付鵬, 宋筆鋒, 梁少然, 楊文青
(西北工業大學 航空學院, 陜西 西安 710072)
撲翼的推力特性與功率特性的實驗研究
付鵬, 宋筆鋒, 梁少然, 楊文青
(西北工業大學 航空學院, 陜西 西安 710072)
針對撲翼實驗動態特性強、測控變量多的特點,設計了一種實驗專用的撲動機構,在實現對撲動頻率和撲動幅度精確調控的同時,集成了對瞬時撲動角度和輸入功率的測量功能,建立了一套適用于撲翼風洞實驗的測控系統,能夠實現對動態氣動力、撲動角度、撲動翼輸入功率等量的實時同步測量;在此基礎上針對撲翼的推力特性和功率特性進行了風洞實驗研究,著重分析了在不同撲動頻率和不同撲動幅度情況下撲翼的推力與功率特性;實驗結果表明,在研究的范疇內,撲動頻率和撲動幅度的增大都有利于推力的產生,但都會增大對應的功耗;推力和功耗都隨St的增大呈“J”型曲線增長,當St小于0.25時,推力和功耗的增長趨勢較緩,隨著St的增大,尤其當St大于0.3時,推力和功耗將大幅增大。
微型撲翼飛行器;推力特性;功率特性;風洞實驗;測控系統
近年來,由于撲動飛行方式在微型飛行器范疇內具有的獨特優勢,已有多個研究機構將研究方向轉向了微型撲翼飛行器。對于微型撲翼飛行器,撲動翼產生的推力和功率消耗直接決定了飛行器的機動能力和續航時間,因而研究撲翼的推力特性和功率特性對提高飛行器的性能起著重要作用。
撲翼獨特的非定常運動方式使其研究難度遠大于對常規固定翼的研究[1]。在通常的研究方法中,風洞實驗由于其直觀可靠的特點,一直是撲翼研究中的一種重要手段。在國內的研究中,西北工業大學的邵利民等[2]較早地利用風洞實驗研究了撲翼的氣動特性,探究了不同外形的撲動翼的氣動規律;隨后南京航空航天大學的段文博等[3]在開口風洞中研究了主動變形撲動翼的氣動特性;以上研究主要側重于對撲動翼平均氣動力和功率的研究,未對撲動翼在撲動過程中的瞬時氣動力和瞬時功率進行深入分析。在國外的研究中,弗羅里達大學的Pin Wu等[4]通過高速攝像系統研究在懸停狀態下撲翼的柔性變形與推力的關系;而亞利桑那大學的Sergey Shkarayev等[5]在風洞實驗中通過定頻率和定功率的方法研究了撲動翼平均推力的變化特性。
在以往的撲翼實驗研究中,受限于當時的實驗手段,往往更注重對撲動翼的平均氣動力進行研究,而忽略撲翼在撲動過程中的瞬態氣動特性;此外,即便有些研究中涉及到了撲動翼的功率特性,但其測量的功率中包含了驅動機構消耗的功率,并未直接得到撲動翼的輸入功率。撲翼飛行器是一種動態的飛行方式,撲動翼產生的推力和功率消耗都呈現強烈的非定常特性,只有分析撲動過程中的瞬時特性才能逐漸認識撲翼飛行的本質,而僅對平均特性的研究則無法達到這種效果。基于此,論文設計了一套能夠直接測量撲動翼的瞬時氣動特性和瞬時功率特性的實驗系統,并在該系統的基礎上實現了對撲翼推力特性和功率特性的研究。
傳統的實驗裝置并不能滿足本次實驗的要求,論文針對本次實驗對撲動機構進行了重新設計,并利用新的測控終端和驅動軟件建立了全新的實驗測控系統,使其在功能和精度上都有較大提升。
1.1 實驗風洞
實驗風洞為西北工業大學的低湍流度風洞(如圖1所示),該風洞為直流吸式閉口風洞,風洞的特殊設計能夠將試驗段的湍流度降至接近大氣中湍流度的水平。其具體參數如表1所示:

圖1 西北工業大學低湍流度風洞

項目參數風洞全長/m39.5試驗段尺寸/m2.8×1.2×1.05試驗段風速范圍/(m·s-1)3~22湍流度/%≤0.02迎角變化范圍/(°)-10~36
1.2 測力天平
為滿足撲翼測力的要求,實驗選擇了美國ATI公司的Nano SI-12-0.12多軸力/力矩傳感器作為撲翼實驗的測力天平。該天平能夠兼顧量程合適、體積小、靈敏度高、響應速度快等優點,非常適合微型撲翼飛行器的風洞實驗。天平參數如表2所示。

表2 天平性能參數
1.3 撲動機構
撲動機構是撲翼實驗的關鍵部件之一,論文為此次實驗研制了專用的撲動機構,該機構除了具有驅動撲動翼運動的功能外,同時還集成了多個測控裝置。如圖2所示,撲動機構基于四連桿原理進行設計,驅動電機通過輸出盤和連桿的傳動,將電機的旋轉運動轉換為左右2個搖臂的往復撲動,該撲動機構具有以下特點:
1) 驅動電機采用Faulhaber伺服電機,具有控制響應快和控制精度高的特點,實驗中對撲動頻率的控制精度能夠達到0.01 Hz;
2) 機構采用輸出盤代替常規四連桿機構中的曲柄,輸出盤上分布有多個螺紋調節孔,每個調節孔距輸出盤中心的距離各不相同,當連桿與不同的調節孔相連時,搖臂具有不同的撲動幅度,實驗中能夠分別實現35.2°、47.7°、54.2°、61.0°、68.3°和76.1° 6種撲動幅度;3) 左右2個搖臂之間通過齒輪嚙合,能夠保證左右搖臂的完全對稱撲動,且搖臂上下表面分別粘貼了2片半導體電阻應變片,4片應變片以惠斯通電橋的形式連接構成力矩傳感器,能夠測量搖臂的輸出力矩;4) 在左搖臂的轉動軸上集成了基于霍爾效應的非接觸式角度傳感器,該傳感器的動態響應時間小于0.6 ms,角度分辨率小于0.09°,能夠較準確地測量搖臂的瞬時撲動位置,并能夠通過差分運算獲得搖臂的瞬時撲動角速度和角加速度。

圖2 撲動機構的結構圖
1.4 測控設備
整個系統通過NI公司的CompactDAQ-9188測控終端完成硬件集成,如圖3所示。

圖3 測控系統的集成
系統以基于虛擬儀器的LabVIEW軟件進行硬件驅動,在實現軟硬件無縫連接的同時,能夠獲得良好的人機交互。通過硬件和軟件的集成,系統能夠實時測量實驗中的升力、推力、力矩、撲動角度、搖臂輸出轉矩、功率等量。
1.5 實驗模型
實驗選擇課題組研制的撲翼飛行器所用的撲動翼作為實驗模型,如圖4所示。該撲動模型由碳纖維剛性骨架和柔性聚酯薄膜構成。模型的翼展為600 mm,弦長為100 mm,且在弦向有6%的彎度。

圖4 風洞實驗模型
2.1 濾波處理方法
在動態實驗中,由于結構的振動及電磁干擾的影響,測量數據中會摻雜多種高頻雜波[8]。為去除這些高頻雜波的影響,實驗采用3階Butterworth低通數字濾波器對采集數據進行濾波處理,考慮到實驗中的撲動頻率小于10 Hz,因而選擇20 Hz作為濾波器的截止頻率,圖5為撲動頻率為6 Hz時濾波前后的升力波形曲線。

圖5 濾波前后的升力波形曲線
由圖可知,這種濾波方式能夠有效去除雜波干擾,但會產生一定的相位移動;如果同時對所有測量量進行相同的濾波處理,各量由于產生了相同的相位偏移量,因而不會改變他們之間的相位關系。
2.2 慣性力的去除方法
實驗中測得的力包含真實氣動力和撲動翼運動時產生的慣性力,實驗在已知撲動翼質量分布和運動狀態的條件下采用數值算法分別計算撲動翼在每個時刻的慣性力并去除。撲動翼的慣性力Fine可以由公式(1)計算得到

(1)

圖6 慣性力去除前后的升力曲線
2.3 撲動翼輸入功率的計算方法
撲動翼的輸入功率P即搖臂的輸出功率,該功率可以由公式(2)計算得到

(2)
由于無法將撲動翼的真實推力和阻力分離,實驗測得的推力為真實推力和阻力的合力。為避免驅動電機和撲動機構對撲動翼輸入功率的影響,實驗通過公式(2)直接得出撲動翼的輸入功率。
3.1 撲動頻率的影響
1) 撲動頻率對瞬時推力和瞬時功率的影響
撲動頻率表征撲動翼運動的快慢程度。圖7為撲動幅度為35.2°,風速為8 m/s,撲動頻率分別為4 Hz、6 Hz和8 Hz時的推力在2個撲動周期內的瞬時變化曲線。由圖可知,推力在一個撲動周期內會出現2個波峰和2個波谷。由于撲動翼在0°撲動角度附近的撲動速度最快,此時推力達到峰值;而2個峰值的不同則是由于撲動翼的彎度使其在上撲和下撲過程中的剛度不同所引起的;當撲動翼分別運動到最高點和最低點時,撲動翼的撲動速度接近為0,因而在這2個位置,推力的瞬時值最小。撲動頻率的增大意味著撲動翼的運動速度的增大,此時撲動翼的推力也會隨之增大,由圖7可知,撲動頻率增大時,撲動翼瞬時推力的波動幅度也會增大;當撲動頻率為8 Hz時,其推力的變化幅度幾乎為撲動頻率為4 Hz時推力波動幅度的3倍左右。

圖7 不同撲動頻率下的瞬時推力曲線
圖8為撲動幅度為35.2°,風速為8 m/s,撲動頻率分別為4 Hz、6 Hz和8 Hz時撲動翼的輸入功率在2個撲動周期內的瞬時變化曲線。

圖8 不同撲動頻率下的瞬時功率曲線
由圖8可知功率在一個撲動周期內的瞬時變化曲線也出現了2個波峰和2個波谷。兩個波峰分別出現在撲動翼上撲和下撲時的0°撲動角度位置附近,因為此時撲動翼上的氣動載荷最大,瞬時功率消耗最大;2個波谷則分別出現在撲動翼運動的最高點和最低點,在這2個位置撲動翼的撲動速度最小,氣動載荷也最小,所以瞬時功率消耗最小。和圖7相比,瞬時功率的變化曲線和瞬時推力的變化曲線的變化規律類似,但出現了少量的相位偏差,這是由撲動翼在撲動過程中的慣性力消耗的功率所引起的。
2) 撲動頻率對平均推力和平均功率的影響
圖9為撲動幅度為35.2°風速為8 m/s時平均推力和平均功率隨撲動頻率的變化曲線。圖9的曲線表明,當撲動頻率增/大時,撲動翼在一個撲動周期內的平均推力和平均功率消耗也會隨之增大,當撲動頻率由4 Hz增大到8 Hz時,推力增大了近8 g;而平均功率也由0.37 W增大到1.78 W,增大了近4倍。

圖9 平均推力和功率隨撲動頻率的變化曲線
3.2 撲動幅度的影響
1) 撲動幅度對瞬時推力和瞬時功率的影響
圖10和圖11分別為撲動翼在撲動頻率為8 Hz,風速為8 m/s,撲動幅度分別為35.2°、47.7°、54.2°和61.0°時2個撲動周期內的瞬時推力和瞬時功率曲線。撲動幅度的增大顯著增大了推力曲線的波動幅度;同時功率曲線的波動幅度也會隨著撲動幅度的增大而增大;這種變化特性與撲動頻率的影響比較類似。

圖10 不同撲動幅度下的瞬時推力曲線

圖11 不同撲動幅度下的瞬時功率曲線
2) 撲動幅度對平均推力和平均功率的影響
圖12為撲動翼在撲動頻率為8 Hz,風速為8 m/s時撲動幅度對平均推力和平均功率的影響。

圖12 平均功率隨撲動幅度的變化曲線
和瞬時的幅值變化類似,當撲動幅度增大時,平均推力和平均功率也隨之增大,且和撲動幅度近似呈線性變化的關系。撲動幅度為61.0°時的推力較撲動幅度為35.2°時的推力增大了20 g左右,而平均功率則由增大了約4倍。由此可見增大撲動幅度在增大推力的同時,也增加了功率的消耗。
3.3 斯特勞哈爾數(St)的影響
撲翼的斯特勞哈爾數可以表示為
(3)
式中,f為撲動頻率,A=bsin(φ/2),b為撲動翼的展長,φ為撲動幅度,v為來流速度[6]。由于實驗中的風速并非撲翼在巡航飛行狀態下的實際空速,因此論文以相同風速下的實驗數據來說明St的影響。
圖13為撲動翼在風速為6 m/s時的平均推力和平均功率消耗隨St的變化。總體上撲動翼的平均推力和平均功率消耗都隨著St的增大呈“J”型曲線增長;當St小于0.25時,平均推力和平均功率的增長趨勢較緩,隨著St的增大,尤其是當St大于0.3時,平均推力和平均功率將大幅增大。

圖13 平均推力隨St的變化
在傳統的撲翼實驗系統的基礎上,對撲動機構進行了重新設計,不但能夠實現對撲動幅度和撲動頻率的精確控制,同時還集成了多種傳感器,實現了對撲動角度以及撲動翼輸入功率等量的實時測量。通過cDAQ-9188測控終端和LabVIEW驅動軟件完成對整個系統的整合,建立了一套功能完備的撲翼風洞實驗測控系統。利用該系統,研究了撲動翼在不同撲動幅度和不同撲動頻率的推力特性和功率特性,實驗結果表明:
1) 增大撲動翼的撲動頻率能夠顯著增大撲動翼產生的推力,但會造成撲動翼的輸入功率的增大;
2) 撲動幅度的增大有利于推力的產生,且推力隨撲動幅度的增大呈線性增長,但較大的撲動幅度也會帶來較大的功率消耗,且功率消耗也隨撲動幅度的增大近似線性增長;
3) 斯特勞哈爾數是撲動頻率和撲動幅度的綜合體現,撲動翼的推力和功率消耗都會隨St的增大而呈“J”型曲線增長,當St小于0.25時,推力和功耗的增長趨勢較緩,隨著St的增大,尤其是當St大于0.3時,推力和功耗將大幅增大。
[1] Darryll J Pines, Felipe Bohorquez. Challenges Facing Future Micro-Air-Vehicle Development[J]. Journal of Aircraft, 2006, 43(2): 290-305
[2] 邵立民,宋筆鋒,熊超,楊淑利. 微型撲翼飛行器風洞試驗初步研究[J]. 航空學報,2007, 28(2): 275-280 Shao Limin, Song Bifeng, Xiong Chao, Yang Shuli. Experimental Investigation of Flapping-Wing MAV in Wind Tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(2): 275-280 (in Chinese)
[3] 段文博,昂海松,肖天航. 主動變形撲翼飛行器的設計和風洞測力試驗研究[J]. 航空學報,2013, 34(3): 474-486 Duan Wenbo, Ang Haisong, Xiao Tianhang. Design and Wind Tunnel Test of an Active Morphing Wing Ornithopter[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(3): 474-486 (in Chinese)
[4] Pin Wu, Peter Ifju, Bret Stanford. Flapping Wing Structural Deformation and Thrust Correlation Study with Flexible Membrane Wings[J]. AIAA Journal, 2010, 48(9): 2111-2122
[5] Sergey Shkarayev, Dmytro Silin. Applications of Actuator Disk Theory to Membrane Flapping Wings[J]. AIAA Journal, 2010, 48(10): 2227-2234
[6] Graham K Taylor, Robert L Nudds, Adrian L R. Thomas. Flying and Swimming Animals Cruise at a Strouhal Number Tuned for High Power Efficiency[J]. Nature, 2003,425: 707-710
An Experimental Research about the Characteristics of Thrust and Power of FMAV
Fu Peng, Song Bifeng, Liang Shaoran, Yang Wenqing
(School of Aeronautics, Northwestern Polytechnical University, Xi′an 710072, China)
Aiming at the characteristics of flapping-wing MAV (FMAV) wind tunnel experiment which has more variables to be controlled and measured in a dynamic testing environment, a flapping machine is designed for the experiment especially. Beyond the accurate control of flapping amplitude and flapping frequency, the flapping machine also integrates the measurements of instantaneous flapping angle and input power. With the flapping machine, a set of control and measure system to FMAV wind tunnel experiment was built, which realizes the measurement functions of aerodynamic forces flapping angle and input power etc. Based on the system, an experiment about the research of thrust and power characteristics of FMAV is carried on, in which the thrust and power characteristics at different flapping frequencies and different flapping amplitudes are mainly focused on. Within the scope of this study, the experiment result shows increasing flapping frequency and flapping amplitude has a good advantage to thrust generating, but that comes at the price of a higher power consumption; as St increasing, the thrust and power grow as a J-shaped curve, which means the higher the St is, the faster the thrust and power increase.
flapping-wing MAV; thrust characteristic; power characteristic; wind tunnel experiment; measure & control system
V211.7
A
1000-2758(2016)06-0976-06