王建康++曹曉衛++王慶凱++閆利輝++李志軍



摘要:采用原位懸臂梁方法對內蒙古烏梁素海淡水冰層進行彎曲強度與彈性模量測定。應用材料力學理論,在假設冰層為均質各向同性材料;梁的根部剛性連接;沒有水浮力支承條件下,計算冰層彎曲強度與彈性模量。同時試驗時冰層溫度垂直剖面。首先用冰層中間處溫度,建立彎曲強度和彈性模量與冰溫之間的初始關系;然后將冰溫垂直剖面分布式帶入彈性模量與冰溫的初始關系式中,得到彈性模量垂直剖面,據此確定冰層彎曲破壞時中性軸的近似位置。在利用中性軸近似位置處冰溫,再次建立彈性模量與冰溫之間的關系,利用迭代思想確定更加精確的中性軸位置。迭代四次之后,得到中性軸精確位置。將中性軸精確位置處的冰溫作為冰層的等效溫度,并依次建立彎曲強度和彈性模量同等效冰溫的試驗關系。分析結果表明,溫度從-1831 ℃到-7726 ℃,彎曲強度在43612 kPa到75031 kPa之間,彈性模量在362 GPa到671 GPa之間。它們的總體走勢是隨著冰溫的降低,彎曲強度和彈性模量呈現增加趨勢。
關鍵詞:冰層;原位懸臂梁;中性軸;溫度;彎曲強度;彈性模量
中圖分類號:TV311文獻標志碼:A文章編號:16721683(2016)06007506
Experimental relationship between flexural strength,elastic modulus of ice sheet and equivalent ice temperature
WANG Jiankang,CAO Xiaowei,WANG Qingkai,YAN Lihui,LI Zhijun
(State Key Laboratory of Coastal and Offshore Engineering,Dalian University of Technology,Dalian 116024,China)
Abstract:Experiments on Flexural Strength and Elastic Modulus of natural freshwater of Ulansuhai Lake in Inner Mongolia were conducted by in situ cantilever beam method.Applying the mechanics of materials method,under the conditions of assuming that the ice is homogeneous and isotropic,the rear of beam is rigidly connected,and there is no water buoyancy supported,the flexural strength and elastic modulus of ice sheet and ice sheet temperature vertical profile were calculated.First,the initial relationship between bending strength,elastic modulus and ice temperature in the middle of ice cantilever was established.Then the formula of the ice temperature vertical profile was brought into the initial relationship between the elastic modulus and the ice temperature,and then the elastic modulus vertical profile distribution was available.According to this,the approximate position of the neutral axis was determined when the ice had flexural failure.Using ice temperature at the approximate position of the neutral axis,the relationship between the elastic modulus and the ice temperature was established again.The more accurate position of the neutral axis could be determined by the iteration method.After four iterations,the position of the neutral axis was accurate.The ice temperature at the precise location of the neutral axis was used as the equivalent temperature of the ice layer.The experimental relationship between bending strength,elastic modulus and equivalent ice temperature was established.Analysis results showed that the temperature ranged from 1.831 ℃ to 7.726 ℃,the flexural strength ranged from 436.12 kPa to 750.31 kPa and the elastic modulus ranged from 3.62 GPa to 6.71 GPa.The overall trends of flexural strength and elastic modulus were basically increasing with decreasing temperature.
Key words:ice sheet;situ cantilever beam;neutral axis;temperature;flexural strength;elastic modulus
[JP2]在冰區水工結構及橋梁、采油平臺及破冰船設計、建造和服役過程中,冰荷載是不得不要考慮到的環境外力。計算冰荷載,要已知冰層的各項力學參數。冰層彎曲強度和彈性模量是傾斜結構物冰力計算的重要參數[1]。國際上對于冰彎曲[24]、壓縮[5]的力學性質進行過研究。國內張明元、隋吉學等對于冰的彎曲強度[68]、李志軍等對冰的壓縮強度[9]與剪切強度[10]進行過研究。對于淡水冰彎曲強度的研究,所應用的方法基本為實驗室三點彎曲法[1112]。而原位懸臂梁方法,盡管冰層接近自然,但其試樣大,勞動力強度大,在上世紀末國內有所應用[13]。懸臂梁試驗通常假設冰是均質各向同性材料,根部剛性連接且沒有水浮力的彈性梁;然后根據彈性理論計算彎曲強度與彈性模量,因此計算結果與實際有所偏差。原因是天然冰層溫度垂直剖面大多數不是常數,其對應冰層彎曲強度與彈性模量垂直剖面也不是恒值,因此冰層彎曲時的中性軸位置不在冰層中間。
基于此種情況,本文研究選擇黃河寧蒙段附近烏梁素海,在2016年1月18日至26日,選擇了溫差較大的5天,進行9根現場原位懸臂梁力學試驗,并用鉑電阻溫度鏈實時記錄氣-冰溫-水-泥溫度剖面。利用力學試驗和溫度實測數據、彈性梁彎曲理論和迭代計算思想,確定出每次試驗時冰層彎曲時中性軸位置。最終將中性軸位置處的溫度作為冰層等效溫度,建立冰層彎曲強度以及彈性模量和冰層等效溫度的試驗關系。這樣雖然仍然具有一定的缺陷性,但可為評估冰層的實際力學指標提供一種新思路。對冰區水工結構,南水北調輸水工程中[1416]浮式或固定式破冰結構物,如正倒椎體[17]和破冰船[18]的設計、物理模擬試驗[19]等提供數據。
1原位懸臂梁彎曲試驗
現場懸臂梁試驗是在天然冰蓋上切割出梁的三個邊,保持第四個邊與冰層連接,形成懸臂梁,然后在梁的自由端施加荷載。對河冰來講,根部應力集中的影響較為明顯,Timco[20]的試驗結果表明,現場懸臂梁法與三點彎曲法得到的河冰彎曲強度值之比為1∶2,其原因就是懸臂梁根部應力集中造成的。為了盡量減弱懸臂梁根部應力集中的影響,在懸臂梁根部用10 cm的麻花鉆在冰面打出兩個洞,然后沿著圓的切線方向切割出兩條平行的線,使懸臂梁根部連接處為圓弧狀。
選擇在冰面無明顯裂紋的地方切割出懸臂梁的試樣,梁寬b與冰厚h之間的比例在1~2之間,梁長l與冰厚h的比例在7~10之間。本次試驗時,冰厚在35~38 cm之間,因此梁寬b切割40 cm左右,梁長l在350 cm左右,每兩根懸臂梁之間的間距約為10 cm。切割懸臂梁試樣的同時,組裝好加載裝置和測力儀器,如圖1所示。考慮到冰的彎曲破壞形式分為上翹和下彎兩種方式,因此,試驗的加載方式有上拉和下壓兩種。由于切割懸臂梁時會帶來尺寸上的誤差,每次試驗過后再對梁的具體尺寸進行測量。
根據彈性理論,矩形截面懸臂梁的彎曲強度為
4結論
(1) 根據現場實測數據,懸臂梁試驗時冰層溫度垂直剖面有兩種類型:一種為直線型,一種為拋物線型;他們均可由二次多項式統一表達。
(2)懸臂梁試驗時,取中性軸位置處溫度作為冰層等效溫度比選擇冰層中部溫度作為等效溫度更加合理。冰層溫度垂直剖面為直線型分布時中性軸位置比拋物線型分布時更加靠近冰面。
(3) 試驗測得淡水冰層的彎曲強度與彈性模量,在受冰溫影響的同時,也受到應變速率以及其它的環境因素的影響。溫度從-1831 ℃到-7726 ℃之間,淡水冰層彎曲強度和彈性模量隨冰溫降低呈現出增加趨勢。彎曲強度最小值與最大值分別為43612 kPa 和75031 kPa,彈性模量最小值與最大值分別為362 GPa 和671 GPa。
參考文獻(References):
[1]劉詩華,侯樹強.寒區核電廠取水口防冰設施設計研究[J].人民黃河,2015,37(5):112115.(LIU Shihua,HOU Shuqiang.Research on icepreventing facility schemes of waterintake in a nuclear power plant in Cold Regions[J].Yellow River,2015,37(5):112115.(in Chinese)) DOI:10.3969/j.issn.10001379.2015.05.029
[2]Svec O J,Thompson J C,Frederking R M W.Stress Concentrations in the Root of an Ice Cover Cantilever:Model Tests and Theory[J].Cold Regions Science and Technology,1985,11(1):6373.DOI:10.1016/0165232X(85)900072
[3]Gow A J,Ueda H T,Ricard J A.Flexural Strength of Ice on Temperate Lakes:Comparative Tests of Large Cantilever and Simply Supported Beams[R].CRREL Report,1978.
[4]Gow A J,Ueda H T.Structure and Temperature Dependence of the Flexural Properties of Laboratory Freshwater Ice Sheets[J].Cold Regions Science and Technology,1989,16(3):249270.DOI:10.1016/0165232X(89)900268