒中患者進行溶栓治療會發生再灌注損傷, 缺血再灌注損傷涉及到氧化應激[1]、細胞凋亡[2]、線粒體紊亂[3]等諸多機制 , 針對上述機制進行干預的效果并不理想。過多的游離血紅素有強烈的細胞毒性, 能夠造成內皮損傷[4], HPX能夠清除過多游離血紅素, 而HO-1是游離血紅素代謝的關鍵限速酶。作者的前期動物實驗研究顯示:HPX 在中樞神經系統的神經元和脈管上皮細胞均有表達, 側腦室注射HPX可縮小大鼠腦梗死容積[5]。然而國內外針對HPX的神經保護作用及其機制的研究相對缺乏, 因此本實驗在前期研究基礎上, 探討HPX是否通過提高HO-1表達改善腦缺血再灌注損傷后行為學表現, 為促進腦卒中患者的認知功能恢復提供新思路。
1 材料與方法
1. 1 實驗動物來源 成年雄性SD大鼠60只, 7~8周齡, 體重250~280 g, 購自中國軍事醫學科學院實驗動物中心, 許可證號:SCXK(軍)2009-003。分籠飼養于無特殊病原菌環境:溫度(22±2)℃, 相對濕度約55%~60%, 每日12 h晝夜交替, 自由飲食、飲水。采用隨機數字表法將其分為五組:Sham組、MCAO組、MCAO+Vehicle組、MCAO+ HPX組、MCAO+HPX+ZnppⅨ組, 每組12只。本研究已獲天津醫科大學實驗動物管理委員會批準。
1. 2 腦缺血再灌注模型制備 采用線栓法建立大鼠大腦中動脈栓塞模型, 參照文獻所述[6], 10%水合氯醛(0.3 g/kg)腹腔注射麻醉, 暴露并分離右側頸總動脈(CCA), 右頸外動脈(ECA)及頸動脈分叉, 直視下用眼科剪于CCA距離動脈分叉5~15 mm處剪一小口, 右手改用眼科鑷持準備好的栓線(購自北京西濃科技有限公司)經此小口置入CCA內向前送入顱內, 至稍感阻力, 拉緊固定栓線。待栓塞1 h大鼠蘇醒后, 采用Longa法[7]評估大鼠行為表現, 評分1~3分提示造模成功。Sham組大鼠相同條件下暴露分離右側CCA, 右側ECA及頸動脈分叉, 結扎右側CCA和ECA, 但不插入栓線, 關閉切口。手術過程中使用電熱毯維持大鼠體溫, 使其直腸溫度維持在(37.0±0.5)℃。
1. 3 方法 參照文獻所述[8], MCAO組、MCAO+Vehicle組、MCAO+HPX組、MCAO+HPX+ZnppⅨ 組大鼠分別在IR后即刻在立體定位儀下經側腦室注射方式單次給予生理鹽水(10 μl, 0.9%)、疊氮鈉(NaN3)(10 μl, 0.1%)、HPX(10 μl, 1.86 g/L)和10 μl HPX+ZnppⅨ混合液(HPX 1.86 g/L+0.1%疊氮鈉)。
1. 4 觀察指標
1. 4. 1 NBS評分 參照文獻所述[9], IR后24 h、7 d采用Carcia評分法由一個不了解本研究實驗分組情況的研究人員評價各組大鼠NBS評分。該評分法分為運動功能和感覺功能評價兩方面, 最高18分, 最低3分, 得分越高說明動物的神經行為表現越好, 得分3~7分說明重度神經功能障礙, 8~11分為中度神經功能障礙, 12~18分為輕度神經功能障礙。
1. 4. 2 RT-PCR法檢測缺血半暗帶區HO-1 mRNA水平變化 Sham組、MCAO組、MCAO+Vehicle組和MCAO+HPX組, 每組選取6只大鼠, 水合氯醛深麻醉, 然后進行左心室灌注, 直至肝臟色發白, 右心耳開口處流出的灌注液體基本變成清亮, 這時可認為灌注有效。經灌注死亡后斷頸取大鼠缺血半暗帶腦組織, 提取總RNA, 反轉錄合成cDNA, 使用SYBR Green法進行實時熒光定量PCR檢測, 以GAPDH為內對照。HO-1引物長度77bp, 上游引物5′-CGACAGCATGTCCCAGGATT-3′, 下游引物5′-TCGCTCTATCTCCTCTTCCAGG-3′;GAPDH引物長度95 bp, 上游引物5′-CAGTGCCAGCCTCGTCTCAT-3′, 下游引物 5′-AGGGGCCATCCACAGTCTTC-3′。用iQTM多重實時熒光定量PCR儀(Bio-Rad公司, 美國)進行擴增并分析處理數據。用2-ΔΔCT法計算mRNA相對表達量。
1. 5 統計學方法 采用SPSS18.0統計學軟件對數據進行統計分析。計量資料以均數±標準差( x-±s)表示, 組間比較用單因素方差分析, 兩兩比較用LSD檢驗。P<0.05為差異有統計學意義。
2 結果
2. 1 NBS評分 IR后24 h Sham組、MCAO組、MCAO+Vehicle組、MCAO+ HPX組、MCAO+HPX+ZnppⅨ組大鼠的NBS評分分別為(15.50±2.43)、(5.17±1.60)、(5.00±2.10)、(10.83±1.47)、(5.33±1.97)分, 比較差異有統計學意義(F=34.819, P<0.05);IR后7 d Sham組、MCAO組、MCAO+Vehicle組、MCAO+ HPX組、MCAO+HPX+ZnppⅨ組大鼠的NBS評分分別為(16.83±1.60)、(8.83±3.31)、(9.17±3.19)、(12.50±3.08)、(9.33±2.07)分, 比較差異有統計學意義(F=13.113, P<0.05)。與Sham組相比, MCAO組大鼠在IR后24 h和7 d的NBS評分顯著降低(P<0.05);與MCAO組相比, MCAO+Vehicle組大鼠在IR后24 h和7 d的NBS評分無明顯變化(P>0.05);與MCAO+Vehicle組相比, MCAO+HPX組大鼠IR后24 h和7 d的NBS評分顯著升高(P<0.05);與MCAO+HPX組相比, MCAO+HPX+ZnppⅨ組大鼠IR后24 h和7 d的NBS評分顯著降低(P<0.05)。見圖1。
2. 2 缺血半暗帶組織HO-1 mRNA水平 與Sham組比較, MCAO組大鼠IR后24 h、7 d缺血半暗帶區腦組織HO-1 mRNA水平顯著增加(P<0.05);與MCAO組比較, MCAO+Vehicle組大鼠IR后24 h、7 d缺血半暗帶區腦組織HO-1 mRNA水平無明顯變化(P>0.05);與MCAO+Vehicle組比較, MCAO+HPX組大鼠IR后24 h、7 d缺血半暗帶區腦組織HO-1 mRNA水平顯著升高(P<0.05)。
3 討論
大腦中動脈是頸內動脈的直接延續, 是血管缺血閉塞發生率最高的動脈分支;然而大腦中動脈提供大腦半球約80%的血供, 一旦發生閉塞, 造成的臨床癥狀更加廣泛嚴重。因此本研究通過采用經典的MCAO法建立大鼠腦IR模型, 這與臨床上缺血性腦卒中發生的特點相一致。多種神經行為學評價方法比較表明, Carcia評分法與缺血性腦卒中大鼠的梗死容積有更好的相關性[10], 因此本研究采用Carcia評分法評價大鼠IR后的神經行為學表現。本研究結果顯示, 與Sham組相比, MCAO大鼠IR后24 h和7 d的NBS明顯降低, 側腦室注射HPX能明顯的提高大鼠IR后24 h和7 d的NBS評分, 給予HPX時同時給予HO-1抑制劑ZnppⅨ后, HPX提高大鼠IR后的NBS評分的作用消失;大鼠IR后24 h和7 d的NBS評分降低到HPX治療前的水平, 側腦室注射疊氮鈉對大鼠IR后24 h和7 d的NBS評分無明顯影響, 表明HPX能夠有效改善大鼠IR后的神經功能缺損, 提高其神經行為學表現, HO-1可能是HPX發揮神經功能保護作用的關鍵分子。
游離血紅素為親脂性結構, 主要用于血紅蛋白、細胞色素P450、過氧化氫酶等的合成, 同時也還是調節這些蛋白基因表達的重要因子。然而越來越多的研究發現, 過多的游離血紅素有強烈的細胞毒性作用, 該毒性作用在血管內皮細胞和神經元中最為顯著, 多種組織損傷時伴隨游離血紅素的過度釋放[11]。游離血紅素的親脂性結構特點使其能夠很容易的插入血管內皮細胞膜脂質分子中, 破壞內皮結構的完整性, 與此同時, 游離血紅素還參與了血管內皮的氧化應激、炎癥反應, 從而引起血管內皮功能障礙[12]。HPX是血漿中與游離血紅素親和力最強的蛋白, 可清除過多有害游離血紅素。作者前期研究表明HPX在腦缺血后的脈管系統中表達增加, 側腦室注射HPX能夠呈劑量依賴性顯著縮小大鼠的腦梗死容積[5]。HO-1是催化血紅素分解的限速酶, 其作為機體內源性的保護因子, 是細胞應激最敏感的指標之一, 對多種血管源性損傷發揮保護作用[13]。缺血再灌注損傷發生時HO-1的表達增加, 外源性導入HO-1基因載體, 缺血再灌注后24 h動物神經行為學評分明顯升高, 組織病理改變減輕, 梗死面積減少[14]。
本研究結果顯示, 與Sham組相比, MCAO大鼠IR后24 h缺血半暗帶區的HO-1 mRNA應激性增加, 在IR后7 d下降到手術前水平;側腦室注射HPX能夠顯著上調大鼠IR后24 h缺血半暗帶區的HO-1 mRNA的轉錄水平, 該作用能持續到IR后7 d;給予HPX時同時給予HO-1抑制劑ZnppⅨ, 阻止了神經行為學改善, 表明HPX通過上調HO-1表達改善腦缺血再灌注后行為學表現。
參考文獻
[1] Wang CP, Shi YW, Tang M, et al. Isoquercetin Ameliorates Cerebral Impairment in Focal Ischemia Through Anti-Oxidative, Anti-Inflammatory, and Anti-Apoptotic Effects in Primary Culture of Rat Hippocampal Neurons and Hippocampal CA1 Region of Rats. Molecular Neurobiology, 2016:1-17.
[2] Li K, Ding D, Zhang M. Neuroprotection of Osthole against Cerebral Ischemia/Reperfusion Injury through an Anti-apoptotic Pathway in Rats. Biological & Pharmaceutical Bulletin, 2016, 39(3):336-342.
[3] Silachev DN, Plotnikov EY, Zorova LD, et al. Neuroprotective Effects of Mitochondria-Targeted Plastoquinone and Thymoquinone in a Rat Model of Brain Ischemia/Reperfusion Injury. Molecules, 2015, 20(8):14487-14503.
[4] Lanceta L, Mattingly JM, Li C, et al. How Heme Oxygenase-1 Prevents Heme-Induced Cell Death. Plos One, 2015, 10(8):134-144.
[5] Dong B, Cai M, Fang Z, et al. Hemopexin induces neuroprotection in the rat subjected to focal cerebral ischemia. Bmc Neuroscience, 2012, 14(1):455-462.
[6] Shahjouei S, Cai PY, Ansari S, et al. Middle Cerebral Artery Occlusion Model of Stroke in Rodents: A Step-by-Step Approach. Journal of Vascular & Interventional Neurology, 2016, 8(5):1-8.
[7] Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke: a journal of cerebral circulation, 1989, 20(1):84-91.
[8] Hosseini SM, Samimi N, Farahmandnia M, et al. The Preventive Effects of Neural Stem Cells and Mesenchymal Stem Cells Intra-ventricular Injection on Brain Stroke in Rats. North American Journal of Medical Sciences, 2015, 7(9):390-396.
[9] Garcia JH, Wagner S, Liu KF, et al. Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke, 1995, 26(4):627-635.
[10] Prouteau A, Stéfan A, Wiart L, et al. The evaluation of behavioural changes in brain-injured patients: SOFMER recommendations for clinical practice. Annals of Physical & Rehabilitation Medicine, 2016, 59(1):23-30.
[11] Wegiel B, Hauser CJ, Otterbein LE. Heme as a danger molecule in pathogen recognition. Free Radical Biology & Medicine, 2015(89):651-661.
[12] Wagener FADTG. The heme-heme oxygenase system in inflammation. Journal of Internal Medicine, 2002, 237(1):27-33.
[13] Shu L, Wang C, Wang J, et al. The neuroprotection of hypoxic preconditioning on rat brain against traumatic brain injury by up-regulated transcription factor Nrf2 and HO-1 expression. Neuroscience Letters, 2015(611):74-80.
[14] Chen WJ, Chen HW, Yu SL, et al. Gene expression profiles in hypoxic preconditioning using cDNA microarray analysis: altered expression of an angiogenic factor, carcinoembryonic antigen-related cell adhesion molecule 1. Shock, 2005, 24(2):124-131.
[收稿日期:2016-10-09]