張 強(qiáng) 林維明 徐玉珍
(福州大學(xué)電氣工程與自動(dòng)化學(xué)院 福州 350108)
?
一種用耦合電感實(shí)現(xiàn)零電壓零電流開(kāi)關(guān)的移相全橋變換器
張 強(qiáng) 林維明 徐玉珍
(福州大學(xué)電氣工程與自動(dòng)化學(xué)院 福州 350108)
在高壓大功率場(chǎng)合,通常用IGBT作為開(kāi)關(guān)器件。由于其關(guān)斷的電流拖尾現(xiàn)象,IGBT零電流關(guān)斷能有效減小開(kāi)關(guān)損耗。提出一種新型移相全橋零電壓零電流開(kāi)關(guān)(ZVZCS)方案,通過(guò)1個(gè)雙繞組的耦合電感和2個(gè)二極管實(shí)現(xiàn)滯后臂開(kāi)關(guān)管在寬負(fù)載范圍的零電流關(guān)斷(ZCS)。所增加的二極管可以實(shí)現(xiàn)軟開(kāi)關(guān),耦合電感的漏感并不會(huì)對(duì)增加的二極管產(chǎn)生附加的電壓應(yīng)力。為減小耦合電感的勵(lì)磁電流對(duì)ZCS的影響,通過(guò)在所增加的2個(gè)二極管上各并聯(lián)一個(gè)小電容,在不增大耦合電感尺寸的條件下增加復(fù)位電壓的作用時(shí)間,保證滯后臂開(kāi)關(guān)管的ZCS。在理論分析的基礎(chǔ)上進(jìn)行了計(jì)算機(jī)仿真,并設(shè)計(jì)了一臺(tái)開(kāi)關(guān)頻率為68 kHz、輸出為100 V/10 A的樣機(jī)進(jìn)行實(shí)驗(yàn)驗(yàn)證。仿真和實(shí)驗(yàn)結(jié)果證明了所提方案的有效性。
零電壓零電流開(kāi)關(guān) 移相全橋變換器 耦合電感 寬負(fù)載范圍
實(shí)現(xiàn)軟開(kāi)關(guān)的移相全橋變換器效率高、控制簡(jiǎn)單,廣泛應(yīng)用于中大功率場(chǎng)合。采用的軟開(kāi)關(guān)技術(shù)可分為兩大類:4個(gè)開(kāi)關(guān)管零電壓開(kāi)通(Zero Voltage Switching,ZVS)以及超前臂開(kāi)關(guān)管零電壓開(kāi)通、滯后臂開(kāi)關(guān)管零電流關(guān)斷(Zero Current Switching,ZCS)。采用ZVS方案時(shí),超前臂開(kāi)關(guān)管容易實(shí)現(xiàn)零電壓開(kāi)通,但在負(fù)載較輕時(shí),為了保證滯后臂開(kāi)關(guān)管ZVS,一般需要增大諧振電感,卻造成占空比損失。文獻(xiàn)[1,2]將附加的諧振電感改成可飽和電感,拓寬了滯后臂ZVS范圍,但占空比損失現(xiàn)象沒(méi)有根本解決,且可飽和電感損耗大。文獻(xiàn)[3-5]在橋臂上附加輔助諧振網(wǎng)絡(luò),在不增大占空比損失條件下,使其在大負(fù)載范圍實(shí)現(xiàn)零電壓開(kāi)通。文獻(xiàn)[6-9]將全橋電路變換成2個(gè)半橋電路,實(shí)現(xiàn)大范圍ZVS,但半橋電路輸入電壓利用率低。前面所提到ZVS軟開(kāi)關(guān)技術(shù)還存在一個(gè)共同的問(wèn)題,即一次側(cè)開(kāi)關(guān)管存在較大的環(huán)流階段,導(dǎo)通損耗大。在高壓大功率場(chǎng)合,通常用IGBT作為功率開(kāi)關(guān)器件,讓不易實(shí)現(xiàn)ZVS開(kāi)通的滯后臂開(kāi)關(guān)管ZCS關(guān)斷,能更有效地減小開(kāi)關(guān)損耗,同時(shí)也解決了ZVS方案一次環(huán)流的導(dǎo)通損耗問(wèn)題。
文獻(xiàn)[9,10]利用隔直電容提供復(fù)位電壓,導(dǎo)致滯后臂電壓應(yīng)力變大。文獻(xiàn)[9]用可飽和電感阻止電流反向流動(dòng)[9],但此種電感損耗大,無(wú)法應(yīng)用于大功率場(chǎng)合。文獻(xiàn)[10]串聯(lián)2個(gè)二極管阻止電流反向[10],但這使得導(dǎo)通損耗變大。文獻(xiàn)[11-16]在二次側(cè)增加諧振支路,利用諧振電容電壓將一次電流復(fù)位到零,這種類型的零電壓零電流開(kāi)關(guān)(Zero-Voltage and Zero-Current Switching,ZVZCS)方法不適用于大電流輸出的場(chǎng)合。在橋臂上加入輔助諧振網(wǎng)絡(luò),出現(xiàn)了許多混合電路結(jié)構(gòu)[17-21]:全橋電路的兩個(gè)橋臂,同時(shí)作為半橋變換器或半橋LLC的橋臂,兩個(gè)二次側(cè)組合形成一個(gè)輸出,通過(guò)不同的組合方式可以實(shí)現(xiàn)ZVS或ZVZCS。由于混合結(jié)構(gòu)中的半橋變換器或半橋LLC輸出不可控(也有的同時(shí)采用脈沖頻率調(diào)制(Pulse Frequency Modulation,PFM)與脈沖寬度調(diào)制(Pulse Width Modulation,PWM)控制方案[20,21],但控制復(fù)雜,通常用于多路穩(wěn)壓輸出),組合后的輸出電壓無(wú)法寬范圍調(diào)節(jié)。文獻(xiàn)[22]在全橋電路一次側(cè)增加1個(gè)三繞組耦合電感和2個(gè)二極管,利用輸入電壓產(chǎn)生電流復(fù)位電壓;但繞組結(jié)構(gòu)復(fù)雜,且三繞組耦合電感的漏感會(huì)使二極管電壓應(yīng)力變大。
本文提出一種新型移相全橋ZVZCS方案,通過(guò)1個(gè)雙繞組的耦合電感和2個(gè)二極管來(lái)實(shí)現(xiàn)滯后臂開(kāi)關(guān)管的ZCS。首先分析了所提電路方案的工作原理,并討論耦合電感的勵(lì)磁電流對(duì)ZVZCS的影響;然后,給出了實(shí)現(xiàn)ZVZCS關(guān)鍵參數(shù)的詳細(xì)設(shè)計(jì)過(guò)程,為了減小勵(lì)磁電流對(duì)ZCS影響,在增加的兩個(gè)二極管上各并聯(lián)一個(gè)適當(dāng)?shù)碾娙荩诓辉龃篑詈想姼谐叽绲臈l件下,使滯后臂開(kāi)關(guān)管更接近ZCS。最后用仿真和樣機(jī)證明了所提方案的正確性。
圖1為本文提出的雙繞組耦合電感實(shí)現(xiàn)全橋電路ZVZCS的主電路拓?fù)洌c基本ZVS全橋電路相比,增加了提供復(fù)位電壓的雙繞組耦合電感T2和2個(gè)二極管VDa1、VDa2,如圖1中虛線框所示。圖中,C1、C2為超前臂開(kāi)關(guān)管諧振電容,Lk為T(mén)1、T2一次繞組的總漏感,輸出采用全波整流。

圖1 雙繞組耦合電感實(shí)現(xiàn)全橋電路ZVZCS的主電路Fig.1 The proposed circuit of ZVZCS full-bridge converter with two-winding coupled inductor
穩(wěn)態(tài)工作時(shí),一個(gè)開(kāi)關(guān)周期可以分成14個(gè)階段。由于電路正負(fù)半周對(duì)稱工作,所以只需分析正半周切換到負(fù)半周的8種工作狀態(tài),即S1、S4導(dǎo)通切換到S2、S3導(dǎo)通的過(guò)程。忽略半導(dǎo)體器件和線路導(dǎo)通壓降,各變量參考正方向如圖1中標(biāo)注,ia為T(mén)2繞組n2s的電流,ip為T(mén)2另一繞組n2p的電流,即主變壓器T1的一次繞組電流。Io為忽略開(kāi)關(guān)紋波的Lf電流。為了分析耦合電感的勵(lì)磁電流,把勵(lì)磁電感Lm_T2放繞組n2s一側(cè),耦合電感的等效電路如圖2所示。由圖2可得電流ia為
(1)

圖2 雙繞組耦合電感的等效電路Fig.2 The equivalent circuit of the coupled inductor
穩(wěn)態(tài)時(shí),一些關(guān)鍵變量的波形如圖3所示,電路各階段的工作過(guò)程如圖4所示。
[t0,t1]階段:S1、S4導(dǎo)通,正半周電源向負(fù)載供電,等效電路如圖4a所示,電流的標(biāo)注方向?yàn)閷?shí)際的電流方向。從T2的耦合方向可知,n2s繞組短路。T2的勵(lì)磁電流im_T2<0,ia>0。超前臂開(kāi)關(guān)管導(dǎo)通電流ilead如式(2)所示。T2的加入,增大了超前臂開(kāi)關(guān)管的電流應(yīng)力,n2p/n2s越大,電流應(yīng)力越大。

圖3 穩(wěn)態(tài)工作時(shí)的關(guān)鍵波形Fig.3 Key waveforms of proposed circuit in steady state


圖4 正半周切換到負(fù)半周的各階段等效電路Fig.4 Operating stages from positive to negative cycle
(2)

(3)
[t2,t3]階段:t2時(shí)刻,uC1=Ui,uC2=0,超前臂諧振結(jié)束,等效電路如圖4c所示。S2的反并聯(lián)二極管導(dǎo)通,之后S2零電壓開(kāi)通。同時(shí),T2繞組電壓un2s=Ui,耦合到n2p,形成ip復(fù)位的電壓ureset加在Lk上,ip線性下降,下降到零所需的時(shí)間如式(5)所示。n2p/n2s越大,越容易實(shí)現(xiàn)滯后臂開(kāi)關(guān)管ZCS。
(4)
(5)
[t3,t4]階段:隨著ip下降,ia逐漸減小。考慮到T2的勵(lì)磁電流,t3時(shí)刻,ia=0,VDa1為ZCS關(guān)斷。ureset=0,復(fù)位電壓消失,勵(lì)磁電流達(dá)到正向最大,等效電路如圖4d所示。由式(1)可知,剩余的環(huán)流電流如式(6)所示,im_T2(peak)越大,剩余電流越大,滯后臂開(kāi)關(guān)管并無(wú)法真正地實(shí)現(xiàn)ZCS。
(6)
[t4,t5]階段:t4時(shí)刻,S4關(guān)斷。Lk與滯后臂的寄生電容諧振,由于滯后臂開(kāi)關(guān)管的寄生電容很小,ip迅速諧振反向,等效電路如圖4e所示,此時(shí)ia<0。實(shí)際上由于二極管寄生電容的影響,VDa1關(guān)斷后存在反向恢復(fù)過(guò)程,t3時(shí)刻,ia會(huì)反向流通,等效電路同[t4,t5]階段,由式(6)可知,這有助于ip繼續(xù)下降。如果給VDa1、VDa2各并聯(lián)一個(gè)適當(dāng)?shù)男‰娙荩葜蹬cVDa1、VDa2反向恢復(fù)特性及輸入電壓有關(guān),由此調(diào)節(jié)ia反向后的值ia_r滿足式(7),則S4可以更接近零電流關(guān)斷。
ia_r≈im_T2(peak)
(7)
[t5,t6]階段:t5時(shí)刻,S4反并聯(lián)二極管導(dǎo)通,諧振結(jié)束,ip=-ip(t3),等效電路如圖4f所示。
[t6,t7]階段:經(jīng)過(guò)滯后臂的死區(qū)時(shí)間,t6時(shí)刻,S3開(kāi)通,等效電路如圖4g所示。T2繞組n2s短路,輸入電壓加在Lk上,ip迅速反向上升。直到t7時(shí)刻,ip上升到電感Lf反射到一次電流。
(8)
[t7,t8]階段:t7時(shí)刻之后,電路進(jìn)入負(fù)半周的正常導(dǎo)通過(guò)程。等效電路如圖4h所示,電源向負(fù)載供電,開(kāi)關(guān)管S2的電流同式(2)。直到t8時(shí)刻,開(kāi)始負(fù)半周切換切換到正半周的過(guò)程。
穩(wěn)態(tài)時(shí),下一個(gè)開(kāi)關(guān)周期周而復(fù)始。
電路參數(shù)設(shè)計(jì)要滿足超前臂開(kāi)關(guān)管的零電壓開(kāi)通和滯后臂開(kāi)關(guān)管的零電流關(guān)斷。只要合理地設(shè)置超前臂的死區(qū)時(shí)間和諧振電容C1、C2,超前臂ZVS就容易實(shí)現(xiàn)。滯后臂的ZCS關(guān)鍵在于耦合電感T2的設(shè)計(jì)及VDa1、VDa2并聯(lián)電容的取值。電路的設(shè)計(jì)參數(shù)見(jiàn)表1。漏感Lk越大,滯后臂開(kāi)關(guān)管的ZCS關(guān)斷越難實(shí)現(xiàn)。為了體現(xiàn)耦合電感的復(fù)位電壓對(duì)滯后臂開(kāi)關(guān)管ZCS關(guān)斷的作用,在后文的仿真和實(shí)驗(yàn)中,特意增大漏感,即將Lk值設(shè)得較大。

表1 電路的設(shè)計(jì)參數(shù)Tab.1 The design parameters of circuit
2.1 耦合電感T2的匝比n2p/n2s設(shè)計(jì)
先忽略耦合電感勵(lì)磁電流的影響,由原理波形圖3可知,S4要零電流關(guān)斷,ip需在t4時(shí)刻前下降到零。ip下降到零的最短時(shí)間為
(9)
可知,將ip復(fù)位到零所需的復(fù)位電壓ureset為
(10)
進(jìn)而可得T2的匝比為
(11)
為了保證ip在t4時(shí)刻之前下降到零,同時(shí)減小ip下降過(guò)程中[t2,t3]階段環(huán)流的時(shí)間,選擇的匝比要大于式(11)的計(jì)算值,本文選擇n2p/n2s=1∶8。
耦合電感T2所需的磁心尺寸,可以根據(jù)磁鏈表達(dá)式(12)進(jìn)行設(shè)計(jì)。耦合電感繞組n2p與變壓器T1一次繞組串聯(lián),為了減小對(duì)線路導(dǎo)通損耗的影響,希望繞組n2p匝數(shù)少。實(shí)際可以選用某環(huán)形MnZn鐵氧體磁心,n2p=1 T,n2s=8 T,Lm_T2≈300 μH。關(guān)于T2對(duì)功率密度的影響,在后文的樣機(jī)部分具體說(shuō)明。
ψ=Lkip(max)=2N2pB(max)Ae
(12)
根據(jù)式(2)可得超前臂開(kāi)關(guān)管導(dǎo)通電流為:
(13)
2.2 超前臂諧振電容Clead設(shè)計(jì)
超前臂諧振電容的選擇與傳統(tǒng)的ZVS移相全橋電路類似。由于T2的引入,給C1、C2充、放電的電流變?yōu)槭?13)所示的值,由ip變成了1.125ip。設(shè)C1=C2=Clead,在20%負(fù)載以上可以實(shí)現(xiàn)ZVS,則
(14)
考慮IGBT寄生電容的影響,實(shí)際選擇并聯(lián)在超前臂開(kāi)關(guān)管的電容要小于計(jì)算值。
3.1 仿真研究
根據(jù)以上參數(shù)進(jìn)行Pspice仿真,設(shè)耦合電感T2的耦合系數(shù)k2=0.99。在額定負(fù)載條件下,有、無(wú)并聯(lián)電容Ca時(shí),關(guān)鍵參數(shù)的仿真波形如圖5所示。圖5a為VDa1、VDa2沒(méi)加電容Ca的仿真結(jié)果,可見(jiàn)t3時(shí)刻,ia=0。由于T2勵(lì)磁電流的影響,im_T2(peak)=0.4 A,ip(t3)=3.2 A;此后ip基本保持不變,直到t4時(shí)刻,S4關(guān)斷,雖然關(guān)斷時(shí)的ip已經(jīng)減小,但剩余環(huán)流電流仍然較大,沒(méi)有真正實(shí)現(xiàn)ZCS。圖5b為VDa1、VDa2各并聯(lián)一個(gè)Ca=0.22 nF的仿真結(jié)果,可見(jiàn)t3時(shí)刻,ia=0。

圖5 有、無(wú)Ca時(shí),關(guān)鍵參數(shù)的仿真波形Fig.5 Simulation waveforms of key parameters with and without Ca

圖6、圖7分別為額定負(fù)載和20%負(fù)載時(shí),超前臂開(kāi)關(guān)管ZVS開(kāi)通、滯后臂開(kāi)關(guān)管ZCS關(guān)斷的仿真波形。對(duì)于滯后臂開(kāi)關(guān)管的ZCS關(guān)斷,負(fù)載越小,越容易實(shí)現(xiàn),所以只要設(shè)計(jì)合理,滯后臂開(kāi)關(guān)管可以在全負(fù)載范圍實(shí)現(xiàn)ZCS關(guān)斷。

圖6 滿載時(shí)超前臂ZVS與滯后臂ZCS的仿真波形Fig.6 Simulation waveforms of ZVS in the leading-leg switches and ZCS in the lagging-leg switches at full load

圖7 20%負(fù)載時(shí)超前臂ZVS與滯后臂ZCS的仿真波形Fig.7 Simulation waveforms of ZVS in the leading-leg switches and ZCS in the lagging-leg switches at 20% load
3.2 實(shí)驗(yàn)驗(yàn)證
為了驗(yàn)證理論分析及仿真的正確性,根據(jù)仿真參數(shù)制作了一臺(tái)實(shí)驗(yàn)樣機(jī),采用單電壓環(huán)PI控制,利用DSP TMS320F2812實(shí)現(xiàn)。為了證明ZCS關(guān)斷對(duì)開(kāi)關(guān)損耗的影響,選擇耐壓為600 V的IGBT,型號(hào)為IKW30N60T,樣機(jī)功率級(jí)硬件參數(shù)如圖8所示。其中耦合電感T2尺寸相對(duì)于功率電路中的變壓器T1和濾波電感Lf較小,并不會(huì)對(duì)整體的功率密度產(chǎn)生太大影響。

圖8 樣機(jī)功率級(jí)硬件參數(shù)圖Fig.8 Power stage parameters of the prototype
圖9a為滿載條件,無(wú)Ca時(shí),T1一次電流ip與復(fù)位電壓ureset的波形,可見(jiàn),沒(méi)有Ca時(shí),ip未下降到零,滯后臂開(kāi)關(guān)管無(wú)法真正實(shí)現(xiàn)零電流關(guān)斷。圖9b為滿載條件下,在VDa1、VDa2上分別并聯(lián)電容Ca=100 pF時(shí)的實(shí)驗(yàn)波形。可見(jiàn),ip下降到幾乎為零,有效減小環(huán)流過(guò)程的導(dǎo)通損耗,滯后臂開(kāi)關(guān)管更接近零電流關(guān)斷。

圖9 滿載條件,無(wú)(或有) Ca時(shí),T1一次電流ip、復(fù)位電壓ureset波形Fig.9 Experimental waveforms of ip,ureset without or with Ca at full load
圖10、圖11分別為滿載和20%負(fù)載時(shí),超前臂ZVS與滯后臂ZCS的軟開(kāi)關(guān)波形,實(shí)際并聯(lián)在超前臂的諧振電容為200 pF。

圖10 滿載時(shí)超前臂ZVS與滯后臂ZCS的開(kāi)關(guān)波形Fig.10 Experimental waveforms of ZVS in the leading-leg switches and ZCS in the lagging-leg switches at full load


圖11 20%負(fù)載時(shí)超前臂ZVS與滯后臂ZCS的開(kāi)關(guān)波形Fig.11 Experimental waveforms of ZVS in the leading-leg switches and ZCS in the lagging-leg switches at 20% load
圖12為所增加的二極管VDa(VDa1或VDa2)的電壓、電流波形,可見(jiàn)VDa也實(shí)現(xiàn)了軟開(kāi)關(guān),沒(méi)出現(xiàn)因反向恢復(fù)造成的電壓尖峰。

圖12 二極管VDa的電壓、電流波形Fig.12 Voltage and current waveforms of diode VDa
圖13為額定輸入條件下,所提的ZVZCS方案與傳統(tǒng)的ZVS方案的效率曲線。所提方案具有更高效率,同時(shí)也說(shuō)明IGBT零電流關(guān)斷能更有效地減小開(kāi)關(guān)損耗。ZVZCS方案還減小了一次環(huán)流時(shí)的導(dǎo)通損耗,隨著負(fù)載電流的增大,效率優(yōu)勢(shì)變得更明顯。

圖13 所提電路與傳統(tǒng)ZVS方案的效率對(duì)比Fig.13 Measured efficiency curve of the proposed converter and traditional ZVS topology
本文提出了一種用雙繞組耦合電感實(shí)現(xiàn)移相全橋變換器的ZVZCS。該方法利用輸入電壓產(chǎn)生開(kāi)關(guān)管電流的復(fù)位電壓,特別適用于高壓輸入、低壓大電流輸出的場(chǎng)合。本文方法可在寬負(fù)載范圍內(nèi)實(shí)現(xiàn)滯后臂開(kāi)關(guān)管的ZCS,同時(shí)VDa1、VDa2實(shí)現(xiàn)軟開(kāi)關(guān),耦合電感的漏感并不會(huì)對(duì)增加的二極管產(chǎn)生附加的電壓應(yīng)力。考慮耦合電感勵(lì)磁電流的影響,在VDa1、VDa2兩端各并聯(lián)一電容,使滯后臂開(kāi)關(guān)管更接近ZCS。并進(jìn)行了計(jì)算機(jī)仿真,以IGBT為功率開(kāi)關(guān)制作了一臺(tái)開(kāi)關(guān)頻率為68 kHz、100 V/10 A的原理樣機(jī)進(jìn)行實(shí)驗(yàn)驗(yàn)證。實(shí)驗(yàn)結(jié)果證明了所提方法的正確性,從額定負(fù)載到20%負(fù)載范圍內(nèi),電路都可以實(shí)現(xiàn)ZVZCS;與傳統(tǒng)ZVS方案的效率對(duì)比表明,相同條件下,本文方法具有更高的效率。
[1] Watson R,Lee F C.Analysis,design,and experimental results of a 1 kW ZVS-FB-PWM converter employing magamp secondary-side control[J].IEEE Transactions on Industrial Electronics,1998,45(5):806-814.
[2] Hua G,Lee F C,Jovanovic M M.An improved full-bridge zero-voltage-switched PWM converter using a saturable inductor[J].IEEE Transactions on Power Electronics,1993,8(4):530-534.
[3] 陳仲,李夢(mèng)南,汪洋.ZVS全橋變換器輔助網(wǎng)絡(luò)技術(shù)的比較研究[J].電工技術(shù)學(xué)報(bào),2015,30(22):89-99. Chen Zhong,Li Mengnan,Wang Yang.Comparison study on auxiliary network techniques of zero voltage switching full bridge converter[J].Transactions of China Electrotechnical Society,2015,30(22):89-99.
[4] 張欣,陳武,阮新波.一種輔助電流可控的移相全橋零電壓開(kāi)關(guān)PWM變換器[J].電工技術(shù)學(xué)報(bào),2010,25(3):81-88. Zhang Xin,Chen Wu,Ruan Xinbo.A novel ZVS PWM phase-shifted full-bridge converter with controlled auxiliary circuit[J].Transactions of China Electrotechnical Society,2010,25(3):81-88.
[5] Chen Zhong,Ji Biao,Ji Feng,et al.A novel ZVS full-bridge converter with auxiliary circuit[C]//Proceedings of Applied Power Electronics Conference and Exposition,Palm Springs,CA,2010:1448-1453.
[6] Wu Xinke,Zhang Junming,Xie Xiaogao,et al.Analysis and optimal design considerations for an improved full bridge ZVS DC-DC converter with high efficiency[J].IEEE Transactions on Power Electronics,2006,21(5):1225-1234.
[7] Zhang Junming,Xie Xiaogao,Wu Xinke,et al.Comparison study of phase-shifted full bridge ZVS converters[C]//Proceedings of Power Electronics Specialists Conference,Aachen,Germany,2004:533-539.
[8] Yungtaek J,Jovanovic M M.A new family of full-bridge ZVS converters[J].IEEE Transactions on Power Electronics,2004,19(3):701-708.
[9] Cho J G,Sabate J A,Hua G,et al.Zero-voltage and zero-current-switching full bridge PWM converter for high-power applications[J].IEEE Transactions on Power Electronics,1996,11(4):622-628.
[10]Ruan X B,Yan Y G.A novel zero-voltage and zero-current-switching PWM full-bridge converter using two diodes in series with the lagging leg[J].IEEE Transactions on Industrial Electronics,2001,48(4):777-785.
[11]Kim E S,Joe K Y,Kye M H,et al.An improved soft-switching PWM FB DC/DC converter for reducing conduction losses[J].IEEE Transactions on Power Electronics,1999,14(2):258-264.
[12]Cho J G,Baek J W,Jeong C Y,et al.Novel zero-voltage and zero-current-switching full-bridge PWM converter using a simple auxiliary circuit[J].IEEE Transactions on Industry Applications,1999,35(1):15-20.
[13]Cho J G,Jeong C Y,Lee F C Y.Zero-voltage and zero-current-switching full-bridge PWM converter using secondary active clamp[J].IEEE Transactions on Power Electronics,1998,13(4):601-607.
[14]成庶,陳特放,余明揚(yáng).一種新型有源次級(jí)鉗位全橋零電壓零電流開(kāi)關(guān)PWM變換器[J].中國(guó)電機(jī)工程學(xué)報(bào),2008,28(12):44-49. Cheng Shu,Chen Tefang,Yu Mingyang.A novel FB-ZVZCS PWM converter using improved secondary active clamping circuit[J].Proceedings of the CSEE,2008,28(12):44-49.
[15]Cho J G,Baek J W,Jeong C Y,et al.Novel zero-voltage and zero-current-switching full bridge PWM converter using transformer auxiliary winding[J].IEEE Transactions on Power Electronics,2000,15(2):250-257.
[16]許峰,徐殿國(guó),柳玉秀.一種新型的全橋零電壓零電流開(kāi)關(guān)PWM變換器[J].中國(guó)電機(jī)工程學(xué)報(bào),2004,24(1):147-152. Xu Feng,Xu Dianguo,Liu Yuxiu.A novel zero-voltage and zero-current-switching (ZVZCS) full-bridge PWM Converter[J].Proceedings of the CSEE,2004,24(1):147-152.
[17]袁文,沙德尚,于夢(mèng)園.一種新型的共用之后橋臂的零電壓開(kāi)關(guān)混合型變換器[J].電工技術(shù)學(xué)報(bào),2015,30(8):113-119. Yuan Wen,Sha Deshang,Yu Mengyuan.A novel full-range ZVS hybrid converter with shared lagging leg[J].Transactions of China Electrotechnical Society,2015,30(8):113-119.
[18]Liu C,Gu B,Lai J S,et al.High-efficiency hybrid full-bridge-half-bridge converter with shared ZVS lagging leg and dual outputs in series[J].IEEE Transactions on Power Electronics,2013,28(2):849-861.
[19]Gu B,Lin C Y,Chen B F,et al.Zero-voltage-switching PWM resonant full-bridge converter with minimized circulating losses and minimal voltage stresses of bridge rectifiers for electric vehicle battery chargers[J].IEEE Transactions on Power Electronics,2013,28(10):4657-4667.
[20]Chen Y,Pei X J,Li P,et al.A high performance dual output dc-dc converter combined the phase shift full bridge and LLC resonant half bridge with the shared lagging leg[C]//Proceedings of Applied Power Electronics Conference and Exposition,Palm Springs,CA,2010:1435-1440.
[21]Zhang Y J,Xu D H.Design and Implementation of an accurately regulated multiple output ZVS DC-DC converter[J].IEEE Transactions on Power Electronics,2007,22(5):1731-1742.
[22]Li W H,Shen Y Q,Deng Y,et al.A ZVZCS full-bridge DC/DC converter with a passive auxiliary circuit in the primary side[C]//Proceedings of Power Electronics Specialists Conference,Jeju,2006:1-5.
A Novel ZVZCS Phase-Shifted Full-Bridge Converter with Coupled Inductor
Zhang Qiang Lin Weiming Xu Yuzhen
(College of Electrical Engineering and Automation Fuzhou University Fuzhou 350108 China)
In high voltage and large power applications,IGBTs are often chosen as power switches. Due to their tail currents,zero current turning-off can reduce switching loss effectively. A two-winding coupled inductor and two diodes are introduced to realize zero-voltage and zero-current switching(ZCS) for phase-shifted full-bridge converter. ZCS of the lagging-leg switches is achieved in wide load range. The added diodes are turned on and off with soft switching. The leakage inductor of the coupled inductor will not increase voltage stress of the added diodes. To reduce the impact of magnetizing current of the coupled inductor on ZCS,two small capacitors are paralleled with two diodes,respectively. Without increasing the size of the coupled inductor,the interval of the reset voltage is increased so that the lagging-leg switches can be turned off with ZCS in practice. The analysis is verified by simulation and experimental results on a 68 kHz,100 V/10 A prototype. The results of simulation and experiment verify the validity of the proposed scheme.
Zero-voltage and zero-current switching,phase-shifted full-bridge converter,coupled inductor,wide load range
福建省科技廳重大項(xiàng)目(2014H6012)、福建省自然科學(xué)基金項(xiàng)目(2015J01193)和福州大學(xué)博士啟動(dòng)基金項(xiàng)目(510069)資助。
2015-05-25 改稿日期2015-09-08
TM46
張 強(qiáng) 男,1985年生,博士,研究方向?yàn)殚_(kāi)關(guān)電源軟開(kāi)關(guān)技術(shù)、功率因數(shù)校正技術(shù)。
E-mail:zhangqiangfzu@foxmail.com(通信作者)
林維明 男,1964年生,教授,博士生導(dǎo)師,研究方向?yàn)殡娏﹄娮幼兞骷夹g(shù)。
E-mail:weiming@fzu.edu.cn