劉峰斌,陳文彬
(北方工業大學 機械與材料工程學院,北京 100144)
表面修飾金剛石薄膜導電性研究進展*
劉峰斌1,陳文彬1
(北方工業大學 機械與材料工程學院,北京 100144)
表面經過不同化學修飾,金剛石薄膜會表現出不同的表面導電性能。這使得其在平面微電子、微電化學器件開發方面有著廣闊的應用前景。總結國內外的研究,結合近年來的研究成果,詳述了不同表面修飾金剛石薄膜的實現方法,討論了表面修飾金剛石薄膜的幾何結構和電子結構,并對當前有關表面修飾金剛石薄膜導電機理的主要觀點進行了分析。在此基礎上,提出了今后不同表面修飾金剛石薄膜導電性的研究重點。
金剛石;表面修飾;導電性
金剛石具有原子密度大、硬度高、彈性模量大、帶隙寬、導熱性好和摩擦系數小等特點,非常適用于制作工具涂層、大功率激光器、表面波器件以及光學窗口材料等,受到研究者的廣泛關注。同時,由于化學氣相沉積工藝的出現和摻雜技術的發展,導電性良好的金剛石薄膜實現了常壓低溫制備,氣體壓力一般在1~50 kPa之間,基底溫度低于1 000 ℃,為其在電子元件和電化學元件的應用提供了可能[1-2]。
1989年,Landstrass和Ravi[3]首次發現經過氫等離子濺射處理的金剛石薄膜表面表現出類似金屬的高導電性。這一獨特性質使得表面修飾金剛石薄膜可能用于平面微電子器件的開發,立刻引起了研究人員的興趣。研究者通過大量理論計算和實驗方法驗證了該現象[4-11],并進一步提出表面氨基修飾的金剛石薄膜也呈現類似性質,但是氧修飾不能改變金剛石薄膜絕緣性[4,10-11]。利用所發現的導電特性,基于表面修飾金剛石薄膜的平面場效應晶體管(FET)[12-13]、pH值傳感器[14]等微器件的研制獲得了較快發展。同時,為了探明金剛石薄膜表面修飾后呈現不同導電性的導電機理,研究者在表面修飾金剛石薄膜幾何結構與電子結構上進行了系統的研究,取得了大量有價值的結果。但是,現有部分研究結果存在一定的爭議,關于表面修飾金剛石薄膜的導電機理也尚不明確[15-20]。
本文旨在結合最近的研究成果,對國內外在表面修飾金剛石薄膜導電機理方面的研究進行總結分析,并提出該領域后續的研究重點。
自1989年Landstrass和Ravi利用氫等離子濺射獲得氫修飾金剛石薄膜以來[3],研究者又陸續開發了多種表面修飾金剛石薄膜的制備方法。這些方法包括光化學引發[21-22]、熱化學反應[23-24]以及電化學氧化還原等[25-27],獲得了氫基、氨基、氧基(羰基、羧基)等大量表面修飾金剛石薄膜。



圖1 兩種修飾金剛石薄膜表面XPS譜[10]
Fig 1 XPS spectra of hydrogen-terminated and oxygen-terminated diamond films[10]
相比于氫、氧修飾工藝來說,氨基的修飾方法相對復雜,傳統的氨基修飾方式是先在薄膜表面修飾上氯元素,再通過元素置換的方式修飾氨基。由于薄膜表面被氯元素活化,修飾氨基時反應相對比較容易進行。然而,這種兩步走的修飾方法有一定的局限性,因為薄膜表面氯元素的修飾率不高,導致了氨基修飾率也受到限制[21,23]。所以,研究者們提出一步到位的氨基修飾工藝。目前最常用氨基化方法有以下幾種:(1) 離子體處理法,即將氫修飾金剛石薄膜放置在13.65 MHz的等離子體容器中,通入He和NH3混合氣體進行反應,Szunerits等利用此方法制備出氨修飾金剛石薄膜,并從XPS表征結果中看到薄膜在400 eV處出現N1s特征峰[35];(2) 光化學反應法,即將氫修飾金剛石薄膜放置在氨氣連續鼓泡的反應器中,用紫外線燈(波長254 nm)照射進行反應實現氨基化[36]。安云玲等[21]用光化學方法實現氨基修飾,從XPS結果得出氨修飾后金剛石薄膜的C1s特征峰強度有所下降,O1s特征峰強度有所增強,并且在400 eV處出現N1s特征峰;(3) 陽極氧化法,即將金剛石薄膜進行超聲清洗后,放入濃度為0.1 mol/L的硫酸溶液中施加+2.4 V的電位進行電化學陽極氧化30 min。將完成電化學陽極氧化的BDD薄膜放入含有2%(體積分數)APTES的乙醇溶液中2 h,取出后超聲清洗,即完成金剛石薄膜表面的氨基化處理[37]。
通過大量實驗發現,不同修飾的金剛石薄膜表面表現出完全不同的電子親和性[7,38-40]、親疏水性[41-44]等。同時,也可通過這些性能的測試來對不同修飾金剛石薄膜進行表征。目前,研究者通過檢測不同修飾金剛石薄膜表面的潤濕角發現,氫修飾金剛石薄膜表面的潤濕角超過90°,表現出疏水性質[41];而氧修飾金剛薄膜表面的潤濕角為0.6~64.7°,表現出親水性[42-44]。氧修飾金剛石薄膜較大的潤濕角差異結果與金剛石表面氧化處理方法、薄膜表面形貌特征以及sp2/sp3比值大小有很大關系。本課題組測試的氫修飾薄膜表面潤濕角為92.5°,而氧修飾金剛石薄膜表面潤濕角為1.6°[10,28,31]。另外,研究者還發現氫修飾薄膜表面表現出負的電子親和勢(NEA),而氧修飾薄膜表面呈現正的電子親和勢(PEA)[7,38-40]。
對于氫修飾金剛石薄膜表面幾何結構,研究者們進行了廣泛的研究。Lurie等[45]利用低能電子衍射(LEED)觀察了金剛石(100)表面在退火過程中表面幾何構型的變化,發現隨著溫度的升高,其幾何構型從(1×1)結構轉變為(2×1)結構。Hamza等[46]指出轉變會以兩步實現:首先,從C(1×1)∶nH轉變為C(2×1)∶H再構形式;然后,隨著溫度的升高,氫完全脫附,進一步轉變為C(2×1)清潔表面。其中1×1∶nH中n的數值則可能為對稱結構的C(1×1)∶2H[47]、傾斜型C(1×1)∶2H[48]以及C(1×1)∶1.5H[49],見圖2所示。Bobrov等[50]利用掃描隧道顯微鏡(STM)直接在原子尺度下觀察到了金剛石(100)表面單層氫吸附(2×1)結構,并測量了C—C二聚體的間距。不同金剛石晶面氫修飾后表面幾何結構不同。對于氫修飾金剛石(100)晶面,實驗和理論計算都表明單原子層覆蓋的(2×1)結構是其最穩定結構(見圖3所示)。針對C(111)表面,Aizawa等[51]利用LEED和高分辨電子能量損失譜(HREELS)發現表面除了存在CH基團(361 meV)外,還存在CH3功能團(352 meV)。


圖2 亞穩態氫修飾金剛石(100)表面幾何結構[47-49]

圖3 氫修飾金剛石(100)表面C(2×1)幾何結構
Fig 3 Geometry structure C (2×1) of hydrogen modified diamond (100) surface


圖4 亞穩態氫修飾金剛石(100)表面幾何結構[58]

圖5 氧修飾金剛石(100)表面幾何結構
Fig 5 Geometric structure of oxygen modified diamond (100) surface
Pehrsson等[34,63]利用HREELS、俄歇譜(AES)、能量損失譜(ELS)和低能電子衍射,分析了不同氧覆蓋程度的金剛石(100)表面的表面組分,發現開始吸附

對于氨基的表面幾何結構的研究,是近幾年才被研究者所關注的。氨基在金剛石薄膜表面的幾何構型與氧基在金剛石薄膜表面的構型類似,如圖6所示。Hassan等[11]利用基于密度泛函理論的第一原理計算指出,橋接結構與頂接結構的氨基修飾金剛石薄膜總能量相近,頂接結構的氨基金剛石薄膜更為穩定。

圖6 氨修飾金剛石(100)表面幾何結構
Fig 6 Geometric structure of ammonia modified diamond (100) surface
氫修飾金剛石薄膜表現出高導電性主要決定于其表面電子結構。目前,研究者提出兩種模型試圖對其進行解釋。一種是能帶彎曲模型,Sugino等[64]認為氫修飾金剛石薄膜費米能級附近的淺受主能級引起了能帶向上彎曲,從而表現出P型導電性。Kern等[52-55]用從頭算的方法分析了金剛石不同晶面上的電荷態密度,發現(100)和(110)表面帶隙中表面態存在與否跟氫的覆蓋度有關,而(111)面,1×1構型氫修飾金剛石表面始終存在表面態。Davidson等[47]通過緊約束分子動力學的方法得出相同結論,并且Davidson與Yang[65]都認為是由于懸掛鍵的存在而誘發表面態的產生。本課題組[10,28]借助XPS價帶譜以及掃描隧道譜分析表明,氫修飾金剛石薄膜表面能帶向上彎曲,在高于價帶頂位置存在淺受主能級;氧修飾表面能帶向下彎曲,帶隙較寬,帶隙中不存在表面態,如圖7所示。
然而,究竟氫修飾金剛石薄膜表面的表面態是由什么因素引起的,尚存在廣泛爭議。Kawarada等[66]認為是由于表面吸附氫原子誘發的。Hayashi[15]則提出該表面態是由次表面的氫誘發產生。另外,雖然部分研究支持能帶彎曲模型,但是,也存在不少質疑。Maire等[67]和Weide等[38]用UPS研究金剛石(100)表面并無發現表面態。Bobrov等[68]用STM研究金剛石表面也沒有發現表面態,但是氫脫附后表面態出現。此外,研究者還發現次表面氫原子所誘發能級較深,難以起到淺受主能級的作用[69-70]。

圖7 氫修飾和氧修飾金剛石薄膜表面I-V隧道譜分析[10]

圖8 氫修飾金剛石薄膜表面電化學導電機理[16]
Fig 8 Electrochemical conducting mechanism of hydrogen modified diamond film surface[16]

圖9 氫修飾金剛石薄膜與不同化學勢離子溶液固液界面能帶圖[72]
Fig 9 The solid liquid interfacial energy band diagram of hydrogen modified diamond film with different chemical potential and ionic solution[72]
然而,上述的模型也并非是無懈可擊。Chakrapani發表在Science上的論文中提到,由于氫修飾金剛石表面是疏水的,所以水層在該表面導電性中所起的作用大小有待商榷,另外,所提出的電化學電偶的熱力學和動力學機制也存在疑問[19]。Chakrapani深入指出,表面高導電性有可能與水層中提供的離子有關,通過調節離子種類與濃度,可以控制氫修飾金剛石薄膜表面導電性。后續研究更是發現僅僅暴露在純凈NO2氣氛中就會導致電導率上升,但在氣氛中通入水蒸氣后電導率卻下降了[79]。甚至,其它研究者發現將金剛石薄膜暴露在干燥的NO2、O3、SO2等氣氛中時,薄膜次表面空穴濃度增加,表面電導率將顯著提高[80-81]。所以,之前Maier等發展起來的模型并不完善。
Yoshiteru等[82]在前人研究的基礎上,進一步提出修正的電荷轉移模型。將吸附氣體分為兩組:一組包括NO2、O3、SO2、NO。這些氣體分子的最低未占據分子軌道(LUMO)能級或單占據分子軌道(SOMO)能級低于氫修飾金剛石薄膜表面價帶頂(VBM);第2組包括水分子、N2O、CO2等,這些分子最低未占據分子軌道(LUMO)能級或單占據分子軌道(SOMO)能級都高于氫修飾金剛石薄膜表面價帶頂(VBM),如圖10所示。通過實驗結果分析,氫修飾金剛石薄膜通過吸附第1組氣體分子可以增加空穴濃度,而吸附第2組氣體分子則對于空穴沒有影響。他們認為這是由于第1組氣體分子的最低未占據分子軌道(LUMO)能級低于金剛石的價帶頂,則氫修飾金剛石薄膜表面的價電子轉移至氣體分子上的未占據電子軌道,從而使氫修飾金剛石薄膜次表面集聚空穴,使其表面呈現p型高導電性。

圖10 金剛石不同晶面能帶及各類氣體分子最低未占據分子軌道能級[82]
Fig 10 The lowest molecular orbital energy levels of different crystal planes of diamond and all kinds of gas molecules[82]
對于氧修飾和氨修飾金剛石表面電子結構,現如今的理論和研究數據都還十分欠缺。Zhang等[56]利用UPS研究氧修飾金剛石薄膜表面,發現隨著氧覆蓋度的提高,表面態的強度不斷降低。本課題組[57]利用密度泛函理論的第一原理方法計算了橋接型和頂接型氧吸附金剛石(100)表面的平衡態幾何結構和電子結構,并利用掃描隧道顯微鏡分析了氧修飾金剛石薄膜表面的掃描隧道譜,未發現其帶隙結構變化。部分文獻則推測氨修飾金剛石薄膜與氫修飾金剛石薄膜電子結構相似,甚至在吸附活性基團后將表現出更高的導電性[11,35-36]。
表面修飾金剛石薄膜表現出不同的導電性能,且制備簡單,在平面電子元器件制備方面有潛在的應用價值。但是,其導電機理尚不清楚,這不可避免地限制了其進一步應用。研究者針對表面不同修飾金剛石薄膜導電機理進行了大量工作,取得了大量重要的研究結果,但尚需在以下兩個方面進一步開展工作:
(1) 關于表面修飾金剛石薄膜導電機理,研究者們從最初歸因于金剛石表面氫原子、次表面氫原子,到后來提出的電荷轉移模型以及表面吸附的活性氣體的影響,都難以完美解釋表面修飾金剛石薄膜的導電性變化。實際上,發現次表面氫原子的作用與次表面氫原子的濃度有關,低濃度氫原子濃度雖然難以誘發淺受主能級[70,83],但是如果次表面氫原子濃度較高時,則由次表面氫原子誘發的受主能級會向價帶方向移動[83]。因此,氫修飾金剛石薄膜表面高導電性很可能是表面氫原子、次表面氫原子以及表面吸附活性基團的協同作用引起的。研究者可以通過精心設計實驗,結合理論計算進一步明確金剛石薄膜的導電機理。
(2) 當前研究者大多研究的為氫修飾金剛石薄膜的導電性,對于氧修飾、氨基以及其它基團的修飾研究相對較少。實際上,不同表面修飾的金剛石薄膜表現出不同的表面性能,例如,氫修飾金剛石薄膜具有疏水性和負的電子親和勢,而氧修飾金剛石薄膜具有親水性和正的電子親和勢。因此,對不同表面修飾的金剛石薄膜進行系統研究,獲得多種不同表面性能的薄膜材料,有利于推動金剛石薄膜表面功能化。
[1] Drory M D, Hutchinson J E. Diamond coating of titanium alloys [J]. Science, 1994, 263: 1753-1755.
[2] Dai Dahuang, Zhou Kesong, et al. Preparation process and application of diamond thin film deposition [M].Beijing: Metallurgical Industry Press,2001:1-7.
戴達煌,周克崧,等. 金剛石薄膜沉積制備工藝與應用[M].北京: 冶金工業出版社, 2001:1-7.
[3] Landstrass M I, Ravi K V. Hydrogen passivation of electrically active defects in diamond [J]. Appl Phys Lett, 1989, 55: 1391-1393.
[4] Kiyota H, Matsushima E, Sato K, et al. Electrical properties of Schottky barrier formed on as-grown and oxidized surface of homoepitaxially grown diamond (001) film [J]. Appl Phys Lett, 1995, 67: 3596-3598.
[5] Yamanaka S, Takeuchi K, Watanabe H, et al. Electrical conduction of high-conductivity layers near the surfaces in hydrogenated homoepitaxial diamond films [J]. Appl Surf Sci, 2000, 159-160: 567-571.
[6] Yamanaka S, Ishikawa K, Mizuochi N, et al. Structure change in diamond by hydrogen plasma treatment at room temperature [J]. Diamond Relat Mater, 2005, 14: 1939-1942.
[7] Rutter M J, Robertson J. Ab initio calculation of electron affinities of diamond surfaces [J]. Phys Rev B, 1998, 57: 9241-9245.
[8] Diederich L, Küttel O M, Aebi P, et al. Electron affinity and work function of differently oriented and doped diamond surfaces determined by photoelectron spectroscopy [J]. Surf Sci, 1998, 418: 219-239.
[9] Garrido A J, Heimbeck T, Stutzmann M. Temperature-dependent transport properties of hydrogen-induced diamond surface conductive channels [J]. Phys Rev B, 2005, 71: 245310-245317.
[10] Liu F B, Wang J D, Liu B, et al. Effect of electronic structures on electrochemical behaviors of surface-terminated boron-doped diamond film electrodes [J].Diamond Relat Mater, 2007, 16: 454-460.
[11] Hassan M M, Karin L. Effect of surface termination on diamond (100) surface electrochemistry [J].Phys Chem C, 2014,118:22995-23002.
[12] Michal K, Makoto K. Improvement of hydrogen-terminated diamond field effect transistors in nitrogen dioxide atmosphere [J]. Appl Phys,2009, 086502-1-086502-3.
[13] Kawarada H, Ruslinda A R. Diamond electrolyte solution gate FETs for DNA and protein sensors using DNA/RNA aptamers [J]. Phys Status Solidi A, 2011, 208: 2005-2016.
[14] Fierro S, Mitan N I, Comninellis C,et al. pH sensing using boron doped diamond electrodes [J]. Chem Phys, 2011, 13: 16795-16799.
[15] Hayashi K, Yamanaka S, Watanabe H, et al. Investigation of the effect of hydrogen on electrical and optical properties in chemical vapor deposited on homoepitaxial diamond films[J]. Appl Phys, 1997, 81: 744-753.
[16] Maier F, Riedel M, Mantel B, et al. Origin of surface conductivity in diamond [J].Physical Review Letters, 2000, 85(16): 3472-3475.
[17] Koslowski B, Strobel S, Ziemann P. Comment on “origin of surface conductivity in dimaond” [J].Phys Rev Lett, 2001, 87(16): 3472-3475.
[18] Maier F, Riedel M, Mantel B, et al. Reply to “comment” [J]. Phys Rev Lett, 2001, 87(20): 209706-1.
[19] Chakrapani V, John C, Angus, et al. Charge transfer equilibria between diamond and an aqueous oxygen electrochemical redox couple [J]. Science,2007 318:1424-1430.
[20] Christoph E. Nebel surface-conducting diamond [J].Science, 2007, 318(5855): 1391-1392.
[21] An Yunling. The modification of amido on the surface of the diamond film deposited by HFCVD [J].Journal of Functional Materials,2010,41(1):73-75
安云玲.HFCVD金剛石薄膜表面的氨基修飾方法[J].功能材料,2010,41(1):73-75.
[22] Zhang G J, Song K S, Nakamura Y, et al. DNA micro patterning on polycrystalline diamond via one-step direct animation [J]. Langmuir, 2006, 22(8):3728-3734.
[23] Zhi Jinfang. Diamond surface fictionalizations [J]. Science Bulletin,2006,51(5):497-505.
只金芳.金剛石表面功能化修飾[J].科學通報,2006,51(5):497-505.
[24] Liu F B, Jing B, Cui Y, et al. Voltammetric and impedance behaviors of surface-treated nano-crystalline diamond film electrodes [J].AIP Advances 5, 2015, 041306-1-041306-6.
[25] Goeting C H, Marken F, Gutierrez-Sosa A, et al. Electrochemically induced surface modifications of boron-doped diamond electrodes: an X-ray photoelectron spectroscopy study [J]. Diamond Relat. Mater. 2000, 9: 390-396.
[26] Xiong Y, Wang B, Dai L,et al Electrochemical cathodic treatment: a non-destructive way to hydrogenate conductive ultrananocrystalline diamond films [J]. Phys Status Solidi A, 2014, 211(12): 2744-2748.
[27] Hoffmann R, Kriele A, Obloh H, et al. Electrochemical hydrogen termination of boron-doped diamond [J]. Appl Phys Lett, 2010, 97: 052103-1-052103-3.
[28] Liu F B, Li X M, Wang J D, et al. Effects of the surface adsorption of boron-doped diamond electrode on its electrochemical behavior [J].Chin Sci Bull, 2006, 51(15): 1903-1908.
[29] Liu F B, Wang J D, Chen D R. Field emission property of hydrogenated chemical vapor deposited diamond films studied by scanning tunneling microscopy[J].Journal of Nanoscience and Nanotechnology, 2010,10(11):7319-7323.
[30] Wang J D, Liu F B, Chen H S,et al. The electron transfer behavior of the hydrogen-terminated boron-doped diamond film electrode [J]. Materials Chemistry and Physics, 2009, 115: 590-598.
[31] Liu Fengbin. Electronic structures of hydrogenated and oxygenated boron-doped diamond films[J].Acta Physica Sinica,2008, 57(02):1171-1175.
劉峰斌. 氫、氧終端摻硼金剛石薄膜的電子結構[J].物理學,2008, 57(02):1171-1175.
[32] Mori Y, Kawarada H, Hiraki A. Properties of metal/diamond interfaces and effects of oxygen adsorbed onto diamond surface [J]. Appl Phys Lett, 1991, 58: 940-941.
[33] Loh K P, Xie X N, Lim Y H, et al. Surface oxygenation studies on (100)-oriented diamond using an atom beam source and local anodic oxidation [J]. Surf Sci, 2002, 505: 93-114.
[34] Phersson P E, Mercer T W. Oxidation of the hydrogenated diamond (100) surface [J]. Surf Sci, 2000, 460: 49-66.
[35] Szunerits S, Jarna C, Coffinier Y, et al. Direct amination of hydrogen-terminated boron doped diamond surfaces [J]. Electrochem Commun, 2006, 8(7):1185-1190.
[36] Zhang G J, Song K S, Nakamura Y, et al. DNA micro patterning on polycrystalline diamond via one-step direct animation [J]. Langmuir, 2006, 22(8):3728-3734.
[37] Notsu H, Fukazawa T, Tatsuma T, et al. Hydroxyl groups on boron-doped diamond electrodes and their modification with a silane coupling agent[J]. Electrochemical and Solid-State Letters, 2001, 4(3): H1-H3.
[38] Weide J V, Zhang Z, Baumann P K, et al. Negative-electron-affinity effects on the diamond (100) surface [J]. Phys Rev B, 1994, 50: 5803-5806.
[39] Maier F, Risten J, Ley L. Electron affinity of plasma-hydrogenated chemically oxidized diamond (100) surfaces [J]. Phys Rev B, 2001, 64: 165411-1-165411-7.
[40] Cui J B, Graupner R, Ristein J, et al. Electron affinity and band bending of single crystal diamond (111) surface [J]. Diamond Relat Mater, 1999, 8: 748-753.
[41] Yagi I, Notsu H, Kondo T, et al. Electrochemical selectivity for redox systems at oxygen-terminated diamond electrodes. [J]. Electroanal Chem, 1999, 473: 173-178.
[42] Boukherroub R, Wallart X, Szunerits S, et al. Photochemical oxidation of hydrogenated boron-doped diamond surfaces [J]. Electrochem Commun, 2005, 7: 937-940.
[43] Miller J B. Amines and thiols on diamond surfaces [J]. Surf Sci, 1999, 439: 21-33.
[44] Kaibara Y, Sugata K, Tachiki M, et al. Control wet ability of the hydrogen-terminated diamond surface and the oxidized diamond surface using an atomic force microscope [J]. Diamond Relat Mater, 2003, 12: 560-564.
[45] Lurie P G, Wilson J M. The diamond surface Ⅰ. the structure of the clean surface and the interaction with gases and metals [J]. Surf Sci, 1977, 65: 453-475.
[46] Hamza A V, Kubiak G D, Stulen R H. Hydrogen chemisorptions and the structure of the diamond C(100)-(2×1) surface [J]. Surf Sci, 1990, 237: 35-52.
[47] Davidson B N, Pickett W E. Tight-binding study of hydrogen on the C(111), C(100), and C(110) diamond surfaces [J]. Phys Rev B, 1994, 49(10): 11253-11267.
[48] Zhang Z, Wensell M, Bernholc J. Surface structures and electron affinities of bare and hydrogenated diamond C(100) surfaces [J].Phys Rev B, 1995, 51(8): 5291-5296.
[49] Furthmüller J, Hafner J, Kresse G. Dimer reconstruction and electronic surface states on clean and hydrogenated diamond (100) surfaces [J]. Phys Rev B, 1996, 53(11): 7334-7351.
[50] Bobrov K, Mayne A, Comtet G, et al. Atomic-scale visualization and surface electronic structure of the hydrogenated diamond C(100)-(2×1):H surface [J]. Phys Rev B, 2003, 68(19): 195416-1-195416-8.
[51] Aizawa T, Ando T, Kamo M, et al. High-resolution electron-energy-loss spectroscopic study of epitaxially grown diamond (111) and (100) surfaces [J].Phys Rev B, 1993, 48(24): 18348-18351.
[52] Busmann H G, Hertel I V. Vapour grown polycrystalline diamond films: microscopic, mesoscopic and atomic surface structures [J]. Carbon, 1998, 36(4): 391-406.
[53] Kern G, Hafner J, Kresse G. Atomic and electronic structure of diamond (111) surfaces:Ⅰ.Reconstruction and hydrogen-induced de-reconstruction of the one dangling-bond surface [J].Surf Sci, 1996, 366:445-463.
[54] Kern G, Hafner J, Kresse G. Atomic and electronic structure of diamond (111) surfaces: Ⅱ. (2×1) and (3×3) reconstructions of the clean and hydrogen-covered three dangling-bond surfaces [J]. Surf Sci, 1996, 366: 464-482.
[55] Kern G, Hafner J, Kresse G. Atomic and electronic structure of diamond (111) surfaces: Ⅲ. electronic structure of the clean and hydrogen-covered three-dangling-bond surfaces [J].Surf Sci, 1997, 384: 94-105.
[56] Kern G, Hafner J. Ab initio calculations of the atomic and electronic structure of clean and hydrogenated diamond (110) surfaces [J]. Phys Rev B, 1997, 56(7): 4203-4210.
[57] Liu Fengbin. The microstructures of the diamond (100) surfaces with different density of hydrogen adsorption [J]. Acta Physica Sinica, 2010,59(9):6556-6562.
劉峰斌. 不同密度氫吸附金剛石(100)表面的微觀結構[J].物理學報,2010,59(9):6556-6562.
[58] Liu F B, Wang J D, Chen D R,et al. Ab initio study of hydrogen desorption from hydrogenated diamond (100) surfaces [J].Solid State Phenom, 2007, 121-123:1191-1124.
[59] Thomas R E, Rudder R A, Markunas R J. Thermal desorption from hydrogenated and oxygenated diamond (100) surfaces [J]. Vac Sci Technol A, 1992, 10(4): 2451-2457.
[60] Liu Fengbin. The microstructure and properties of different surface-terminated boron-doped diamond films[D].BeiJing:Tsinghua University,2006.
劉峰斌.不同表面端基摻硼金剛石薄膜的微觀結構及性能[D].北京:清華大學,2006.
[61] Hossain M Z, Kubo T, Aruga T, et al. Chemisorbed states of atomic oxygen and its replacement by atomic hydrogen on the diamond (100)-(2×1) surface [J]. Surf Sci, 1999, 436: 63-71.
[62] John P, Polwart N, Troupe C E, et al. The oxidation of (100) textured diamond [J].Diamond Relat Mater, 2002, 11: 861-866.
[63] Pehrsson P E, Mercer T W, Chaney J A. Thermal oxidation of the hydrogenated diamond (100) surface [J]. Surf Sci, 2002, 497: 13-28.
[64] Shirafuji J, Sugino T. Electrical properties of diamond surfaces [J]. Diamond Relat Mater, 1996, 5: 706-703.
[65] Yang S H, Drabold D A, Adams J B. Ab inito study of diamond C (100) surfaces [J]. Phys Rev B, 1993, 48(8): 5261-5264.
[66] Kawarada H, Sasaki H, Sato A. Scanning-tunneling-microscope observation of the homoepitaxial diamond (001) 2×1 reconstruction observed under atmospheric pressure [J] Phys Rev B, 1995, 52(15): 11351-11358.
[67] Maier F, Risten J, Ley L. Electron affinity of plasma-hydrogenated chemically oxidized diamond (100) surfaces [J]. Phys Rev B, 2001, 64: 165411-1-165411-7.
[68] Bobrov K, Mayne A J, Hoffman A, et al. Atomic-scale desorption of hydrogen from hydrogenated diamond surfaces using the STM [J]. Surf Sci, 2003, 528: 138-143.
[69] Goss J P, Jones R, Heggie M I, et al. Theory of hydrogen in diamond [J].Phys Rev B, 2002, 65(11): 115207-1-115207-13.
[70] Liu F B, Wang J D, Chen D R. Ab initio study of hydrogen-boron interactions in diamond films journal of nanoscience and nanotechnology [J].Journal of Nanoscience and Nanotechnology, 2009, 9: 727-730.
[71] Ri S G, Tashiro K, Tanaka S, et al. Hall effect measurements of surface conductive layer on undoped diamond film in NO2and NH3atmospheres. [J]. Appl Phys, 1999, 38: 3492-3496.
[72] Nebel C E, Kato H,Rezek B, et al. Electrochemical properties of undoped hydrogen terminated CVD diamond [J].Diamond Relat Mater, 2006, 15: 264-268.
[73] Nebel C E, Rezek B, Shin D, et al. Electronic properties of H-terminated diamond in electrolyte solutions [J]J Appl Phys, 2006, 99: 033711-1-033711-4.
[74] Nebel C E, Rezek B, Zrenner A. Electronic properties of the 2D-hole accumulation layer on hydrogen terminated diamond [J].Diamond Relat Mater, 2004, 13: 2031-2036.
[75] Mares J J, Hubik P, Kristofik J, et al. Influence of ambient humidity on the surface conductivity of hydrogenated diamond [J]. Diamond Relat Mater, 2008, 17:1356-1361.
[76] Girija K G, Nuwad J, Vatsa R K. Hydrogenated diamond as room temperature H2S sensor [J]. Diamond Relat Mater, 2013, 40: 38-40.
[77] Liu F B, Li J L, Chen W B, et al. Geometries and electronic structures of the hydrogenated diamond (100) surface upon exposure to active ions: A first principles study [J]. Front Phys, 2016, 11(1): 116804-1-116804-5.
[78] Liu F B, Wang J D, Chen D R,et al. Electronic properties of hydrogen- and oxygen-terminated diamond surfaces exposed to the air [J]. Chin Phys B, 2009, 18: 2041-2047.
[79] Marina D, Martin S, Bohuslav R, et al. Temperature enhanced gas sensing properties of diamond films [J].Vacuum, 2012, 86:599-602.
[80] Kubovic M, Kasu M, et al. Electronic and surface properties of H-terminated diamond surface affected by NO2gas [J].Diamond Relat Mater, 2010, 19:889-893.
[81] Sato H, Kasu M. Electronic properties of H-terminated diamond during NO2and O3adsorption and desorption [J].Diamond Relat Mater,2012, 24:99-103.
[82] Takagi Y, Shiraishi K, et al. Mechanism of hole doping into hydrogen terminated diamond by the adsorption of inorganic molecule [J].Surf Sci,2013, 609:203-206.
[83] Liu F B, Cui Y, Qu M, et al. effects of hydrogen atoms on surface conductivity of diamond film [J].P Advances, 2015, 5: 041307-1-041307-6.
Progress on the conducting mechanism of the surface-modified diamond films
LIU Fengbin,CHEN Wenbin
(School of Mechanical and Material Engineering,North China University of Technology,Beijing 100144,China)
By different surface modification, the diamond films would show various surface conductivities. This makes it have a broad application prospect in the development of in-plane micro-electronics and micro-electrochemical devices. By summarizing the research at home and abroad, combined with the recent research results of our group, the preparation methods of the various surface-modified diamond films are described in detail. In addition, the equilibrium geometries and electronic structure of the surface-modified diamond films are discussed. Finally, the main opinions on the conducting mechanism of the surface-modified diamond films are also analyzed. On the basis of the above, the remarkable research points on the surface conductivity of the diamond films with different surface modification in the future are proposed.
diamond; surface modification; electrical conductivity
1001-9731(2016)12-12050-08
國家自然科學基金資助項目(50575004);北京市自然科學基金資助項目(3162010)
2015-12-17
2016-03-31 通訊作者:劉峰斌,E-mail: fbliu@ncut.edu.cn
劉峰斌 (1974-),男,河北徐水人,博士,副教授,研究方向為材料表面理論與控制技術。
TQ127.1+1
A
10.3969/j.issn.1001-9731.2016.12.008