999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

原核細胞microRNA特性及其作用機制研究進展

2017-01-16 02:08:36張新蔚黃燕穎孫愛華
中國人獸共患病學報 2017年5期
關鍵詞:機制

張新蔚,黃燕穎,嚴 杰,孫愛華

?

原核細胞microRNA特性及其作用機制研究進展

張新蔚1,3,黃燕穎1,3,嚴 杰2,孫愛華3

microRNA為一類非編碼小RNA,主要通過其種子序列(seed sequence,SS)與靶mRNA位于5′端的SS結合序列特異性結合后抑制靶mRNA轉錄或降解靶mRNA,從而在轉錄后水平負調(diào)控靶基因表達。microRNA首先發(fā)現(xiàn)于秀麗隱桿線蟲(Caenorhabditiselegans),此后發(fā)現(xiàn)各種真核細胞均存在大量各種microRNA。真核細胞首先轉錄出microRNA前體,經(jīng)剪切后成為21~23 nt有功能的microRNA,大多與靶mRNA的3′端序列結合后引起靶mRNA翻譯抑制或降解。近年不少細菌等原核細胞microRNA被發(fā)現(xiàn),但原核細胞microRNA不需剪切即有活性,大小為50~400 nt,其特性、作用位點和機制等也與真核細胞有一定差異。本文簡要介紹真核和原核細胞基因表達調(diào)控主要機制、microRNA特點及其調(diào)控基因表達的機制,以期為深入研究原核細胞型病原微生物基因表達調(diào)控與致病機制奠定基礎。

原核細胞;基因表達;調(diào)控;microRNA;作用機制

Supported by the National Natural Science Foundation of China (No. 81271893) and the Zhejiang Provincial Program for the Cultivation of High-level Innovative Health Talents (No. 2012-241) Corresponding author: Sun Ai-hua,Email: sunah123@126.com

生物大分子有蛋白、多糖、核酸及其復合物,在生命體生理或病理過程中發(fā)揮關鍵作用。基因是DNA分子中攜帶遺傳信息的片段,其表達產(chǎn)物為蛋白或多肽。酶是一類具有催化功能的蛋白,上述生物大分子合成與降解均依賴于酶的作用。因此,了解基因表達調(diào)控的物質(zhì)基礎及其工作機制具有重要意義。基因表達過程分為mRNA轉錄和翻譯(轉錄后)兩大環(huán)節(jié)。轉錄因子(transcription factor,TF)是能與DNA結合并在轉錄水平上靶基因表達的蛋白,但近年發(fā)現(xiàn)一類稱之為microRNA的非編碼小RNA也能在轉錄后水平上調(diào)控靶基因表達。本文簡要介紹真核或原核細胞TF尤其是microRNA調(diào)控靶基因表達的主要機制及其差異。

1 TF調(diào)控靶基因表達的主要機制

一般認為,真核或原核細胞基因表達調(diào)控主要依賴于TF,microRNA通常僅有微調(diào)作用。一個基因編碼的蛋白對該基因或另一基因表達的調(diào)節(jié)作用分別稱為順式或反式調(diào)節(jié)作用,包括基因轉錄的開啟和關閉。

1.1 真核細胞TF調(diào)控靶基因表達機制[1-7]在真核細胞中,順式作用元件(cis-acting element)和反式作用因子(trans-acting factor)及其相互作用是轉錄水平調(diào)控基因表達的基本機制。順式作用元件為位于基因旁側、可調(diào)控或影響該基因表達的特殊序列,根據(jù)功能不同可分為啟動子(promotor)、增強子(enhanser)、沉默子(silencer)應答元件(response element)。反式作用因子能直接或間接識別并結合另一基因順式作用元件核心序列、調(diào)控該基因轉錄水平或過程,以TF最為重要和常見。TF特異性識別靶基因啟動子區(qū)中TF結合位點(TF-binding site,TFBS)并與之結合,激活或抑制基因轉錄。多個TFBS可組成順式調(diào)節(jié)模塊(cis-regulatory modules,CRM),大多數(shù)基因表達由多種TF通過CRM調(diào)控,一個TF也可通過不同的CRM調(diào)控多個基因表達。根據(jù)功能不同,TF可分為轉錄激活子(transcription activator)和后者稱轉錄抑制子(transcription inhibitor),前者為增強子結合蛋白(enhancer-binding protein,EBP),與增強子序列結合后上調(diào)基因表達,后者屬于沉默子結合蛋白(silencer-binding protein,SBP),與沉默子序列結合后下調(diào)基因表達。增強子和沉默子序列位于轉錄起始點一定距離外(1-30 kb),其作用不受序列方向的影響,也可對異源基因發(fā)揮作用。此外,TF對某一靶基因表現(xiàn)為表達上調(diào)作用,但對另一靶基因可呈現(xiàn)為表達抑制作用。

1.2 原核細胞基因表達調(diào)控主要機制[6-11]大多數(shù)原核細胞通過操縱子調(diào)控基因表達。操縱子由結構基因和調(diào)控序列組成,前者常為功能上有關聯(lián)、串聯(lián)排列的數(shù)個基因,共同構成編碼區(qū),后者包括啟動子、操縱元件(operator)以及一定距離外的調(diào)節(jié)基因。操縱元件是一段能被特異的阻遏蛋白(repressor)識別并結合的DNA序列,與啟動子序列毗鄰甚至重疊。阻遏蛋白與操縱子結合后,阻斷RNA聚合酶與啟動子結合或阻礙RNA聚合酶沿DNA向前移動,在轉錄水平上抑制基因表達。許多原核細胞基因操縱子中還有一段獨特的DNA序列,與激活蛋白(activator)結合后增強RNA聚合酶活性,在轉錄水平上調(diào)基因表達。調(diào)節(jié)基因編碼能與操縱序列結合的調(diào)控蛋白(modulin),可分為特異因子、阻遏蛋白和激活蛋白三類,其中特異因子決定RNA聚合酶對一個或一套啟動子序列的特異性識別和結合能力。

任何生物體必然與其生存環(huán)境發(fā)生相互聯(lián)系并受之影響,由信號傳導系統(tǒng)(signaling system)感受外界信號并作出應答,其中跨膜感受器(sensor)蛋白激酶接受環(huán)境分子信號并向胞內(nèi)傳遞,最終通過TF調(diào)控相關基因表達來應對環(huán)境變化。與真核細胞比較,細菌等原核細胞信號傳導系統(tǒng)相對簡單,一般由兩類分工明確的蛋白組成,故稱之二元信號傳導系統(tǒng)(two-component signaling system,TCSS):①跨膜傳感器蛋白(sensor protein,SP):多為組氨酸激酶,少數(shù)為絲氨酸/蘇氨酸激酶;②胞漿內(nèi)應答調(diào)節(jié)蛋白(response regulator protein,RRP),通常被跨膜傳感激酶磷酸化后激活,具有類似真核細胞TF功能,通過調(diào)節(jié)靶基因表達水平對環(huán)境信號進行適應性應答。例如,金黃色葡萄球菌(Staphylococcusaureus)ArlRS是調(diào)控許多毒力基因表達的TCSS,ArlS為SP、ArlR為RRP,ArlR上調(diào)sdrC/D/rE、tcaB和ssaA等毒力基因表達,但下調(diào)lukD/E、phlC和hlgC毒素基因表達;大腸埃希菌(Escherichiacoli)EnvZ/OmpR 是環(huán)境滲透壓TCSS,EnvZ為SP、OmpR為RRP,OmpR可分別與外膜孔蛋白OmpF和OmpC編碼基因啟動子區(qū)結合,低滲時OmpF表達上調(diào)、OmpC表達下調(diào),高滲時OmpF和OmpC表達水平相反。

2 真核或原核細胞microRNA產(chǎn)生及特性

microRNA首先發(fā)現(xiàn)于秀麗隱桿線蟲(Caenorhabditiselegans),此后發(fā)現(xiàn)真核或原核細胞均存在大量各種microRNA[12-13]。真核或原核細胞microRNA產(chǎn)生過程、分子大小與結構以及作用機制均存在一定差異。

2.1 真核細胞microRNA產(chǎn)生及特性[14-16]在RNA聚合酶的作用下,真核細胞microRNA編碼基因轉錄產(chǎn)生pri-microRNA,隨后Drosha 酶將pri-microRNA剪切成pre-microRNA,然后Ran-GTP 和 Exportin-5蛋白將pre-microRNA從細胞核運送到細胞質(zhì),再經(jīng)胞漿Dicer核酸酶剪切成通常為21~23 nt左右成熟的單鏈小RNA(microRNA)。胞漿內(nèi)RNA誘導沉默復合體(RNA-induce silencing complex,RISC)可識別microRNA并將其遞呈至靶mRNA,大多數(shù)microRNA與靶mRNA的3’端非翻譯區(qū)(untranslated region,UTR)序列互補,抑制該mRNA翻譯或引起mRNA降解。動物約有1/3基因受到microRNA調(diào)控。

2.2 原核細胞microRNA產(chǎn)生及特性[17-20]原核細胞microRNA長度為50~400 nt,轉錄后一般不經(jīng)過加工即有活性。原核細胞microRNA起始一端折疊成莖環(huán)結構,轉錄終止于一個Rho不依賴的轉錄終止子。莖環(huán)結構具有穩(wěn)定microRNA的作用,使大多數(shù)microRNA穩(wěn)定性明顯大于mRNA。與真核細胞microRNA不同,原核細胞microRNA多與靶mRNA的5′端序列互補配對,且堿基互補配對方式也有所不同,與靶mRNA結合的microRNA隨靶mRNA一起降解。

3 真核或原核細胞microRNA作用機制

microRNA屬于反式作用因子,其主要作用是抑制靶mRNA翻譯或引起靶mRNA降解,在轉錄后水平下調(diào)基因表達,一種microRNA可調(diào)控多種mRNA,多種microRNA也可協(xié)同調(diào)控同一mRNA,甚至還能與TF經(jīng)前饋環(huán)(feed-forward loops,F(xiàn)FLs)協(xié)同調(diào)節(jié)同一基因的表達[20-22]。

3.1 真核細胞microRNA作用機制[21-24]真核細胞microRNA抑制基因表達機制:①抑制mRNA翻譯:常見于microRNA與靶mRNA互補配對程度較低者;②引起靶mRNA降解:常見于microRNA與靶mRNA互補配對程度較高者。microRNA與靶mRNA不完全互補時,其結合位點通常位于靶mRNA的3′端非翻譯區(qū),可通過影響靶mRNA穩(wěn)定性、干擾靶mRNA與核糖體結合等方式抑制mRNA翻譯。microRNA與靶mRNA完全互補時,其結合位點通常位于靶mRNA編碼區(qū)(encoding region,ER)或開放閱讀框(open reading frame,ORF)中,與靶位點結合后引起靶mRNA的降解。植物microRNA大多與靶mRNA互補配對程度較高,動物microRNA大多與靶mRNA互補配對程度較低。

3.2 原核細胞microRNA作用機制[25-31]原核細胞microRNA可通過與靶mRNA堿基互補配對、與某些蛋白相互作用、RNA伴侶蛋白Hfq連接等方式在轉錄后水平調(diào)控基因表達。

3.2.1 microRNA-mRNA堿基互補配對 原核細胞 microRNA與靶mRNA堿基互補配可抑制或促進靶mRNA翻譯。多數(shù)細菌microRNA通過堿基不完全互補配對與靶mRNA的5′端核糖體結合位點(ribosome binding site,RBS)結合、導致mRNA的穩(wěn)定性降低或與5′端第5個密碼子結合,從而抑制mRNA翻譯。少數(shù)細菌microRNA結合于靶mRNA的3′端而使mRNA穩(wěn)定性增強,或結合于靶mRNA莖環(huán)結構使之打開,從而起促進mRNA翻譯的作用。

3.2.2 microRNA-蛋白相互作用[32-33]原核細胞microRNA與某些胞內(nèi)蛋白相互作用后可在轉錄后水平上調(diào)或下調(diào)靶基因表達。例如,大腸埃希菌、枯草芽胞桿菌(Bacillussubtilis)和惡臭假單胞菌(Pseudomonasputida)一些microRNA與蛋白結合后模擬核酸底物而抑制靶mRNA翻譯。此外還發(fā)現(xiàn),大腸埃希菌RNA結合蛋白CsrA能與靶mRNA中RBS結合,阻斷該mRNA與核糖體的結合,從而抑制mRNA翻譯;CsrB或CsrC RNA可與CsrA蛋白結合,使CsrA蛋白不能與靶mRNA結合,從而發(fā)揮促進靶mRNA翻譯的作用。

3.2.3 RNA伴侶蛋白Hfq 多數(shù)原核細胞microRNA需RNA伴侶蛋白Hfq來增強其與靶mRNA的親和力以及對核酸酶的抵抗力。例如,大腸埃希菌Hfq以六聚體形式分別與microRNA及其靶mRNA結合,通過影響microRNA二級結構或改變microRNA與靶mRNA的局部濃度,從而提高microRNA對靶mRNA抑制作用甚至引起靶mRNA降解,該結合過程中microRNA的polyU尾和mRNA的U富集序列對Hfq連接功能至關重要[33-34]。

4 原核細胞microRNA-mRNA相互作用位點

細菌等原核細胞mRNA翻譯起始時需一個與mRNA結合的核糖體30S亞基、fMET-tRNAfMet和起始因子組成的起始復合物。位于mRNA起始密碼子上游富含嘌呤的SD序列(Shine-Dalgarno sequence)在mRNA捕獲核糖體30S亞基中起關鍵作用,該序列與16S核糖體RNA 3′端反義SD序列結合,促進mRNA翻譯[35-39]。細菌microRNA大多為反義RNA,作用于正義靶mRNA。細菌等原核細胞microRNA通常與靶mRNA 5′-UTR結合,抑制靶mRNA翻譯[38-39]。

4.1 microRNA-mRNA結合時mRNA的作用位點[38-41]細菌等原核細胞microRNA可與靶mRNA的SD序列堿基互補配對,使SD序列不能與核糖體30S亞基結合。有研究發(fā)現(xiàn),大腸埃希菌和沙門菌microRNA與靶mRNA堿基互補配對位點位于mRNA RBS或其附近,若堿基互補配對位點超出起始密碼子上游70 或下游15 nt,microRNA抑制作用明顯減弱;此外,靶mRNA SD序列和起始密碼子未被結合時microRNA才能發(fā)揮作用。

4.2 microRNA-mRNA結合時microRNA的作用位點[41-42]腸道菌群microRNA具有如下模塊化特征:①具有富含U的3′端區(qū)域:促進不依賴Rho因子的轉錄終止并保護microRNA免受3′核酸外切酶的降解;②具有與Hfq蛋白結合的區(qū)域:通過與Hfq蛋白的結合來提高microRNA穩(wěn)定性;③具有與靶mRNA結合的區(qū)域:該區(qū)域序列非常保守,含有與靶mRNA結合的種子序列(seed sequence,SS)。目前發(fā)現(xiàn),細菌microRNA均含有SS且位于microRNA的5′端,不同細菌microRNA的SS長度雖有差異,但通常為6~12個核苷酸。

[1] Maston GA,Evans SK,Green MR. Transcriptional regulatory elements in the human genome[J]. Annu Rev Genomics Hum Genet. 2006,7(1): 29-59. DOI: 10.1146/annurev.genom.7.080505.115623

[2] Lin WS,Lin J,Lin QY,et al. Hepatitis B virus X protein induced hypermethylation of RUNX3 through DNMT3A in HCC cells[J]. Chin J Zoonoses,2016,32(8): 717-722. DOI: 10.3969/j.issn.1002-2694.2016.08.007

[3] Weake VM,Workman JL. Inducible gene expression: diverse regulatory mechanisms[J]. Nat Rev Genet,2010,11(6): 426-437. DOI: 10.1038/nrg2781

[4] Vaquerizas JM,Kummerfeld SK,Teichmann SA,et al. A census of human transcription factors: function,expression and evolution[J]. Nat Rev Genet,2009,10(4): 252-263. DOI: 10.1038/nrg2538

[5] Zhou Q,Wong WH. Cis module: de novo discovery of cis-regulatory modules by hierarchical mixture modeling[J]. Proc Natl Acad Sci U S A,2004,101(33): 12114-12119. DOI: 10.1073/pnas.0402858101

[6] Kato M,Hata N,Banerjee N,et al. Identifying combinatorial regulation of transcription factors and binding motifs[J]. Genome Biol,2004,5(8): 56-68. DOI: 10.1186/gb-2004-5-8-r56

[7] Liu Y,Taylor MW,Edenberg HJ. Model-based identification of cis-acting elements from microarray data[J]. Genomics,2006,88(4): 452-461. DOI: 10.1016/j.ygeno.2006.04.006

[8] Casino P,Rubio V,Marina A. The mechanism of signal transduction by two-component systems[J]. Curr Opin Struc Biol,2010,20(6): 763-771.

[9] Reading NC,Rasko DA,Torres AG,et al. The two-component system QseEF and the membrane protein QseG link adrenergic and stress sensing to bacterial pathogenesis[J]. Proc Natl Acad Sci U S A,2009,106(14): 5889-5894.

[10] Liang X,Zheng L,Landwehr C,et al. Global regulation of gene expression by ArlRS,a two-component signal transduction regulatory system ofStaphylococcusaureus[J]. J Bacteriol,2005,187(15): 5486-5492. DOI: 10.1128/JB.187.15.5486-5492

[11] Egger LA,Inouye M. Purification and characterization of the periplasmic domain of EnvZ osmosensor inEscherichiacoli[J]. Biochem Biophys Res Commun,1997,231(1): 68-72. DOI: 10.1006/bbrc.1996.6007

[12] Storz G. An expanding universe of noncoding RNAs[J]. Science,2002,296(5571): 1260-1263. DOI: 10.1126/science.1072249

[13] Berezikov E,Cuppen E,Plasterk RH. Approaches to microRNA discovery[J]. Nat Genet,2006,38(Suppl): 2-7. DOI: 10.1038/ng1794

[14] Bartel DP. microRNAs: genomics,biogenesis,mechanism,and function[J]. Cell,2004,116(2): 281-297. DOI: 10.1016/S0092-8674(04)00045-5

[15] Shukla GC,Singh J,Barik S. MicroRNAs: processing,maturation,target recognition and regulatory functions[J]. Mol Cell Pharmacol,2011,3(3): 83-92.

[16] Cui Q,Yu Z,Pan Y,et al. MicroRNAs preferentially target the genes with high transcriptional regulation complexity[J]. Biochem Biophys Res Commun,2007,352(3): 733-738. DOI: 10.1016/j.bbrc.2006.11.080

[17] Guillier M,Gottesman S. The 5’ end of two redundant sRNAs is involved in the regulation of multiple targets,including their own regulator[J]. Nucleic Acids Res,2008,36(21): 6781-6794. DOI: 10.1093/nar/gkn742

[18] Vogel J,Bartels V,Tang TH,et al. RNomics inEscherichiacolidetects new sRNA species and indicates parallel transcriptional output in bacteria[J]. Nucleic Acids Res,2003,31(22): 6435-6443. DOI: 10.1093/nar/gkg867

[19] Masse E,Escorcia FE,Gottesman S. Coupled degradation of a small regulatory RNA and its mRNA targets inEscherichiacoli[J]. Genes Dev,2003,17(19): 2374-2383. DOI: 10.1101/gad.1127103

[20] Gottesman S. Micros for microbes: non-coding regulatory RNAs in bacteria[J]. Trends Genet,2005,21(7): 399-404. DOI: 10.1016/j.tig.2005.05.008

[21] Re A,Cora D,Taverna D,et al. Genome-wide survey of microRNA-transcription factor feed-forward regulatory circuits in human[J]. Mol Biosyst,2009,5(8): 854-867. DOI: 10.1039/b900177h

[22] Fu JH,Shao CC,Zhu XQ,et al. Effects of miR-36f on larval infection and development ofAscarissuum[J]. Chin J Zoonoses,2015,31(11): 1037-1041. DOI: 10.3969/j.issn.1002-2694.2015.11.010

[23] Tsang J,Zhu J,van Oudenaarden A. MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals[J]. Mol Cell,2007,26(5): 753-767. DOI: 10.1016/j.molcel.2007.05.018

[24] Papenfort K,Vogel J. Multiple target regulation by small noncoding RNAs rewires gene expression at the post-transcriptional level[J]. Res Microbiol,2009,160(4): 278-287. DOI: 10.1016/j.resmic.2009.03.004

[25] Georg J,Hess WR. cis-antisense RNA,another level of gene regulation in bacteria[J]. Microbiol Mol Biol Rev,2011,75(2): 286-300. DOI: 10.1128/MMBR.00032-10

[26] Gottesman S,Storz G. Bacterial small RNA regulators: versatile roles and rapidly evolving variations[J]. Cold Spring Harb Perspect Biol,2011,3(12): a003798-003813 DOI: 10.1101/cshperspect.a003798

[27] Romeo T,Vakulskas CA,Babitzke P. Post-transcriptional regulation on a global scale: form and function of Csr/Rsm systems[J]. Environ Microbiol,2013,15(2): 313-324. DOI: 10.1111/j.1462-2920.2012.02794.x

[28] Cavanagh AT,Wassarman KM. 6S RNA,a global regulator of transcription inEscherichiacoli,Bacillussubtilis,and beyond[J]. Annu Rev Microbiol,2014,68(1): 45-60. DOI: 10.1146/annurev-micro-092611-150135

[29] Vakulskas CA,Potts AH,Babitzke P,et al. Regulation of bacterial virulence by Csr (Rsm) systems[J]. Microbiol Mol Biol Rev,2015,79(2): 193-224. DOI: 10.1128/MMBR.00052-14

[30] La Rosa R,Nogales J,Rojo F. The Crc/CrcZ-CrcY global regulatory system helps the integration of gluconeogenic and glycolytic metabolism inPseudomonasputida[J]. Environ Microbiol,2015,17(9): 3362-3378. DOI: 10.1111/1462-2920.12812

[31] Babitzke P,Romeo T. CsrB sRNA family: sequestration of RNA-binding regulatory proteins[J]. Curr Opin Microbiol,2007,10(2): 156-163. DOI: 10.1016/j.mib.2007.03.007

[32] Dubey AK,Baker CS,Romeo T,et al. RNA sequence and secondary structure participate in high-affinity CsrA-RNA interaction[J]. RNA,2005,11(10): 1579-1587. DOI: 10.1261/rna.2990205

[33] Baker CS,Eory LA,Yakhnin H,et al. CsrA inhibits translation initiation ofEscherichiacolihfq by binding to a single site overlapping the Shine-Dalgarno sequence[J]. J Bacteriol,2007,189(15): 5472-5481. DOI: 10.1128/JB.00529-07

[34] Folichon M,Arluison V,Pellegrini O,et al. The poly (A) binding protein Hfq protects RNA from RNase E and exoribonucleolytic degradation[J]. Nucleic Acids Res,2003,31(24): 7302-7310. DOI: 10.1093/nar/gkg915

[35] Storz G,Opdyke JA,Zhang A. Controlling mRNA stability and translation with small,noncoding RNAs[J]. Curr Opin Microbiol,2004,7(2): 140-144. DOI: 10.1016/j.mib.2004.02.015

[36] Majdalani N,Vanderpool CK,Gottesman S. Bacterial small RNA regulators[J]. Crit Rev Biochem Mol Biol,2005,40(2): 93-113. DOI: 10.1080/10409230590918702

[37] Darfeuille F,Unoson C,Vogel J,et al. An antisense RNA inhibits translation by competing with standby ribosomes[J]. Mol Cell,2007,26(3): 381-392. DOI: 10.1016/j.molcel.2007.04.003

[38] Majdalani N,Vanderpool CK,Gottesman S. Bacterial small RNA regulators[J]. Crit Rev Biochem Mol Biol,2005,40(2): 93-113. DOI: 10.1080/10409230590918702

[39] Darfeuille F,Unoson C,Vogel J,et al. An antisense RNA inhibits translation by competing with standby ribosomes[J]. Mol Cell,2007,26(3): 381-392. DOI: 10.1016/j.molcel.2007.04.003

[40] Bouvier M,Sharma CM,Mika F,et al. Small RNA binding to 5' mRNA coding region inhibits translational initiation[J]. Mol Cell,2008,32(6): 827-837. DOI: 10.1016/j.molcel.2008.10.027

[41] Storz G,Vogel J,Wassarman KM. Regulation by small RNAs in bacteria: expanding frontiers[J]. Mol Cell,2011,43(6): 880-891. DOI: 10.1016/j.molcel.2011.08.022

[42] Roberto B,Francesca F,Nara B,et al. Recognition of heptameric seed sequence underlies multi-target regulation by RybB small RNA inSalmonellaenterica[J]. Mol Microbiol,2010,78(2): 380-394. DOI: 10.1111/j.1365-2958.2010.07342.x

Advance in research of characteristics and action mechanism of microRNAs from prokaryotes

ZHANG Xin-wei1,3,HUANG Yan-ying1,3,YAN Jie2,SUN Ai-hua3

(1.SchoolofLaboratoryMedicine,WenzhouMedicalUniversity,Wenzhou325035,China; 2.DepartmentofMedicalMicrobiologyandParasitology,SchoolofMedicine,ZhejiangUniversity,Hangzhou310058,China; 3.FacultyofBasicMedicine,HangzhouMedicalCollege,Hangzhou310053,China)

microRNAs is a group of small non-coding RNAs that play a negative regulation role in expression of target genes at post-transcriptional level by inhibition or degradation of target mRNAs after combination of the seed sequence (SS) in microRNAs with the SS-binding sequences usually located at 5′ ends of target mRNAs. microRNAs was firstly found inCaenorhabditiselegans. Subsequently,many different microRNAs in eukaryocytes were revealed. In eukaryocytes,microRNA precursors are transcribed at first and then become functional microRNAs with 21-23 nt in size after splice. Most of eukaryocytic microRNAs combime with the sequences at 3′ end of target mRNAs that cause the translation inhibition or degradation of the mRNAs. In the recent years,many different prokaryocytes,such as bacteria,have been confirmed to possess microRNAs. However,the microRNAs in prokaryotes such as bacteria are 50-400 nt in size and have the biological activity without splice. Moreover,the characteristics,action sites and mechanisms of the prokaryotic microRNAs have some certain diversity compared to the eukaryotic microRNAs. Our review briefly introduce the major regulation mechanisms of gene expression as well as the general characteristics of microRNAs and their regulation mechanisms of gene expression in prokaryocytes and eukaryocytes,which will provide a basis for further and profound study on the gene expression regulation and pathogenic mechanisms of prokaryotic microbial pathogens.

prokaryotes; gene expression; regulation; microRNA; action mechanism

10.3969/j.issn.1002-2694.2017.05.012

國家自然科學基金(81271893);浙江省衛(wèi)生高層次創(chuàng)新人才培養(yǎng)工程項目(2012-241)

孫愛華,sunah123@126.com

1.溫州醫(yī)科大學檢驗醫(yī)學院,溫州 325035; 2.浙江大學醫(yī)學院病原生物學系,杭州 310058; 3.杭州醫(yī)學院基礎醫(yī)學部,杭州 310053

R394.8

A

1002-2694(2017)05-0449-05

2016-11-11 編輯:王曉歡

猜你喜歡
機制
構建“不敢腐、不能腐、不想腐”機制的思考
自制力是一種很好的篩選機制
文苑(2018年21期)2018-11-09 01:23:06
“三項機制”為追趕超越蓄力
當代陜西(2018年9期)2018-08-29 01:21:00
丹鳳“四個強化”從嚴落實“三項機制”
當代陜西(2017年12期)2018-01-19 01:42:33
保留和突破:TPP協(xié)定ISDS機制中的平衡
定向培養(yǎng) 還需完善安置機制
破除舊機制要分步推進
氫氣對缺血再灌注損傷保護的可能機制
注重機制的相互配合
打基礎 抓機制 顯成效
中國火炬(2014年4期)2014-07-24 14:22:19
主站蜘蛛池模板: 国产精品香蕉在线观看不卡| 欧美日韩免费在线视频| 亚洲色图欧美| 亚洲另类国产欧美一区二区| 亚洲高清中文字幕| 国产精品女主播| 88av在线看| 日韩欧美中文字幕在线韩免费| 亚洲va精品中文字幕| 99热这里只有精品在线观看| 99久久人妻精品免费二区| 日韩AV手机在线观看蜜芽| 无码高清专区| 国产在线观看高清不卡| 亚洲性网站| 欧美激情视频一区二区三区免费| 欧美精品1区| AV在线麻免费观看网站| 亚洲区第一页| 国产麻豆永久视频| 国产经典在线观看一区| 久久精品无码专区免费| 日韩av电影一区二区三区四区| 久久公开视频| 天天综合网在线| 在线无码av一区二区三区| 亚洲 日韩 激情 无码 中出| 精品一区二区无码av| 日本国产在线| 欧美激情第一区| 日韩在线永久免费播放| 激情六月丁香婷婷| 亚洲视频在线青青| 青青青国产精品国产精品美女| 亚洲无码熟妇人妻AV在线| av午夜福利一片免费看| 欧美在线一二区| 久久精品午夜视频| 在线色国产| 国产精品专区第1页| 久草中文网| 真实国产乱子伦高清| 亚洲无码熟妇人妻AV在线| 97狠狠操| 国产乱人免费视频| 日韩高清一区 | 四虎AV麻豆| 就去色综合| 国产精品尤物在线| 国产精品国产主播在线观看| 毛片免费在线视频| 国产熟女一级毛片| 欧美另类一区| 亚洲精品国产综合99久久夜夜嗨| 香蕉视频在线观看www| 91黄视频在线观看| 狠狠v日韩v欧美v| 五月丁香在线视频| 欧美a级在线| 狠狠综合久久久久综| 高潮毛片无遮挡高清视频播放 | 亚洲美女高潮久久久久久久| 亚洲视频色图| 欧美精品啪啪| 欧美特黄一免在线观看| 三级国产在线观看| 国产精品自在自线免费观看| 91午夜福利在线观看| 国产成人欧美| 国产99在线观看| 精品天海翼一区二区| av尤物免费在线观看| a级毛片免费网站| 欧美日韩国产一级| 国产91无码福利在线 | 污视频日本| 四虎影视国产精品| 国产00高中生在线播放| 中文字幕精品一区二区三区视频 | 免费一级毛片不卡在线播放 | 91蝌蚪视频在线观看| 国产精品白浆无码流出在线看|