999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

拱壩變形監測預報的隨機森林模型及應用

2017-01-06 13:43:27羅浩郭盛勇包為民
南水北調與水利科技 2016年6期

羅浩郭盛勇包為民

摘要:大壩變形預報對大壩運行安全評估起著至關重要的作用。傳統模型預報精度不夠、模擬效果不穩定;若大壩變形數據有異常值時,傳統機器算法模型識別和處理異常值的靈活性很小,導致預報結果有偏差。為了解決這些問題,首次將隨機森林算法運用到大壩變形監測領域,將大壩測點根據隨機森林相似性矩陣分成若干個子集,針對每一個子集建立隨機森林預測模型,分區建立預測模型更符合工程實際情況。選取拱壩變形作為研究對象,驗證所建模型的適用性。結果表明,根據隨機森林的相似性矩陣對大壩各測點的分區情況符合物理和工程實際意義,對各分區子集測點利用隨機森林模型建立的預測模型,與支持向量機、BP神經網絡模型相比,預測結果精度較高、模型穩定性好,為大壩變形監測提供了新思路。

關鍵詞:拱壩變形;監控模型;監測點分區;隨機森林;變形預測

中圖分類號:TU196.1文獻標志碼:A文章編號:

16721683(2016)06011606

Random forest model and application of arch dam′s deformation monitoring and prediction

LUO Hao1,2,GUO Shengyong2,BAO Weimin1

1.College of Water Resources and Hydrology,Hohai University,Nanjing 210098,China;

2.Yalong River Hydropower Company Ltd,Chengdu 610051,China)

Abstract:Dam deformation prediction plays an important role in the safety assessment of dam operation.Traditional models lack forecasting precision and the simulation effect is not stable enough.Besides,if abnormal values of dam deformation exist,traditional machine algorithm model lacks the flexibility of dealing with these abnormal data,which will lead to the deviation of the forecasting results.In order to solve these problems,random forest algorithm was introduced to the field of dam deformation monitoring for the first time.Similarity matrix of random forest was applied to divide dam deformation monitoring points into several parts.Random forests prediction model was established for each part,which will avoid the defects of traditional models such as modeling of single point or using the same model for all deformation monitoring points.Establishing forecasting model for different parts of dam was more in line with engineering practice.Deformation data of one arch dam was analyzed and the feasibility of random forest model was verified.The results showed that partition of dam deformation points based on similarity matrix of random forest conformed to the physical and engineering practical significance.Compared with support vector machine and BP neural network model,the prediction model of random forests for each part had the higher prediction precision and stability,which provided a new approach in the area of dam safety monitoring.

Key words:arch dam deformation;monitoring model;partitions of monitoring points;random forests;deformation prediction

國內外普遍將大壩變形監測[12]作為主要的監測項目,大壩受各種復雜因素的影響,變形值是反映其運行狀態的最直觀的表征。根據大壩變形的原型觀測資料建立準確的預測模型,對大壩位移進行預測,能及時發現大壩的異常變化,采取措施防止事故發生。因此,大壩變形預報對大壩運行的安全評估起著至關重要的作用。目前應用較多數學模型主要包括統計模型[23]、確定性模型[45]和混合型模型[56],這些模型在一定程度上可以揭示監測值和影響量之間定性和定量關系,但由于影響大壩位移的因素復雜,傳統的方法受變量多重共線性的影響或模型參數的選取不恰當,使得模型精度下降。近年來,一些學者將新興的機器算法如人工神經網絡[78]、遺傳算法[9]、蟻群算法[1011]、支持向量機[1213]等算法建立大壩監控模型,[JP2]但這些監控模型的研究和應用尚未達到完善的程度,每種方法都存在一定程度上的優缺點。另外,由于大壩具有整體性,布置在壩體和壩基的各測點之間存在差異性和關聯性,目前位移監控模型還是以單測點為主,單測點位移監控模型存在很大的局限性,不能反映大壩整體位移變化情況;多維多測點模型較單測點位移模型更符合工程實際情況,但由于多測點位移監控模型[14]中待定參數較多,要達到一定的變形分析和預報精度,對原型觀測數據要求較高,給建模造成很大難度,在實際工程中的應用并不廣泛。隨機森林(Random Forest,RF)[15]算法是由Breiman在2001年提出的一種新的機器學習技術,隨機森林模型能有效地分析非線性、具有高度共線性和相互影響的數據,不需要提前假定模型的數學形式,該算法在在生物學[1617]、土壤學[1819]、醫學[20]等領域已經得到了一定的應用,但在大壩安全監測領域應用幾乎沒有。此外,相似性矩陣是隨機森林算法的重要的分析工具之一,嘗試利用隨機森林算法的相似性矩陣來表征大壩各位移監測點之間的相似性關系,基于這種相似關系,將大壩測點分區,分別對各區建立隨機森林回歸預測模型。隨機森林算法預測精度高、對于異常值的處理和噪聲方面具有很大的優勢,不易出現過度擬合的線性,能有效處理復雜變量間的共線性問題,該算法為大壩安全監控提供了一種新思路。

主站蜘蛛池模板: 玩两个丰满老熟女久久网| 日韩精品一区二区三区大桥未久 | 91网址在线播放| 日韩欧美91| 国产精品白浆在线播放| 日本在线欧美在线| 国产9191精品免费观看| 久久99蜜桃精品久久久久小说| 日韩天堂在线观看| 亚洲精品免费网站| 亚洲无码久久久久| 久久久久国产一区二区| 国产成人精品一区二区秒拍1o| 国产激情第一页| 精品国产美女福到在线不卡f| 伊人久久大线影院首页| 亚洲69视频| 内射人妻无套中出无码| 2022国产无码在线| 国产区免费| 国产精品自在在线午夜区app| 亚洲美女久久| 精品91自产拍在线| 国产一级妓女av网站| 国产中文一区二区苍井空| 国产大片喷水在线在线视频| 欧美亚洲网| 在线精品亚洲国产| 成人免费网站久久久| 免费无码又爽又刺激高| 全免费a级毛片免费看不卡| 亚洲日韩精品伊甸| 超碰精品无码一区二区| 亚洲品质国产精品无码| 新SSS无码手机在线观看| 在线欧美国产| 久久精品波多野结衣| 欧美午夜视频| 国产青榴视频| 青青青草国产| 欧美中日韩在线| 国产真实乱了在线播放| 国内精品视频区在线2021| 亚洲经典在线中文字幕| 91九色国产在线| 欧美中文字幕在线二区| 91高清在线视频| 欧美97欧美综合色伦图| 女人毛片a级大学毛片免费| 欧美成人亚洲综合精品欧美激情| 欧美精品高清| 久久国产乱子伦视频无卡顿| 成人日韩欧美| 亚洲综合激情另类专区| 国产精品分类视频分类一区| 高清乱码精品福利在线视频| 国产精品不卡永久免费| 国产成人精品亚洲77美色| 亚洲无码A视频在线| 在线观看亚洲人成网站| 精品国产黑色丝袜高跟鞋| 久久一级电影| yjizz国产在线视频网| 97视频免费在线观看| 久久综合五月婷婷| 美女无遮挡免费视频网站| 欧美亚洲国产视频| 伊人激情综合网| 亚洲成人在线网| 亚洲中文字幕国产av| 国产一级在线播放| 久久福利片| 国产亚洲精品yxsp| 2020精品极品国产色在线观看| 色悠久久综合| 亚洲成人网在线播放| 国产超碰一区二区三区| 狠狠色成人综合首页| 国产精品亚洲va在线观看| 精品一區二區久久久久久久網站| 欧美无遮挡国产欧美另类| 国产尤物jk自慰制服喷水|