楊 梅綜述,周 丹審校(南京醫科大學附屬明基醫院放射科,江蘇 南京 210019)
磁共振成像在糖尿病心肌病心肌評價中的進展
楊 梅綜述,周 丹審校
(南京醫科大學附屬明基醫院放射科,江蘇 南京 210019)
糖尿病心肌病是引起糖尿病患者心力衰竭的主要原因之一。通過磁共振結構和功能成像技術可準確評估糖尿病心肌病的病理學變化,現已應用于糖尿病心肌病臨床治療的療效評估中。評估糖尿病心肌病的MRI技術主要包括電影成像、MRS、T1 Mapping等。本文主要對MRI技術在糖尿病心肌病心肌評價方面的應用進展進行綜述。
糖尿病;心肌病;磁共振成像;治療結果
糖尿病心肌病是一種代謝性疾病,主要表現為糖代謝、脂代謝及能量代謝的異常,高血糖是其發病機制的核心[1]。長期高血糖可導致心肌膠原糖基化,降解減少[2]。此外,由于葡萄糖有氧代謝障礙、心肌能量供應不足等一系列不良刺激,最終可引起心肌彌漫性纖維化[3-5]。糖尿病心肌病是獨立于高血壓、冠狀動脈疾病、缺血性心臟病及其他心臟病變的心肌疾病[6-7],是造成糖尿病患者心力衰竭的主要原因之一[8]。評價糖尿病患者心肌損害的影像學方法主要包括超聲、CT和MRI。隨著近年MR成像技術的迅速發展,其在定性和定量評估心肌病變方面獨具優勢。MR評估糖尿病心肌病的方法主要為磁共振電影成像、MRS及T1 Mapping。這三種方法均可準確評估糖尿病心肌病的心肌結構和功能的變化,反映心肌代謝情況及心肌纖維化程度,且與組織病理學具有高度一致性。此外,MRI技術還具有高度的穩定性和可重復性。本文對MRI技術在糖尿病心肌病心肌評價中的應用進展進行綜述。
1.1電影成像 糖尿病心肌病治療前后臨床常用的監測指標為左心室結構和功能的改變。左心室結構和功能的變化評價指標包括左心室質量(left ventricular mass, LV mass)、左心室舒張末期容積(left ventricular end-diastolic volume, LVEDV)、左心室收縮末期容積(left ventricular end-systolic volume, LVESV)、左心室舒張早期和晚期充盈速率比值(the ratio of Peak E and Peak A, E/A)、左心室每搏輸出量(stroke volume, SV)、左心室射血分數(left ventricular ejection fraction, LVEF)等。與超聲相比,心臟MR電影成像不基于具體的幾何模型,對操作者的技術依賴小,具有較高的可重復性和較高的空間和時間分辨率。通過MR電影成像,可得到高質量的左心室時間—容量關系圖、二尖瓣流入模式圖以及左心室心肌壁運動及應力圖,能準確評估心臟結構及心室舒張和收縮功能[9]。多項研究[10-16]表明,MR電影成像測定心臟結構和功能具有較高的可重復性。
1.2MRS 通過MRS可對特定原子核及化合物進行定量分析,具有無輻射和無需示蹤劑的優點。由于心肌細胞內脂質和心肌細胞外脂質所處的微環境不同,兩者在1H-MRS上表現為頻率不同的2個波峰,而共振峰的峰高和面積可反映化合物的濃度[17]。因此,1H-MRS可用于定量分析心肌細胞內脂質含量。1H-MRS在測量心肌脂肪方面可重復性好。Reingold等[18]應用1.5T MR對體內心肌甘油三脂含量進行不同時間點重復性測量(2次測量間隔90天),結果顯示2次測量結果高度相關[r=0.987,變異系數(coefficient of variability, CV)為5%]。van der Meer等[19]對一組健康人群在不同時間點進行重復性測量(2次測量間隔5 min),結果顯示2次測量結果的組內相關系數(intraclass correlation coefficient, ICC)為0.81[95%CI(0.58,0.92)],CV為17.9%。
1.3T1 Mapping T1 Mapping技術是基于反轉和飽和脈沖激發,在縱向磁化矢量恢復的不同時間采集信號,可通過定量分析T1值對心肌進行評價。目前應用最為廣泛的測量T1的MR序列為改良的MOLLI(modified look-locker imaging)序列。T1 Mapping包括平掃T1 Mapping及增強后T1 Mapping。平掃T1 Mapping測量的是整體心肌包括細胞內及細胞外間質的混合信號,其主要缺點為敏感度低,病變心肌與正常心肌的平掃T1值有較多重疊[20]。增強后T1 Mapping的優點為強化后病變心肌的T1值縮短,與正常心肌對比更加明顯,更易檢出病變;但組織增強后的T1值受較多因素影響,如對比劑的注射劑量、注射后的延遲時間和腎臟排泄功能等[21],均導致定量測量的精確性和可重復性下降。
細胞外容積分數(extracellular volume, ECV)是基于T1 Mapping技術計算的一種相對穩定的指標,通過釓對比劑注射前后分別進行T1 Mapping掃描,經血細胞比容校正后獲得。其計算公式為:心肌ECV=(1-HCT)×(心肌ΔR1/血液ΔR1);其中ΔR1=1/T1post-1/T1pre,T1pre及T1post分別為對比劑注射前后的T1值,HCT為對比劑在血液和心肌細胞外間隙中的濃度達到平衡時的血細胞比容。ECV避免了對比劑劑量及腎小球濾過率的影響,對細胞外基質體積的測量更為準確,可重復性更高。ECV可反映未被心肌細胞占據的心肌間質的體積分數[22],與膠原纖維的體積分數相關,在無水腫、淀粉樣變及其他形式浸潤性疾病的情況下,ECV可作為心肌纖維化的生物學指標[23-24]。
T1 Mapping技術測量心肌ECV的可重復性較好。Chin等[25]研究結果顯示,同一觀察者對20名健康人重復測量ECV的ICC為1.00,2名觀察者重復測量ECV的ICC為0.97,間隔7天2次重復測量的ICC為0.96。另一項對中—重度主動脈狹窄患者進行ECV可重復性測量的研究[26]發現,在測量ECV方面,同一觀察者重復測量的CV為1.83%,2名觀察者重復測量的CV為2.31%,間隔7天2次重復測量的CV為6.52%。Liu等[27]測量健康人群與心力衰竭患者增強后12 min和25 min的心肌ECV,結果顯示2個時間點ECV測量值的r值分別為0.98、0.88,CV分別為2.2%、5.9%。
2.1飲食療法 飲食療法是糖尿病的基礎治療方法,長期限制熱量攝入可減少心肌內甘油三脂含量,有效降低血糖,從而改善心功能。而短期限制熱量攝入,可引起心肌內甘油三脂的堆積,并伴心功能的下降。Hammer等[28]研究發現,對一組2型肥胖糖尿病患者長期(16周)限制熱量后,患者的空腹血糖、糖化血紅蛋白、血漿游離脂肪酸(plasma free fatty acids, NEFA)、血漿甘油三脂均明顯下降;MRS顯示心肌甘油三脂較治療前下降27%(P=0.019);電影成像顯示患者的心功能得到改善,主要表現為心輸出量下降18%(P=0.001)、LV mass下降16%(P<0.001),E/A比率增加15%(P=0.019)。Hammer等[29]的另一項研究顯示,對2型糖尿病患者短期(3天)限制熱量攝入后,心肌MRS顯示心肌甘油三酯增加48%(P=0.028),電影成像顯示E峰減速下降19%(P=0.004)、E/A比率下降10%(P=0.002)。
2.2運動療法 運動療法是糖尿病治療的重要手段之一。對糖尿病患者而言,不同的運動方式及不同的運動時間對心肌脂肪含量及心功能會產生不同的效果。Jonker等[30]研究發現,2型糖尿病患者經6個月中等強度的耐力運動后,MRS顯示心肌甘油三酯含量無明顯改變[(0.61±0.13)% vs (0.60±0.13)%,P=0.9],電影成像顯示除LVEF增加2%外,其他心功能指標(LV mass、EDV、ESV)及左心室SV與治療前相比均無明顯變化。Schrauwen-Hinderling等[31]研究報道,對2型肥胖糖尿病患者進行中等強度的有氧運動治療12周后,MRS顯示心肌甘油三酯無明顯變化[(0.80±0.22)% vs (0.95±0.21)%,P=0.15],但電影成像顯示左心室收縮功能得到改善,表現為ESV減少11%(P=0.004),LVEF增加10%(P=0.001)。Cassidy等[32]研究發現,2型糖尿病患者經高強度間隔運動治療12周后,電影成像顯示其左心室結構和舒張、收縮功能均明顯改善,主要表現為LV mass增加12%(P<0.05),EDV增加6%(P<0.01),LVEF增加7%(P<0.05),左心室舒張早期充盈率增加24%(P<0.01)。
2.3減肥手術療法 減肥手術治療糖尿病是一個新興的方法,主要通過減輕體質量,從而改變代謝,控制血糖。van Schinkel等[33]監測減肥手術對2型肥胖糖尿病患者心肌脂肪含量及心功能的影響,發現在接受減肥手術16周后患者糖化血紅蛋白下降13%(P<0.05),但心肌脂肪含量、左心室舒張和收縮功能均未見明顯改善。
2.4藥物治療 目前治療糖尿病的藥物主要為口服藥物和胰島素。不同藥物具有不同的藥理作用,對心臟的效應也不盡相同。van der Meer等[34]對78例無任何心血管疾病的2型糖尿病患者分別采用吡格列酮或二甲雙胍治療24周后進行MR成像,發現2種藥物均未能明顯降低心肌脂肪含量,但應用吡格列酮可明顯改善左室舒張功能,表現為EDV增加4%(P=0.045)、E峰減速8%(P=0.034)、左心室SV增加5%(P=0.016)。McGavock等[35]研究結果顯示,應用羅格列酮治療2型糖尿病6個月后,雖然患者空腹血糖明顯減低[(166±44)mg/dl vs (150±67)mg/dl,P<0.05],但MRI提示心肌甘油三酯含量和心功能均無明顯改變。Jankovic等[36]研究發現,2型糖尿病患者通過短期(10天)胰島素治療后,MRI顯示其心肌甘油三酯增加80%(P=0.008),LV mass增加13%(P<0.05),室間隔厚度增加13%(P<0.05),但左心室舒張和收縮功能均未見明顯改善。Giannetta等[37]監測磷酸二酯酶抑制劑(西地那非)對糖尿病的效果,發現2型糖尿病患者服用西地那非3個月后,電影成像顯示其LVEDV指數上升6%(P<0.05),左心室質量—容積比率平均下降0.17(P=0.013),左心室SV增加10%(P<0.05),LVEF增加4%(P=0.002)。糖尿病患者腎素—血管緊張素—醛固酮系統(renin-angiotensin-aldosteronesystem, RAAS)被激活,升高的血管緊張素Ⅱ(angiotensin Ⅱ, AngⅡ)和醛固酮通過各自的受體刺激心肌成纖維細胞增生及膠原代謝改變,最終導致心肌細胞壞死和心肌纖維化。Wong等[38]對1 176例2型糖尿病患者用腎素-血管緊張素拮抗劑治療1.3年后,T1 mapping顯示ECV較治療前明顯減小(P=0.028)。
綜上所述,在糖尿病心肌病的臨床治療試驗中,評估不同的心肌指標需要不同的MR成像方法。如將心功能作為主要終點事件,則評估方法以心臟電影成像為主。如將心肌脂肪含量的變化對心功能的影響作為主要終點事件之一,成像方案中除了心臟電影成像外,還需增加MRS。如需同時觀察心肌纖維化程度,則需增加T1 Mapping檢查。MRI可動態監測糖尿病心肌病不同治療方式、不同藥物的治療效果。隨著MRI技術的不斷發展,其成像速度不斷加快、分辨力不斷提高,必將進一步提高對糖尿病心肌病定性和定量評估的敏感度和準確性。
[1] Aneja A, Tang WH, Bansilal S, et al. Diabetic cardiomyopathy: Insights into pathogenesis, diagnostic cllenges, and therapeutic options. Am J Med, 2008,121(9):748-757.
[2] Ng AC, Auger D, Delgado V, et al. Association between diffuse myocardial fibrosis by cardiac magnetic resonance contrast-enhanced T1 mapping and subclinical myocardial dysfunction in diabetic patients: A pilot study. Circ Cardiovasc Imaging, 2012,5(5):51-59.
[3] van Herpen NA, Schrauwen-Hinderling VB. Lipid accumulation in non-adipose tissue and lipotoxicity. Physiol Behav, 2008,94(2):231-241.
[4] Mazumder PK, O'Neill BT, Roberts MW, et al. Impaired cardiac efficiency and increased fatty acid oxidation in insulin-resistant ob/ob mouse hearts. Diabetes, 2004,53(9):2366-2374.
[5] How OJ, Aasum E, Severson DL, et al. Increased myocardial oxygen consumption reduces cardiac efficiency in diabetic mice. Diabetes, 2006,55(2):466-473.
[6] Boudina S, Abel ED. Diabetic cardiomyopathy revisited. Circulation, 2007,115(25):3213-3223.
[7] Owan TE, Hodge DO, Herges RM, et al. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med, 2006,355(3):251-259.
[8] Tang WH. Glycemic control and treatment patterns in patients with heart failure. Curr Cardiol Rep, 2007,9(3):242-247.
[9] Westenberg JJ. CMR for assessment of diastolic function. Curr Cardiovasc Imaging Rep, 2011,4(2):149-158.
[10] Hanneman K, Kino A, Cheng JY, et al. Assessment of the precision and reproducibility of ventricular volume, function, and mass measurements with ferumoxytol-enhanced 4D flow MRI. J Magn Reson Imaging, 2016,44(2):383-392.
[11] Clay S, Alfakih K, Messroghli DR, et al. The reproducibility of left ventricular volume and mass measurements: A comparison between dual-inversion-recovery black-blood sequence and SSFP. Eur Radiol, 2006,16(1):32-37.
[12] Mooij CF, de Wit CJ, Graham DA, et al. Reproducibility of MRI measurements of right ventricular size and function in patients with normal and dilated ventricles. J Magn Reson Imaging, 2008,28(1):67-73.
[13] Luijnenburg SE, Robbers-Visser D, Moelker A, et al. Intra-observer and interobserver variability of biventricular function, volumes and mass in patients with congenital heart disease measured by CMR imaging. Int J Cardiovasc Imaging, 2010,26(1):57-64.
[14] Grothues F, Smith GC, Moon JC, et al. Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol, 2002,90(1):29-34.
[15] Bellenger N, Francis J, Davies C, et al. Establishment and performance of a magnetic resonance cardiac function clinic. J Cardiovasc Magn Reson, 2000,2(1):15-22.
[16] Hudsmith LE, Petersen SE, Tyler DJ, et al. Determination of cardiac volumes and mass with FLASH and SSFP cine sequences at 1.5 vs. 3 Tesla: A validation study. J Magn Reson Imaging, 2006,24(2):312-318.
[17] Xiao L, Wu EX. Diffusion-weighted magnetic resonance spectroscopy: A novel approach to investigate intramyocellular lipids. Magn Reson Med, 2011,66(4):937-944.
[18] Reingold JS, McGavock JM, Kaka S, et al. Determination of triglyceride in the human myocardium by magnetic resonance spectroscopy: Reproducibility and sensitivity of the method. Am J Physiol Endocrinol Metab, 2005,289(5):E935-E939.
[19] van der Meer RW, Doornbos J, Kozerke S, et al. Metabolic imaging of myocardial triglyceride content: Reproducibility of 1H MR spectroscopy with respiratory navigator gating in volunteers. Radiology, 2007,245(1):251-257.
[20] Abdel-Aty H, Boyé P, Zagrosek A, et al. Diagnostic performance of cardiovascular magnetic resonance in patients with suspected acute myocarditis: Comparison of different approaches. J Am Coll Cardiol, 2005,45(11):1815-1822.
[21] Gai N, Turkbey EB, Nazarian S, et al. T1 mapping of the gadolinium-enhanced myocardium: Adjustment for factors affecting interpatient comparison. Magn Reson Med, 2011,65(5):1407-1415.
[22] Ugander M, Oki AJ, Hsu LY, et al. Extracellular volume imaging by magnetic resonance imaging provides insights into overt and sub-clinical myocardial pathology. Eur Heart J, 2012,33(10):1268-1278.
[23] Miller CA, Naish JH, Bishop P, et al. Comprehensive validation of cardiovascular magnetic resonance techniques for the assessment of myocardial extracellular volume. Circ Cardiovasc Imaging, 2013,6(3):373-383.
[24] aus dem Siepen F, Buss SJ, Messroghli D, et al. T1 mapping in dilated cardiomyopathy with cardiac magnetic resonance: Quantification of diffuse myocardial fibrosis and comparison with endomyocardial biopsy. Eur Heart J Cardiovasc Imaging, 2015,16(2):210-216.
[25] Chin CW, Semple S, Malley T, et al. Optimization and comparison of myocardial T1 techniques at 3T in patients with aortic stenosis. Eur Heart J Cardiovasc Imaging, 2014,15(5):556-565.
[26] Singh A, Horsfield MA, Bekele S, et al. Myocardial T1 and extracellular volume fraction measurement in asymptomatic patients with aortic stenosis: Reproducibility and comparison with age-matched controls. Eur Heart J Cardiovasc Imaging, 2015,16(7):763-770.
[27] Liu S, Han J, Nacif MS, et al. Diffuse myocardial fibrosis evaluation using cardiac magnetic resonance T1 mapping: Sample size considerations for clinical trials. J Cardiovasc Magn Reson, 2012, 14(1):72-79.
[28] Hammer S, Snel M, Lamb HJ, et al. Prolonged caloric restriction in obese patients with type 2 diabetes mellitus decreases myocardial triglyceride content and improves myocardial function. J Am Coll Cardiol, 2008,52(12):1006-1012.
[29] Hammer S, van der Meer RW, Lamb HJ, et al. Short-term flexibility of myocardial triglycerides and diastolic function in patients with type 2 diabetes mellitus. Am J Physiol Endocrinol Metab, 2008,295(3):714-718.
[30] Jonker JT, de Mol P, de Vries ST, et al. Exercise and type 2 diabetes mellitus: Changes in tissue-specific fat distribution and cardiac function. Radiology, 2013,269(2):434-442.
[31] Schrauwen-Hinderling VB, Meex RC, Hesselink MK, et al. Cardiac lipid content is unresponsive to a physical activity training intervention in type 2 diabetic patients, despite improved ejection fraction. Cardiovasc Diabetol, 2011,10:47.
[32] Cassidy S, Thoma C, Hallsworth K, et al. High intensity intermittent exercise improves cardiac structure and function and reduces liver fat in patients with type 2 diabetes: A randomised controlled trial. Diabetologia, 2016,59(1):56-66.
[33] van Schinkel LD, Sleddering MA, Lips MA, et al. Effects of bariatric surgery on pericardial ectopic fat depositions and cardiovascular function. Clin Endocrinol (Oxf), 2014,81(5):689-695.
[34] van der Meer RW, Rijzewijk LJ, de Jong HW, et al. Pioglitazone improves cardiac function and alters myocardial substrate metabolism without affecting cardiac triglyceride accumulation and high-energy phosphate metabolism in patients with well-controlled type 2 diabetes mellitus. Circulation, 2009,119(15):2069-2077.
[35] McGavock J, Szczepaniak LS, Ayers CR, et al. The effects of rosiglitazone on myocardial triglyceride content in patients with type 2 diabetes: A randomised, placebo-controlled trial. Diab Vasc Dis Res, 2012,9(2):131-137.
[36] Jankovic D, Winhofer Y, Promintzer-Schifferl M, et al. Effects of insulin therapy on myocardial lipid content and cardiac geometry in patients with type-2 diabetes mellitus. PloS One, 2012,7(12):e50077.
[37] Giannetta E, Isidori AM, Galea N, et al. Chronic inhibition of cGMP phosphodiesterase 5A improves diabetic cardiomyopathy: A randomized, controlled clinical trial using magnetic resonance imaging with myocardial tagging. Circulation, 2012,125(19):2323-2333.
[38] Wong TC, Piehler KM, Kang IA, et al. Myocardial extracellular volume fraction quantified by cardiovascular magnetic resonance is increased in diabetes and associated with mortality and incident heart failure admission. Eur Heart J, 2014,35(10):657-664.
Progresses of MRI in evaluating myocardium of diabetic cardiomyopathy
YANGMei,ZHOUDan*
(DepartmentofRadiology,BenQMedicalCenter,NanjingMedicalUniversity,Nanjing210019,China)
Diabetic cardiomyopathy is one of the major causes of congestive heart failure in patients with diabetes. The histological changes of the diabetic cardiomyopathy can be accurately characterized by MR structure and functional imaging techniques, such as CINE imaging, MRS and T1 Mapping. These cardiac MRI techniques have been used to evaluate the treatment effect of diabetic cardiomyopathy. The progresses of MRI techniques in evaluating myocardium of diabetic cardiomyopathy were reviewed in this article.
Diabetes mellitus; Cardiomyopathy; Magnetic resonance imaging; Treatment outcome
楊梅(1982—),女,江蘇連云港人,在讀碩士,主治醫師。研究方向:心血管影像診斷學。E-mail: mjym2syr@163.com
周丹,南京醫科大學附屬明基醫院放射科,210019。
E-mail: Danny.zhou@benqmedicalcenter.com
2016-10-25
2017-05-25
10.13929/j.1003-3289.201610112
R445.2; R541
A
1003-3289(2017)07-1104-05