999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

利用馬爾科夫鏈修正的變維分形模型及其應用

2017-01-06 13:41:17葉偉馬福恒周海嘯
南水北調與水利科技 2016年6期

葉偉++馬福恒++周海嘯

摘要:以往的預測模型對數據長度有較強的依賴性,且數據出現較強的非線性時,將增加預測的復雜程度。為使監測數據呈現出一定的線性關系,基于分形理論,將常維分形改進為變維分形,并據此建立相應的數學模型,通過短期監測數據進行預測。考慮到變維分形得到的預測結果不可避免地存在一定的波動誤差,對此,利用馬爾科夫鏈(Markov)無后效性的特點對預測結果進行修正,從而提高預測精度。以西溪水庫的監測資料數據為樣本,建立其馬爾科夫鏈變維分形預測模型,結果顯示最大誤差修正值可達089%,占原預測誤差的679%,表明利用馬爾科夫鏈修正的變維分形模型能有效地減小誤差,提高預測精度。

關鍵詞:大壩安全監測;變維分形;馬爾科夫鏈;誤差修正

中圖分類號:TV698.1文獻標志碼:A文章編號:

16721683(2016)06011105

Application of modified variable dimension fractal method by Markov chain in dam safety monitoring

YE Wei,MA Fuheng,ZHOU Haixiao

(Dam Safety Management Department,Nanjing Hydraulic Research Institute,Nanjing 210029,China)

Abstract:Previous forecast models have strong dependence on the length of the data,and the data often appears strong nonlinear.Both of these will increase the complexity of the prediction.So in order to make the monitoring data to show a certain linear relationship,this paper changed constant dimension fractal method to variable dimension fractal method to predict shortterm monitoring data based on fractal theory shortterm monitoring data.The corresponding mathematical model was set up.However,inevitably,there were some fluctuation errors in the results predicted by the variable dimension fractal method.This paper used the Markov chain to modify these predicted results based on the characteristic of no aftereffect.The results analyzed by Xixi reservoir monitoring data showed that the revised error could be optimized by 0.89%.Obviously,it could be concluded that the variable dimension fractal method modified by Markov chain could effectively reduce error and improve the precision of prediction.

Key words:dam safety monitoring;variable dimension fractal;Markov chain;error correction

基于實測時間序列的安全監測模型對大壩的安全運行有著重要的意義,現階段已有多種安全預測模型。劉健等[1]采用遺傳神經網絡對大壩變形進行預測;宋志宇等[2]采用混沌優化支持向量機對大壩安全進行監控預測;謝榮安等[3]采用灰色理論,建立灰色模型對大壩變形進行預測。但以上的預測模型均需要較長的時間序列數據。

根據分形理論進行預測則可以避免對數據長度的依賴性。常維分形適用于具有線性特征的數據序列,但一方面大壩監測數據常表現出較強的非線性,另一方面隨著時間的推移,數據還出現一定的波動性,因此有必要將常維分形改進為變維分形,考慮到馬爾科夫鏈能很好地適應數據波動的特點,同時引入馬爾科夫鏈用以修正分形模型的預測結果。為此,本文建立利用馬爾科夫鏈修正的變維分形大壩安全監測模型,以達到提高預測精度的目的。

5結論

本文通過馬爾科夫鏈修正的分形模型的預測值能較準確地進行大壩安全監測值預測。變維分形模型不需要冗長的時間序列數據,采用短期數據即可實現預測,并且憑借馬爾科夫鏈的無后效性的特點可使大壩安全監測值預測受外界因素影響變小,預測精度較高,兩種方法的結合使得預測過程簡便可靠,具有實際使用價值。

參考文獻(References):

[1][HJ1.7mm]劉健,蔡建軍,程森等.基于遺傳神經網絡的大壩變形預測模型研究[J].山東大學學報:工學版,2006,36(2):62-66.(LIU Jian,CAI Jianjun,CHENG Seng et al.Research on dam displacement forecast model based on genetic algorithm neural network[J].Journal of Shandong University:Engineering Science,2006,36(2):6266.(in Chinese))

[2]宋志宇,李俊杰.基于混沌優化支持向量機的大壩安全監控預測[J].武漢大學學報:工學版,2007,40(1):5357.(SONG Zhiyu,LI Junjie.Research on safety monitoring forecasting model for dam based on chaos optimization support vector machine algorithm[J].Journal of Wuhan University:Engineering Science,2007,40(1):5357.(in Chinese))

[3]謝榮安,張豪,盧辰龍,等.多變量灰色模型在大壩變形監測預報中的應用研究[J].工程勘察,2014,42(11):7477.(XIE Rongan,ZHANG Hao,LU Chenlong et al.Research on the application of multivariable grey model in dam deformation prediction[J].Geotechnical Investigation & Surveying,2014,42(11):7477.(in Chinese))

[4]Mandelbmt.B.B.How long is the coast Britain? Statistical selfsimilarity and fractal dimension[J].Science,1967,156:636638.

[5]金永強.分形學在大壩監測數據處理中的應用[J].合肥工業大學學報:自然科學版,2006,29(11):14301432.(JIN Yongqiang.Application of fractal theory to analysis of the observed data of dams[J].Journal of Hefei University of Technology:Natural Science,2006,29(11):14301432.(in Chinese))

[6]賴道平,吳中如,周紅,等.分形學在大壩安全監測資料分析中的應用[J].水利學報,2004(1):100104.(LAI Daoping,WU Zhongru,ZHOU Hong,et al.Application of fractal theory to analyze dam safety monitoring data[J].Journal of Hydraulic Engineering,2004(1):100104.(in Chinese))

[7]邱華旭,黃張裕,鄭建雷,等.基于分形原理的時間序列分析及預測研究[J].東南大學學報:自然科學版,2013,(z2):334337.(QIU Huaxu,HUANG Zhangyu,ZHENG Jianlei et al.Time series analysis and prediction based on fractal theory[J].Journal of Southeast University:Natural Science Edition,2013,(z2):334337.(in Chinese))

[8][JP2]宋傳旺,王彥磊,于廣明,等.分形理論在尾礦壩監測預警中的應用[J].遼寧工程技術大學學報:自然科學版,2013,32(9):11911194.(SONG Chuanwang,WANG Yanlei,YU Guangming et al.Application of fractal theory in monitoring prediction of tailings dam[J].Journal of Liaoning Technical University:Natural Science Edition,2013,32(9):11911194.(in Chinese))

[9]李波,駱進軍,遠近,等.分形理論在大壩安全監測中的應用[J].三峽大學學報:自然科學版,2009,31(1):3436.(LI Bo,LUO Jinjun,YUAN Jin,et al.Application of fractals theory to dam safety monitoring[J].Journal of China Three Gorges University:Natural Science,2009,31(1):3436.(in Chinese))[ZK)]

[10][ZK(#]王英華,秦鵬,陳斌,等.基于改進變維分形理論的拱壩溫度監測數據預測模型[J].長江科學院院報,2009,26(12):3335.(WANG Yinghua,QIN Peng,CHEN Bin,et al.Forecasting model of monitored data of arch dam′s temperature based on improved variable dimension fractal theory[J].Journal of Yangtze River Scientific Research Institute,2009,26(12):3335.(in Chinese))

[11][JP2]宋傳旺,王彥磊,于廣明,等.分形理論在尾礦壩監測預警中的應用[J].遼寧工程技術大學學報:自然科學版,2013,32(9):11911194.(SONG Chuanwang,WANG Yanlei,YU Gunagming et al.Application of fractal theory in monitoring prediction of tailings dam[J].Journal of Liaoning Technical University:Natural Science Edition,2013,32(9) :11911194.(in Chinese) )

[12]張愛真.Markov鏈在工程預測中的應用[J].制造業自動化,2011,33(4):106108.(ZHANG Aizhen.Markov chain in engineering application prediction[J].Manufacturing Automation,2011,33(4):106108.(in Chinese) )

[13]鄧鑫洋,鄧勇,章雅娟,等.一種信度馬爾科夫模型及應用[J].自動化學報,2012,38(4):666672.(DENG Xinyang,DENG Yong,ZHANG Yajuan,et al.A belief Markov model and its application[J].Acta Automatica Sinica,2012,38(4):666672.(in Chinese))

[14]張守平,樊科偉.基于自適應 MGM(1,n)馬爾科夫鏈模型的大壩變形預測[J].南水北調與水利科技,2014,(1):145148,153.(ZHANG Shouping,FAN Kewei.Prediction of dam deformation based on selfadaptive MGMmarkov model[J].SouthtoNorth Water Transfers and Water Science & Technology,2014,(1):145148,153.(in Chinese) )

[15]王義民,于興杰,暢建霞等.基于BP神經網絡馬爾科夫模型的徑流量預測[J].武漢大學學報:工學版,2008,41(5):1417,57.(WANG Yimin,YU Xingjie,CHANG Jianxia et al.Prediction of runoff based on BP neural network and Markov model[J].Engineering Journal of Wuhan University,2008,41(5):1417,57.(in Chinese))

[16]周子東,鄭東健,蔣明,等.偏最小二乘馬爾科夫模型在大壩位移預測中的應用[J].三峽大學學報:自然科學版,2015,37(3):1518.(ZHOU Zidong,ZHENG Dongjian,JIANG Ming,et al.Application of PLSmarkov model to dam displacement prediction[J].Journal of China Three Gorges University:Natural Sciences,2015,37(3):1518.(in Chinese))

[17]杜傳陽,鄭東健.基于SVM理論的大壩變形監測模型改進方法研究[J].三峽大學學報:自然科學版,2015,37(2):1014.(DU Chuanyang,ZHENG Dongjian.Improved method of dam deformation monitoring model based on SVM[J].Journal of China Three Gorges University:Natural Sciences,2015,37(2):1014.(in Chinese))

[18][JP2]胡江,蘇懷智,馬福恒,等.MFDFA在大壩安全監測序列分析和整體性態識別中的應用[J].水利水電科技進展,2014,(3):5055.(HU Jiang,SU Huanzhi,MA Fuheng et al.The application of MFDFA in time series analysis and global state recognition of dam safety monitoring[J].Advances in Science and Technology of Water Resources,2014,(3):5055.(in Chinese))

[19]顧沖時,吳中如.大壩與壩基安全監控理論和方法及其應用[M].南京:河海大學出版社,2006.(GU Chongshi,WU Zhongru.Theory and method of dam and dam foundation safety monitoring and its application[M].Nanjing:Hohai University Press,2006.(in Chinese))

[20]吳中如,等.大壩的安全監控理論和試驗技術[M].北京:中國水利水電出版社,2009.(WU Zhongru,et al.Dam safety monitoring theory and test technology[M].Beijing:China Water Power Press,2009.(in Chinese))

主站蜘蛛池模板: 亚洲欧美在线综合图区| 99久久性生片| 2020最新国产精品视频| 国产精品无码制服丝袜| 婷婷激情亚洲| 91口爆吞精国产对白第三集 | 亚洲毛片在线看| 在线国产毛片| 国产一级片网址| 99在线视频免费| 久久久久国产一区二区| 亚洲成aⅴ人片在线影院八| 无码国产偷倩在线播放老年人| 色偷偷一区二区三区| 午夜啪啪网| 日本午夜影院| 亚洲码一区二区三区| 一本色道久久88综合日韩精品| 亚洲av片在线免费观看| 国产三级国产精品国产普男人 | 欧美不卡在线视频| 亚洲欧美成人综合| 亚洲精品另类| 欧美在线黄| 国产99视频在线| 国产一区二区三区在线精品专区 | 欧美成在线视频| 久久青草精品一区二区三区| 99久久精品视香蕉蕉| 国产丝袜无码一区二区视频| 成人福利一区二区视频在线| 国产91视频观看| 日韩精品一区二区三区swag| 91成人在线免费视频| 国产成年女人特黄特色毛片免| 亚洲第一成年免费网站| 欧美 国产 人人视频| 91丝袜美腿高跟国产极品老师| 日韩精品亚洲一区中文字幕| 欧美日韩中文字幕在线| 国产成人欧美| 嫩草在线视频| 亚洲成a人片7777| 欧美a在线| 日韩福利视频导航| 91精品啪在线观看国产91| 免费一级无码在线网站| 成人在线欧美| 亚洲娇小与黑人巨大交| 99久久精品无码专区免费| 欧美视频在线不卡| 香蕉eeww99国产在线观看| 国产91线观看| 97视频在线精品国自产拍| 国产精品视频久| 国产尹人香蕉综合在线电影 | 嫩草影院在线观看精品视频| 日本亚洲欧美在线| 国产欧美日韩在线一区| 国产91成人| 国产免费福利网站| 91成人在线免费视频| 国语少妇高潮| 成人免费网站久久久| 精品国产成人高清在线| 日韩在线视频网站| 99久久国产精品无码| 日韩激情成人| 亚洲成人网在线观看| 亚洲国产中文精品va在线播放| 欧美高清三区| 一本久道久久综合多人| 久爱午夜精品免费视频| 国产经典三级在线| 亚洲视频一区| 一级全免费视频播放| 国产精品成人啪精品视频| 国产免费怡红院视频| 亚洲香蕉久久| 亚洲天堂伊人| 亚洲国产亚洲综合在线尤物| 亚洲欧洲AV一区二区三区|