劉易,黃建,馬彥茹,祁通,馮耀祖,孟阿靜,王新勇
(新疆農科院土壤肥料與農業節水研究所,烏魯木齊 830091)
生物質炭輸入對鹽化灰漠土壤水分運移的影響
劉易,黃建,馬彥茹,祁通,馮耀祖,孟阿靜,王新勇
(新疆農科院土壤肥料與農業節水研究所,烏魯木齊 830091)
【目的】研究生物質炭輸入對氯化物—硫酸鹽鹽化灰漠土水分垂直運移的影響。【方法】輕、中、重鹽漬化土壤輸入不同量生物質炭,以不添加生物質炭為對照,通過滴加去離子水,觀測濕潤鋒和累計入滲量隨入滲時間的變化?!窘Y果】各程度鹽漬化土壤不同生物質炭輸入量處理,濕潤鋒垂直運移距離和累計入滲量隨入滲時間的持續均顯著增大(P﹤0.05);生物質炭輸入阻礙水分在中、重度氯化物-硫酸鹽鹽化灰漠土入滲,低生物質炭輸入量(≤4%)促進水分在輕度鹽漬化土壤垂直運移;輕、中度鹽化灰漠土輸入大量(≥6%)生物質炭可增加累計入滲量,重度鹽化土壤累計入滲量隨生物質輸入量增加而降低;不同生物質炭輸入量處理間垂直濕潤鋒深度的累積入滲量變化無規律?!窘Y論】生物質炭輸入比例、鹽漬化程度及兩者的交互效應對土壤水分的入滲效率和累計入滲量均有顯著影響:對中度鹽漬化土壤入滲速率和入滲量促進作用突出;低量輸入對輕度鹽漬化土壤水分運移有促進作用;對重度鹽漬化土壤累計入滲量和入滲速率均有抑制作用。
生物質炭;灰漠土鹽化土壤;水分
【研究意義】新疆是我國最重要的后備耕地資源省區,由于其特殊氣候條件,水分蒸發強烈,土壤鹽分和地下水可溶性鹽分隨水向地表積聚,導致新疆土壤鹽漬化面積較大,達到8.476×106hm2[1],現有耕地中31.1%的面積受到鹽堿危害[2]。土壤鹽漬化是非鹽生植物重要的生長限制因子,成為制約新疆農業健康可持續發展的主要障礙,也是影響綠洲生態穩定的重要因素。因此結合新疆鹽漬化土壤特性探尋其改良方法,防治和利用鹽漬化土壤已刻不容緩?!厩叭搜芯窟M展】生物質炭作為一種新型技術產品,快速增加土壤有機炭含量、改善土壤理化性質、增加土壤持水性能[3],并能夠在相當長的時間內保持粒狀結構,改善土壤結構[4-5],近年來成為土壤學等領域研究的熱點。生物質炭較大的比表面積、高度的孔隙結構、有機質的不同形態使生物質炭具有較強的吸附性,能提高對土壤水分的吸附能力,增加土壤持水性能[6]。尤其是氧化后的生物質炭可提高沙質土壤的持水量,從而改善土壤持水能力[7]。【本研究切入點】“鹽隨水來,鹽隨水去”,水的運動變化規律在鹽漬化危害和治理過程中起著主導和決定性的作用[8]。生物質炭對土壤水分運移的影響是對鹽分離子分布研究的前提,且不同鹽漬化土壤類型和程度對生物質炭的響應不同?;夷潦切陆湫偷牡彤a土壤之一,因此通過室內模擬土柱試驗,建立不同程度灰漠土鹽漬化土壤水分運移速度、入滲量與生物質炭輸入水平相關性值得深入研究。【擬解決的關鍵問題】通過生物質炭輸入,研究其對新疆氯化物-硫酸鹽鹽化灰漠土壤水分運移規律的影響,闡明其改良效益,為生物質炭適用于鹽漬化土壤的改良利用提供理論依據。
1.1 材 料
1.1.1 供試土壤
供試土壤采自瑪納斯北五岔,土壤類型為灰漠土,取土深度0~30 cm,經碾壓、粉碎、風干、過篩(2 mm),測定土壤基本理化性質。重度鹽漬化耕地土壤含鹽量為16.3 g/kg;中度鹽漬化土壤含鹽量為10.2 g/kg;輕度鹽漬化土壤含鹽量為4.0 g/kg;依據Cl-/ SO42-離子毫克當量比例在0.2~1為氯化物-硫酸鹽鹽漬化土壤的分類方法[9],該供試土壤鹽漬化類型為氯化物-硫酸鹽。表1
表1 供試土壤基本理化性質
Table 1 Basic properties of the soil in the pot exeriment

處理TreatspH總鹽Totalsalt(g/kg)CO32-(g/kg)HCO3-(g/kg)Cl-(g/kg)SO42-(g/kg)Ca2+(g/kg)Mg2+(g/kg)K+(g/kg)Na+(g/kg)輕度Lowlevel7684000315046219001652000210350中度Mediumlevel7521020031507113518173100034240重度Highlevel74616300473109650081554014300463738
1.1.2 生物質炭的制備
生物質炭取自國家灰漠土土壤肥力與肥料效益檢測基地(N43°56′30〞,E87°28′16〞),原材料為棉花秸稈,溫度是500~700℃,燒制時間8 h,測定生物質炭基本理化性質:pH 9.93,EC3.7 mS/cm,有機碳434.18 g/kg,全氮26.71 g/kg,全磷11.85 g/kg,全鉀22.54 g/kg,堿解氮5.83 mg/kg,速效磷200.49 mg/kg,速效鉀108.2 mg/kg,CEC12.65 cmol(+)/kk。
1.2 方 法
1.2 試驗設計
供試土壤處理為輕、中、重3種程度鹽漬化土壤,根據自然土壤剖面層次和厚度,按照土壤容重為1.5 g/cm3,稱取所需土壤(<2 mm),依次從底層開始裝填亞克力管土柱(厚度2 mm,高100 cm,內徑8 cm),每次裝填厚度為10 cm,填裝高度為80 cm。生物質炭輸入量按照質量比分別為 0(BC0)、2%(BC2)、4%(BC4)、6%(BC6)、8%(BC8),將其換算為田間施入量分別為0、45、90、135和180 t/hm2。生物質炭(<2 mm)與供試土壤混合均勻后裝填土柱,每個處理3次重復。土柱底部用亞克力板(10 cm×10 cm)密封,中間留直徑為2 mm孔,承接淋出液。為降低界面效應,在土層表面和底層裝入2 cm 厚的石英砂(<2 mm)。用醫用吊瓶向土柱滴加去離子水,保持約3 cm 的靜水頭,待濕潤峰通過土壤表面2 cm石英砂時開始計時,連續記錄時間和相應的入滲量,當濕潤鋒到達80 cm時停止供水。
1.3 數據統計
數據采用OriginPro 8.0和SPSS17.0進行數據統計分析和顯著性檢驗。
2.1 濕潤鋒與入滲時間的關系
定水頭條件下積水入滲,土壤含水量剖面可分為飽和區、過渡區、傳導區和濕潤區,濕潤區前端為濕潤鋒,可表征水分在土壤基質吸力和重力作用下的運動特征,即入滲中的垂直濕潤鋒深度。研究表明輕度鹽漬化土壤輸入不同量生物質炭,濕潤鋒深度隨水分入滲時間延長而增大。到達0~80 cm濕潤鋒深度耗時差異顯著(P﹤0.05)。其中0~10 cm濕潤鋒垂直深度耗時:BC8﹥BC6﹥ BC4﹥ BC0﹥ BC2,差異不顯著(P﹥0.05);10~80 cm濕潤鋒垂直深度耗時:BC6﹥ BC8﹥ BC0﹥ BC2﹥ BC4,變化趨勢一致,差異顯著(P﹤0.05)。BC4水分運移速度最快,80 cm僅耗時5 040 min。隨生物質炭輸入量持續增加,水分入滲速度下降:BC6、 BC8處理濕潤鋒運移至80 cm處耗時分別為12 960、8 040 min。說明生物質炭輸入量過大會降低水分在輕度鹽漬化土壤中的運移速度。圖1

圖1 生物質炭輸入輕度鹽化灰漠土濕潤鋒推進曲線與入滲時間的關系
Fig.1 The relationship of wetting front invade curve with infiltration time in low level saliferous gray desert soil under the different input percentage of biomass carbon
研究表明,中度鹽漬化土壤輸入生物質炭各處理水分到達濕潤鋒耗時:BC6﹥ BC8﹥ BC4﹥ BC2﹥ BC0,到達0~80 cm耗時一致。BC6處理到達80 cm濕潤鋒深度耗時9 270 min,BC0僅2 820 min。說明生物質炭輸入阻礙水分在中度鹽漬化土壤中的運移,BC6處理最顯著(P﹤0.05)。圖2

圖2 生物質炭輸入中度鹽化灰漠土濕潤鋒推進曲線與入滲時間的關系
Fig.2 The relationship of wetting front invade curve with infiltration time in medium level saliferous gray desert soil under the different input percentage of biomass carbon
重度鹽漬化土壤輸入生物質炭水分到達濕潤鋒耗時:BC8﹥ BC6﹥ BC2﹥ BC4﹥ BC0,到達0~80 cm耗時一致。BC8處理到達80 cm濕潤鋒深度耗時7 680 min,BC0僅3 600 min。說明生物質炭輸入延緩水分在重度鹽漬化土壤中的運移。
輸入生物質炭,輕、中、重度鹽漬化土壤濕潤鋒垂直運移距離均隨入滲時間持續顯著增大(P﹤0.05)。但不同程度鹽漬化土壤間水分入滲時間和濕潤鋒垂直深度有差異:0~10 cm濕潤鋒垂直深度,中、輕度鹽漬化土壤BC0處理之間差異不顯著(P﹥0.05),與重度鹽漬化土壤BC0差異顯著(P﹤0.05),重度鹽漬化土壤到達10 cm濕潤鋒耗時120 min,說明重度鹽漬化土壤團粒結構差于輕、中度,大粒徑顆粒含量低。輕、中度鹽漬化土壤BC8處理耗時最長,重度鹽漬化土壤BC6處理耗時最長,達140 min。隨入滲水量的持續增加,重力勢促使水分垂直向下運動,水分到達不同程度鹽漬化土壤10~80 cm濕潤鋒垂直深度耗時差異顯著(P﹤0.05),總體表現為:輕度﹥重度﹥中度;輕度、中度鹽漬化土壤BC6和重度鹽漬化土壤BC8處理水分運移到達80 cm濕潤鋒垂直深度耗時最長,分別是12 960、9 270和7 680 min,較輕、中、重度鹽漬化土壤BC0慢125%、229%和113%。圖3

圖3 生物質炭輸入重度鹽化灰漠土濕潤鋒推進曲線與入滲時間的關系
Fig.3 The relationship of wetting front invade curve with infiltration time in high level saliferous gray desert soil under the different input percentage of biomass carbon
采用冪函數對水分在生物質炭輸入鹽漬化土壤后的垂直運移距離與入滲時間進行擬合:
H=aTb.
式中:H為為濕潤鋒運移距離(cm),T為入滲時間(min),b為入滲指數,a為入滲系數。
生物質炭輸入鹽漬化土壤后,水分到達濕潤鋒垂直深度與入滲時間擬合結果為,R2為相關系數。輕度鹽漬化處理中,生物質炭輸入量≤6%,b隨生物質炭輸入量的增大而增加,輸入量繼續增大時,b降低,BC8降至0.46,a變化與生物質炭輸入量無規律;中度鹽漬化處理,生物質炭輸入量≤6%,b隨著生物質炭輸入量的增大而減少,a無明顯變化規律;重度鹽漬化處理,a、b均無明顯變化規律。鹽漬化土壤輸入生物質炭后擬合相關系數均在0.99以上,說明生物質炭輸入鹽化灰漠土,濕潤鋒推進距離和入滲歷時均存在較好的冪函數關系。表2
表2 生物質炭輸入鹽化灰漠土壤H-t擬合結果
Table 2H-tcorelationship of saliferous gray desert soil under the different input percentage of biomass carbon

鹽漬化程度Saliferouslevel擬合關系Corelationship生物質炭輸入量Inputpercentageofbiomasscarbon02%4%6%8%輕度Lowsaliferousb047±0096049±0092049±0025050±0092045±0051a124±0247109±0181120±0107082±0066111±0126R2099±0095099±009099±0098099±0095099±0010中度Mediumsaliferousb057±0001055±0023051±0035050±0006052±0047a087±0098079±0071107±0048081±0064080±0039R2099±0084099±0096099±0092099±0050099±0083重度Highsaliferousb060±0012047±0019051±0053054±0011052±0035a058±0030126±0064106±0008069±0088073±0067R2099±0099099±0094099±0096099±0098099±0094
2.2 累積入滲量與入滲時間的關系
累計入滲量是入滲開始后一段時間內,通過地表單位面積入滲到土壤中的總水量。鹽漬化土壤輸入不同量生物質炭的累積入滲量隨時間的變化為:輕、中、重鹽漬化土壤輸入生物質炭,累積入滲量均隨時間延長顯著增大(P﹤0.05)。入滲初期,三種程度鹽漬化土壤輸入生物質炭各處理入滲速率均較大,累計入滲曲線較陡,其中輕度BC0、中度BC4、重度BC4入滲速率分別為5.07、5.47和4.31 mL/min。隨入滲時間持續,入滲速率均顯著降低(P﹤0.05)。入滲結束,輕度鹽漬化土壤入滲速率:BC2﹥ BC4﹥ BC0﹥ BC8﹥ BC6,BC6入滲速率0.12 mL/min,較BC0低60.61%;中度鹽漬化土壤入滲速率BC0﹥ BC2﹥ BC4﹥ BC8﹥ BC6,BC6入滲速率0.20 mL/min,較BC0低66.10%;重度鹽漬化土壤入滲速率BC0﹥ BC4﹥ BC2﹥ BC6﹥ BC8,BC8入滲速率0.21 mL/min,較BC0低54.15%;不同程度鹽漬化土壤入滲速率:中度﹥ 輕度﹥重度。圖4~6
圖4 生物質炭輸入輕度鹽化灰漠土累積入滲量與入滲時間的關系
Fig.4 The relationship of accumulate infiltration capacity with infiltration time in low saliferous gray desert soil under the different input percentage of biomass carbon
為定量分析生物質炭輸入累積入滲量與入滲時間關系,采用模型對數據進行擬合,即
I=KTa.
式中:I為累積入滲量(mL),T為入滲時間(min),a為入滲指數,K為入滲系數。
生物質炭輸入鹽漬化土壤入滲量與入滲時間擬合結果為,R2為相關系數。輕、中、重度鹽漬化土壤各生物質炭輸入量處理,a、K無明顯變化規律。其中輕度鹽漬化BC8處理a降至0.358。擬合相關系數除BC2外,均在0.99以上;中度、重度鹽漬化土壤BC4處理,a均最低,擬合相關系數除中度鹽漬化土壤BC6處理外,均在0.99以上。擬合結果表明生物質炭輸入不同程度鹽化灰漠土,累積入滲量和入滲歷時均存在較好的冪函數關系。但不同程度鹽漬化土壤處理和生物質炭處理間變化無規律。表3

圖5 生物質炭輸入中度鹽化灰漠土累積入滲量與入滲時間的關系
Fig.5 The relationship of accumulate infiltration capacity with infiltration time in medium saliferous gray desert soil under the different input percentage of biomass carbon

圖6 生物質炭輸入重度鹽化灰漠土累積入滲量與入滲時間的關系
Fig.6 The relationship of accumulate infiltration capacity with infiltration time in high saliferous gray desert soil under the different input percentage of biomass carbon
表3 室內試驗生物質炭輸入鹽化灰漠土K-a擬合結果
Table 3K-acorelationship of saliferous gray desert soil under the different input percentage of biomass carbon in the lab

鹽漬化程度Saliferouslevel擬合關系Corelationship生物質炭輸入量Inputpercentageofbiomasscarbon02%4%6%8%輕度LowlevelK4530±10933499±10584530±09313375±12615394±1725a041±00078044±00059041±00080043±00026035±00075R2099±00065097±00034099±00066099±00074099±00048中度MediumlevelK3544±1692769±1044841±1711873±0853280±122a048±00039049±00091041±00090050±00013044±00089R2099±00074099±00019099±00037097±00055099±00059重度HighlevelK3045±1545955±2625208±1633513±1633148±122a048±00067039±00032038±00052044±00024043±00086R2099±00068099±00042099±00039099±00055099±00045
2.3 累積入滲量與濕潤鋒之間的關系
輕、中、重度鹽漬化土壤輸入生物質炭,累積入滲量隨濕潤鋒垂直深度的增加顯著增大(P﹤0.05)。生物質炭輸入量小于4%,降低輕度鹽漬化土壤水分累計入滲量,生物質炭輸入量大于6%,促進水分累計入滲。0~80 cm累計入滲量變化趨勢一致:BC6>BC8>BC0>BC2>BC4,差異不顯著(P>0.05)。圖7

圖7 生物質炭輸入輕度鹽化灰漠土累積入滲量與濕潤鋒垂直深度的關系
Fig.7 The relationship of accumulate infiltrationcapacity with wetting front invade curve in low saliferous gray desert soil under the different input percentage of biomass carbon
中度鹽漬化土壤水分累計入滲量隨生物質炭輸入量增加逐漸增大,BC6處理累計入滲量達1 890 mL,0~80 cm累計入滲量變化趨勢一致:BC6>BC8>BC2>BC0>BC4,差異不顯著(P>0.05)。說明生物質炭促進中度鹽漬化土壤水分累積,但生物質量大于6%抑制水分累積。圖8

圖8 生物質炭輸入中度鹽化灰漠土累積入滲量與濕潤鋒垂直深度的關系
Fig.8 The relationship of accumulate infiltrationcapacity with wetting front invade curve in medium saliferous gray desert soil under the different input percentage of biomass carbon
重度鹽漬化土壤水分累計入滲量隨生物質炭輸入量增加逐漸減少,BC0處理累計入滲量最大,達1 785 mL;0~80 cm累計入滲量變化趨勢一致:BC0>BC2>BC8>BC6>BC4,差異不顯著(P>0.05)。表明生物質炭輸入抑制重度鹽漬化土壤水分累積入滲。圖9

圖9 生物質炭輸入重度鹽化灰漠土累積入滲量與濕潤鋒垂直深度的關系
Fig.9 The relationship of accumulate infiltrationcapacity with wetting front invade curve in high saliferous gray desert soil under the different input percentage of biomass carbon
用線性函數I=C×H,擬合濕潤鋒和累積入滲量的實測資料,式中符號意義同前,其中I為累積入滲量(mL);H為為濕潤鋒運移距離(cm);C為擬合系數;R2為相關系數。
擬合直線如下:
輕度鹽漬化土壤:Y=20.833 33X,
R2=0.997 26.
中度鹽漬化土壤:Y=21.251 47X,
R2=0.997 07.
重度鹽漬化土壤:Y=21.598 04X,
R2=0.995 41.
由擬合結果可知,生物質炭輸入輕、中、重度鹽化灰漠土累積入滲量與濕潤鋒距離相關系數均大于0.99,表現出較好的線性關系。
土壤入滲特征與土壤質地、容重、含水率、水穩性團粒含量等多種因素相關[10]。其中土壤孔隙狀況對土壤水分的入滲過程、持水容量和動力學特征影響尤為突出。試驗供試灰漠土呈棕黃色,質地為砂壤;土壤大孔隙和水分傳導孔隙大,孔隙彎曲程度低,致使土壤水分傳導性強,但保水性能弱。入滲初始,供試土壤干燥,基質勢較大,不同程度鹽漬化土壤水分入滲速率均較大。隨入滲時間持續,表層土壤含水量逐漸增加,基質勢減小,入滲速率逐漸降低,與齊瑞鵬等[11]研究結果一致。
生物質炭多孔結構和巨大表面積等特性可改善土壤持水能力[12-15],影響土壤水分的滲濾模式、停留時間和流動路徑[16-17]。齊瑞鵬等[11]研究表明,施加生物炭對質地較黏的土壤(塿土)水分入滲有增加作用,對質地輕的土壤(風沙土)水分入滲則有減小作用。研究生物質炭持水性能高于供試土壤顆粒,大量輸入(≥6%)改變鹽化灰漠土的入滲性能,入滲速率降低;低生物質炭輸入量(≤4%)促進了水分入滲速率,這與生物質炭自身赤水能力有關[18],與Brodowski等[19]研究結論相符。
供試生物質炭粒徑小于供試土壤,輸入后破壞了土壤原有結構,改變土壤孔隙大小分布,減小灰漠土的透水大孔隙數量,提高土壤微小孔隙比例,增強土壤持水性能,導致輕、中度鹽漬化土壤中生物質炭輸入量大于6%,累積入滲量增加。不同燒制材料、炭化溫度和時間對生物質炭pH值、電導率和陽離子交換性均有影響[20-22],進而改變土壤結構特征,影響水分運移。研究用生物質炭為棉稈燒制,鹽分含量高(pH 9.93、總鹽22.4),重度鹽漬化土壤含鹽量隨生物質炭輸入量增加而提高,鹽分離子聚集,鈉離子對土壤顆粒的分散作用使得土壤結構遭到破壞,水分在土壤中的入滲能力降低,導致累計入滲量隨生物質炭輸入量增加而降低。
因自然界、人為干預等因素影響,土體并非均勻,鹽漬化土壤表層與下層的土壤質地不一。試驗通過土柱模擬0~80 cm土層土壤,其理化性質均勻一致。因此該數據不代表自然土體的水分運移,需做進一步細致研究分析。
輕、中、重度鹽化土壤輸入不同生物質炭量,濕潤鋒垂直運移距離和累積入滲量隨入滲時間持續顯著增大(P﹤0.05);累積入滲量隨濕潤鋒垂直深度的增加顯著增大(P﹤0.05)。生物質炭輸入量小于4%促進水分在輕度鹽化灰漠土中的垂直運移;輸入生物質炭阻礙水分在中、重度鹽化灰漠土垂直運移;輕、中度鹽化灰漠土輸入生物質炭量大于6%,累積入滲量隨炭輸入量增大而減少,BC0累積入滲量最大;重度鹽化土壤累計入滲量隨生物質炭輸入量增加而降低。
生物質炭輸入量對輕、中、重度鹽化土壤累計入滲量和垂直濕潤鋒深度影響無規律;相同濕潤鋒垂直深度,不同程度鹽化土壤間累計入滲量差異不顯著(P>0.05)。
References)
[1] 文振旺.新疆土壤地理[M].北京:科學出版社,1965.
WEN Zheng-wang. (1965).SoilGeographyofXinjiang[M]. Benjing: Science Press. (in Chinese)
[2]新疆維吾爾自治區農業廳.新疆土壤[M].北京:科學出版社,1996:304-336.
The Agriculture Department of Xinjiang Uygur Autonomous Region.(1996).XinjiangSoil[M].Benjing: Science Press: 304-336. (in Chinese)
[3] Lehmann, J. (2007). A handful of carbon.Nature, 447(7,141):143-144.
[4] Atkinson, C. J., Fitzgerald, J. D., & Hipps, N. A. (2010). Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review.PlantandSoil, 337(1):1-18.
[5] Glaser, B., Haumaier, L., Guggenberger, G., & Zech, W. (1998). Black carbon in soils: the use of benzenecarboxylic acids as specific markers.OrganicGeochemistry, 29(4):811-819.
[6] Chen, B., Zhou, D., & Zhu, L. (2008). Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures.EnvironmentalScience&Technology, 42(14):5,137-5,143.
[7] Glaser, B., Haumaier, L., Guggenberger, G., & Zech, W. (2001). The 'terra preta' phenomenon: a model for sustainable agriculture in the humid tropics.TheScienceofNature, 88(1):37-41.
[8]黃領梅,沈冰. 水鹽運動研究述評[J].西北水資源與水工程,2000,1(11):6-12.
HUANG Ling-mei, SHEN Bing. (2000). Review on Adwance in Water and Salt Dynamics Studies [J].WaterResources&WaterEngineering.1(11):6-12. (in Chinese)
[9]王遵親.中國鹽漬土[M].北京:科學出版社,1993.
WANG Zun-qin. (1993).SalinesoilinChina[M]. Beijing: Science Press. (in Chinese)
[10] Min, L. L., Jing-Jie, Y. U., Zhang, G. Y., & Wang, S. B. (2010). Preliminary comparison of steady infiltration rate in woodland by the three methods.South-to-NorthWaterTransfersandWaterScience&Technology, 8(5):36-38.
[11]齊瑞鵬,張磊,顏永毫,等. 定容重條件下生物炭對半干旱區土壤水分入滲特征的影響[J]. 應用生態學報,2014,25(8):1-8.
QI Rui-peng, ZHANG Lei, YAN Yong-hao, et al. (2014).Effects of biochar addition into soils in semiarid land on water infiltration under the condition of the same bulk density [J].ChineseJournalofAppliedEcology, 25(8):1-8. (inChinese)
[12]Dugan, E.,Verhocf, A., Robinson, S. et a1,(2012).Bio-char from sawdust,maize stover and char coal:Impact on water holding capacifies (WHC) of three soils from Ghana [C].19thWorldCongressofSoilScience,Symposium4.2.2,SoilandWaterglobalchange,SoilSolutionsforaChangingWorld,Brisbane,Australia, 9.12.
[13]楊敏,劉玉學,孫雪,等. 生物質炭提高稻田甲烷氧化活性[J]. 農業工程學報,2013,29(17):145-151.
YANG Min, LIU Yu-xue, SUN Xue, et al. (2013).Biochar improves methane oxidation activity in rice paddy soil [J].TransactionsoftheChineseSocietyofAgriculturalEngineering, 29(17):145-151. (in Chinese)
[14] Glaser, B., Lehmann, J., & Zech, W. (2002). Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal - a review.BiologyandFertilityofSoils, 35(4):219-230.
[15] Brockhoff, S. R., Christians, N. E., Killorn, R. J., Horton, R., & Davis, D. D. (2010). Physical and mineral-nutrition properties of sand-based turfgrass root zones amended with biochar.AgronomyJournal,102(6):1,627-1,631.
[16] 高海英,何緒生,耿增超,等. 生物炭及炭基氮肥對土壤持水性能影響的研究[J]. 中國農學通報,2011,27(24):207-213.
GAO Hai-ying, HE Xu-sheng, GENG Zeng-chao, et al. (2011). Effects of biochar and biochar-based nitrogen fertilizer on soil water-holding capacity [J].AgriculturalScienceBulletin, 27(24):207-213. (in Chinese)
[17]顏永毫,鄭紀勇,張興昌,等. 生物炭添加對黃土高原典型土壤田間持水量的影響[J]. 水土保持學報,2013,27(4):120-124.
YAN Yong-hao, ZHENG Ji-yong, ZHANG Xing-chang, et al. (2013). Impact of biochar addition into typical soils on field capacity in loess plateau [J].JournalofSoilandWaterConservation, 27(4):120-124. (in Chinese)
[18]張千豐,王光華.生物炭理化性質及對土壤改良效果的研究進展[J].土壤與作物,2012,1(4):219-226.
ZHANG Qian-feng, WANG Guang-hua. (2012). Research progress of physiochemical properties of biochar and its effects as soil amendments [J].SoilandCrop, 1(4):219-226. (in Chinese)
[19] Brodowski, S., John, B., Flessa, H., & Amelung, W. (2006). Aggregate-occluded black carbon in soil.EuropeanJournalofSoilScience,57(4):539-546.
[20] Yip, K., Tian, F., Hayashi, J. I., & Wu, H. (2010). Effect of alkali and alkaline earth metallic species on biochar reactivity and syngas compositions during steam gasification?.Energy&Fuels, 24(1):173-181.
[21] Yuan, J. H., Xu, R. K., & Zhang, H. (2011). The forms of alkalis in the biochar produced from crop residues at different temperatures.BioresourceTechnology, 102(3):3,488-3,497.
[22]姚紅宇,唐光木,葛春暉,等.炭化溫度和時間與棉稈炭特性及元素組成的相關關系[J].農業工程學報,2013,29(7):199-206.
YAO Hong-yu, TANG Guang-mu, GE Chun-hui, et al. (2013).Characteristics and elementary composition of cotton stalk-char in different carbonization temperature and time [J].TransactionsoftheChineseSocietyofAgriculturalEngineering, 29(7):199-206. (in Chinese)
Supported by:NFSC "Effects induced by inputting biochar into the saliferous gray desert soil on the soil moisture movement and its biological response" (41361050), NFSC "Desalination zone formation mechanism and regulation of cotton in heavily salinized soil under drip irrigation" (41461409) and the Youth Funds of Xinjiang Academy of Agricultural Sciences "Effects induced by inputting biochar into the saliferous gray desert soil on the soil moisture movement" (xjnky-2013012)
Effects Induced by Inputting Biochar into the Saliferous Gray Desert Soil on the Soil Moisture Movement
LIU Yi, HUANG Jian, MA Yan-ru, QI Tong, FENG Yao-zu, MENG A-jin, WANG Xin-yong
(ResearchInstituteofSoil,FertilizerandAgriculturalWaterConservation,XinjiangAcademyofAgriculturalSciences,Urumqi830091,China)
【Objective】 To study the effect of biomass carbon input on soil moisture vertical movement in chloride-sulfate saliferous gray desert soil.【Method】The study materials were gray desert soil in three salinization levels which level 1 was low salinization, level 2 was medium salinization and level 3 was high salinization. Under different percentages of biochar inputs before and through the dropwise add of ddH2O, the time-varying of wetting front and accumulative infiltration capacity were calculated and analyzed.【Result】The vertical migration distance and the cumulative infiltration rate of wetting front were significantly increased (P< 0.05) with the infiltration time of different biomass carbon inputs in each degree of saline soil. The soil moisture movement in level 2 and level 3 saliferous soil were hindered by the biomass carbon; when the input percentage of biomass carbon was less than 4% to level 1 saliferous soil, the soil moisture movement could be facilitated by the biomass carbon; The relationship of biomass carbon input percentage with accumulative infiltration capacity in these three salinization soil were negatively correlated; there was no found in the relationship of biomass carbon inputs percentage with the accumulative infiltration capacity of vertical depth of wetting front in different salinization soil.【Conclusion】The ratio of biomass carbon input, the degree of salinization and the interaction effect of the two have a significant impact on the infiltration efficiency and cumulative infiltration of soil water. The infiltration rate and infiltration amount to moderately saline soil were prominent. Low level input has a promoting effect on water transport in mildly saline soil and inhibitory effect on both cumulative infiltration rate and infiltration rate in severe saline soil.
biochar; saliferous gray desert soil; soil moisture
10.6048/j.issn.1001-4330.2017.02.018
2016-06-26
國家自然科學基金項目“生物質炭輸入對新疆鹽漬化土壤水鹽運移的影響及生物學響應”(41361050);國家自然科學基金項目“滴灌條件下重鹽漬化棉田土壤鹽分淡化區形成機制及調控”(41461049);新疆農科院優秀青年科技人才基金項目“生物質炭輸入對新疆鹽漬化土壤水鹽運移的影響”(xjnky-2013012)
劉易(1983-),男,河北保定人,助理研究員,碩士,研究方向為鹽漬化土壤改良與修復,(E-mail)liuyun_5511@163.com
王新勇(1961-),男,浙江江山人,研究員,研究方向為鹽漬化土壤治理與防治,(E-mail)wxy838000@163.com
S153
A
1001-4330(2017)02-0343-09