王丹丹,王清明
(1.遼東學(xué)院 農(nóng)學(xué)院,遼寧丹東 118003;2.四川省廣元市農(nóng)業(yè)科學(xué)研究院,四川廣元 628017)
丁香假單胞菌的分子生物學(xué)研究進(jìn)展
王丹丹1,王清明2
(1.遼東學(xué)院 農(nóng)學(xué)院,遼寧丹東 118003;2.四川省廣元市農(nóng)業(yè)科學(xué)研究院,四川廣元 628017)
丁香假單胞菌是好氧、腐生性強(qiáng)的革蘭氏陰性菌,所引起的植物病害發(fā)生率位居十大細(xì)菌性植物病害之首,尤其引發(fā)的疫病在各農(nóng)業(yè)大國爆發(fā)并有在世界范圍擴(kuò)散的趨勢,給各國農(nóng)業(yè)生產(chǎn)造成巨大的經(jīng)濟(jì)損失?;趪鴥?nèi)外學(xué)者最新的分子生物學(xué)研究報(bào)道,對丁香假單胞菌的致病變種、病原菌鑒定、植物檢疫、早期快速檢測技術(shù)、致病機(jī)制及生物防治等方面進(jìn)行綜述,并探討現(xiàn)階段該病害研究存在的問題以及未來的研究方向與防治方案。
丁香假單胞菌;檢測;TTSS系統(tǒng);Hrp基因;生物防治
丁香假單胞菌是一類盛行的植物病原細(xì)菌,其引發(fā)植物病害的發(fā)生率居十大細(xì)菌性植物病害之首;在2007年頒布的《中華人民共和國進(jìn)境植物檢疫性有害生物名錄》中,假單包菌屬(Pseudomonas)的6種植物病原菌均屬于丁香假單胞菌(Pseudomonassyringae),包括菜豆暈疫病菌、核果樹潰瘍病菌、桃樹潰瘍病菌、豌豆細(xì)菌性疫病菌、十字花科黑斑病菌、番茄細(xì)菌性葉斑病菌。丁香假單胞菌可侵染豆科、十字花科、茄科、薔薇科等300多種經(jīng)濟(jì)作物,給農(nóng)業(yè)生產(chǎn)造成巨大損失,引起各國學(xué)者投入大量人力、物力對其開展細(xì)致深入的研究。目前,數(shù)個(gè)丁香假單胞菌的全基因組測序已完成[1],并在公共數(shù)據(jù)庫發(fā)布,為學(xué)者從全基因水平了解該病菌與寄主的互作機(jī)制、傳播途徑(如根系、花粉是否帶菌)、流行機(jī)制以及侵染部位等問題,以期從中挖掘用于早期快速檢測病菌的技術(shù),以及篩選高效、低毒、環(huán)保型防治藥劑的技術(shù)等[2-3]。
本文對丁香假單胞菌致病變種、植物病原菌鑒定與快速檢測、致病機(jī)制及防治措施等方面的研究進(jìn)展進(jìn)行綜述,以期為開展相關(guān)研究提供參考。
丁香假單胞菌隸屬于假單胞菌科假單胞菌屬,為好氧、腐生性強(qiáng)的革蘭氏陰性菌,多個(gè)致病型,廣泛存在于自然界中,如大氣、土壤、水體及植物葉面等,是一類生態(tài)適應(yīng)性強(qiáng)、表型差異大的微生物群體。其疫病癥狀有褪綠、瘤腫、潰瘍、萎蔫及壞死等。根據(jù)寄主及引發(fā)的病癥不同而被分類,常見種類見表1[4-5]。
可見,由丁香假單胞菌引起的病害較廣,如獼猴桃細(xì)菌性潰瘍病(bacterial canker disease of kiwifruit)于1983年在美國加利福尼亞洲首次發(fā)現(xiàn),是一種普遍發(fā)生的毀滅性植物病害,致病性強(qiáng)、傳播快、防治難度大,短時(shí)間可造成大面積樹體死亡,嚴(yán)重威脅獼猴桃產(chǎn)業(yè)的發(fā)展,已被列為中國森林植物檢疫性病害;獼猴桃潰瘍病菌從枝條分叉處、幼芽、皮孔及落葉痕部侵染,潮濕時(shí)產(chǎn)生褐色或銹紅色菌膿,隨后擴(kuò)延整個(gè)枝蔓,造成枝蔓潰瘍,阻斷輸送營養(yǎng)和水分的渠道,隨之花蕾、幼芽和嫩枝感病枯萎,樹勢較弱。目前,已在美國、日本、法國、新西蘭、韓國、智利、葡萄牙及中國等國家發(fā)生[6-8]。隨著一系列危險(xiǎn)性外來有害生物的侵入,給中國每年造成的總經(jīng)濟(jì)損失約在2 000億以上,新的丁香假單胞菌致病疫情不斷突發(fā),正隨著種子或苗木的遠(yuǎn)距離運(yùn)輸而逐漸擴(kuò)大,尤其中國開通農(nóng)副產(chǎn)品的綠色通道無形中也使疫情逐步擴(kuò)散蔓延,因此筆者對該菌的最新研究狀況進(jìn)行綜述,并探討該病未來的研究方向與防治策略,以期降低該病對農(nóng)業(yè)造成的損失。

表1 常見丁香假單胞菌致病變種、寄主植物及所引起的病害Table 1 Host plants of common Pseudomonas syringae and diseases caused by it
建立對丁香假單胞菌特異、快速的早期檢測技術(shù),有利于及時(shí)防治病害,控制蔓延。《GB/T28066-2011丁香假單胞菌豌豆致病型檢疫鑒定方法》規(guī)定生物學(xué)、血清學(xué)及分子生物學(xué)的檢測、鑒定方法;生物學(xué)檢測能反映活菌的數(shù)量,但特異性差、周期長;血清學(xué)檢測操作復(fù)雜,易造成假陽性;而分子生物學(xué)檢測則無需對病原菌進(jìn)行分離、純培養(yǎng),短時(shí)間即可檢測到微量的病原菌,能滿足快速、特異、靈敏檢測病原菌的要求。
近年來,分子生物學(xué)檢測法雖未完全取代傳統(tǒng)檢測手段,但其發(fā)展呈指數(shù)增長,對丁香假單胞菌的檢測鑒定經(jīng)歷了DNA雜交、常規(guī)PCR、Rep-PCR、MLST分析、雙重PCR、分子標(biāo)記、實(shí)時(shí)熒光定量PCR以及轉(zhuǎn)錄組測序等方法(表2)。其中,核酸雜交是分子生物學(xué)領(lǐng)域常用技術(shù),但耗時(shí)長、操作復(fù)雜且不穩(wěn)定而逐漸被PCR技術(shù)取代,從常規(guī)PCR已發(fā)展到可定性定量分析的實(shí)時(shí)熒光定量PCR;分子標(biāo)記除可快速檢測鑒定外,也可對病原菌進(jìn)行指紋圖譜構(gòu)建、聚類分析等;然而,進(jìn)入21世紀(jì)基因組時(shí)代,隨著轉(zhuǎn)錄組測序技術(shù)的不斷完善與普及,使丁香假單胞菌的研究跨入一個(gè)全新階段。目前,數(shù)個(gè)丁香假單胞菌的全基因組測序已完成,并在公共數(shù)據(jù)庫發(fā)布,促進(jìn)了生物信息學(xué)的快速發(fā)展,通過生物信息學(xué)對海量轉(zhuǎn)錄組數(shù)據(jù)的探索與挖掘,為傳統(tǒng)的檢測研究提供更準(zhǔn)確的基因預(yù)測與篩選,并為分析疫病致病機(jī)制指明方向,為疫病的防治及病原菌與植物的互作機(jī)制提供可參考的空間。2009-2012年,新西蘭、法國、葡萄牙、意大利及中國等國學(xué)者致力于對16S和16S~23S(ITS)rDNA序列進(jìn)行比對分析、鑒定病原菌,但大量研究證實(shí),因丁香假單胞菌核糖體基因高度保守,尤其16S rDNA序列在各變種間相似度高達(dá)98%,無法有效鑒定。目前,常用檢測、鑒定方法包括分子標(biāo)記、實(shí)時(shí)熒光定量PCR以及轉(zhuǎn)錄測序分析等,未來可通過上述方法建立一套可靠、靈敏、快速的分子檢測手段,以期從源頭協(xié)助控制病原菌的擴(kuò)散,并應(yīng)用于實(shí)際檢疫工作中,為中國植物檢疫提供技術(shù)支撐。
3.1 丁香假單胞菌的致病因子
丁香假單胞菌侵染植物,首先需分泌胞壁降解酶破壞細(xì)胞壁,因?yàn)橹参锛?xì)胞初生壁和胞壁的中間層為果膠質(zhì)等物質(zhì),可阻擋病原菌侵染;其次,分泌毒素破壞細(xì)胞膜通透性、抑制酶活性等方式誘發(fā)植物產(chǎn)生病癥。常見丁香假單胞菌毒素見表2[5,24-25]。

表2 丁香假單胞菌的檢測、鑒定發(fā)展歷程Table 2 Detection and identification development history of Pseudomonas syringae

表3 常見丁香假單胞菌毒素Table 3 Bacterial toxins from Pseudomonas syringae
病原菌的毒力因子決定其致病性,由位于染色體上的毒力島(Pathogenicity island,PAI)編碼[28];Kim等[29]已證明丁香假單胞菌毒力島基因簇中含有毒素合成基因。毒力島可編碼細(xì)菌的分泌系統(tǒng)、信號傳導(dǎo)系統(tǒng)、異型物質(zhì)降解以及對病原菌生長具有重要作用的蛋白泌出系統(tǒng)、毒性因子、粘著素、Harpins蛋白等,均對病原菌的致病潛能和病斑形成起輔助作用;此外,也可編碼附屬功能,如病原菌吸收營養(yǎng)、耐藥性、抗性、酚類降解及固氮等功能;楊軍等[30]發(fā)現(xiàn)毒力島編碼植物防衛(wèi)反應(yīng)增強(qiáng)劑脂多糖(Lipopolysaccharide,LPS),使病原菌在特殊環(huán)境中(如脅迫、暴露于抗生素、活體內(nèi))獲得競爭優(yōu)勢,增強(qiáng)病原菌在小生態(tài)環(huán)境中的傳播、生存和定殖能力,進(jìn)而促進(jìn)病原菌的進(jìn)化。此外,丁香假單胞菌在較低溫度下(-2 ℃~-5 ℃)下更容易形成冰核細(xì)胞群而誘發(fā)植物病害,孟姍等[31]研究丁香假單胞菌冰核基因inaQ變速箱啟動子結(jié)構(gòu)與活性發(fā)現(xiàn)冰核活性在寡營養(yǎng)狀態(tài)下更高,且啟動子受溫度和營養(yǎng)條件的調(diào)控,為解釋冰核蛋白的合成及調(diào)控機(jī)制提供了新的試驗(yàn)證據(jù)。
3.2 丁香假單胞菌的TTSS系統(tǒng)
丁香假單胞菌在寄主體內(nèi)分泌的毒力因子、分泌蛋白或降解酶,通過蛋白泌出系統(tǒng)直接輸送到寄主細(xì)胞,而至今已發(fā)現(xiàn)6種細(xì)菌蛋白分泌途徑[23,32-34],丁香假單胞菌屬于Ⅲ型分泌系統(tǒng)(type Ⅲ secretion system,TTSS),由hrp基因(hypersensitive reaction and pathogenicity gene)編碼,TTSS在植物-病原互作中起重要作用,沒有TTSS,病原菌不能克服植物的基礎(chǔ)抗性而進(jìn)入植物體內(nèi)定殖,并誘發(fā)寄主產(chǎn)生抗病反應(yīng)。Noel等[35]和He等[36]發(fā)現(xiàn),TTSS可注射致病型因子、運(yùn)輸harpins、avr和Hop效應(yīng)蛋白,且TTSS具有寄主依賴性,必須通過病原菌與寄主接觸、發(fā)生相互作用才能被激活,而效應(yīng)蛋白的泌出對TTSS亦有依賴性,只有通過TTSS將harpins和效應(yīng)蛋白輸送至植物組織或細(xì)胞內(nèi)才能發(fā)揮其功能。丁香假單胞菌毒力島編碼的部分效應(yīng)蛋白具有雙重性[37],一方面為了克服TTSS對基礎(chǔ)抗性的抑制作用,使植物產(chǎn)生R基因引發(fā)過敏性壞死反應(yīng),如丁香假單胞番茄致病變種的無毒蛋白AvrPto通過TTSS進(jìn)入番茄植株內(nèi),與R基因互作引發(fā)抗病反應(yīng);一方面通過與寄主互作誘導(dǎo)寄主抗性表達(dá)[38];Xiao等[39]發(fā)現(xiàn)大部分效應(yīng)因子能被寄主體內(nèi)的酶修飾(蛋白水解、磷酸化和?;?,如對無毒蛋白AvrPto、AvrRpm1和AvrB進(jìn)行修飾能促進(jìn)其在植物細(xì)胞膜上定位,對三者的毒力表達(dá)非常關(guān)鍵;已有研究[40-42]發(fā)現(xiàn),TTSS分泌的效應(yīng)因子進(jìn)入植物細(xì)胞并不意味著它一定在寄主細(xì)胞內(nèi)起作用,如丁香假單胞菌分泌的HrpW1進(jìn)入植物細(xì)胞后,分析其果膠酸發(fā)現(xiàn)該蛋白作用于細(xì)胞壁。
3.3 丁香假單胞菌hrp基因的研究現(xiàn)狀
植物hrp基因由Lindgren等[43]于1986年從菜豆暈斑病菌首次克隆得到,之后各國學(xué)者對hrp基因的分布、結(jié)構(gòu)及功能等展開研究,并已證實(shí)丁香假單胞菌含有hrp基因[44],該基因編碼harpin蛋白,可使病原菌在寄主中激發(fā)過敏或致病性反應(yīng);Wei等[45]首次成功表達(dá)harpin蛋白;Gough等[46]序列分析發(fā)現(xiàn)病原菌至少具有25個(gè)hrp基因,成簇存在,由多個(gè)轉(zhuǎn)錄單位組成,hrp基因在基因簇中起調(diào)控作用,如丁香假單胞菌丁香致病變種的hrp基因30 kb,13個(gè)轉(zhuǎn)錄單位,侵染寄主后,通過TTSS將約30種效應(yīng)因子注入寄主體內(nèi),hrp基因具有27個(gè)開放閱讀框(ORFs)。hrp基因簇至少有3種類型的hrp基因[47],Ⅰ類編碼TTSS核心組分,其中包括與鞭毛存在序列相似性的8種hrc基因,存在于所有具有TTSS的病原菌中;Ⅱ類編碼調(diào)節(jié)蛋白(hrpR、hrpH、hrpS和hrpV等)和所有與TTSS有密切關(guān)系的相關(guān)基因的表達(dá),如hrpR、hrpH等參與TTSS在丁香假單胞菌中的轉(zhuǎn)錄調(diào)控;Ⅲ類編碼分泌蛋白,如hrpA編碼丁香假單胞菌的hrp極毛(Hrp pilus),病原菌侵染時(shí),hrp基因簇中結(jié)構(gòu)基因編碼的蛋白質(zhì)在菌體表面形成hrp極毛,病原菌的致病因子均通過極毛穿過細(xì)胞壁而釋放到寄主體內(nèi)。目前,已從丁香假單胞菌中成功克隆出hrpN、hrpM和hrpZ等基因[48-51]。Wengelnik等[52]發(fā)現(xiàn)環(huán)境因素和調(diào)節(jié)基因控制hrp基因的表達(dá),環(huán)境因素主要包括碳源、氮源、pH、溫度、滲透壓和植物信號分子等。Rahme等[53]及Alexandra等[54]研究表明丁香假單胞菌至少有3個(gè)hrp基因可參與識別外植體的環(huán)境信號,即hrpL、hrpS和hrpR,而且該基因可被酸性環(huán)境(pH 5.5~5.7)誘導(dǎo)而大量表達(dá);然而,病原菌hrp基因在基本培養(yǎng)基中培養(yǎng)或植物體中生長時(shí)大量表達(dá),而在營養(yǎng)豐富的培養(yǎng)基中則不表達(dá)或表達(dá)水平很低,如丁香假單胞菌在基本培養(yǎng)基培養(yǎng)時(shí)hrp基因的表達(dá)水平高于營養(yǎng)豐富的培養(yǎng)基,說明植物外植體營養(yǎng)匱乏對誘導(dǎo)hrp基因的表達(dá)有利,綜上所述,在農(nóng)業(yè)生產(chǎn)中可通過控制環(huán)境因素與調(diào)節(jié)基因等來調(diào)控hrp基因的表達(dá),從而調(diào)控TTSS及TTSS相關(guān)基因的表達(dá);或通過噬菌體展示技術(shù)篩選特異性抗hrpA基因的單鏈抗體,以影響TTSS的功能,阻止hrp極毛的組裝,從而降低或阻止丁香假單胞菌對植物體的侵害。
丁香假單胞菌引發(fā)的疫病來勢兇猛,為害猖獗,如1985年,獼猴桃潰瘍病在湖南省石門縣爆發(fā),感病面積約13 hm2,造成獼猴桃植株大量死亡[55-57]。目前,對丁香假單胞菌的防治以化學(xué)防治為主,其殺菌譜廣、見效快、成本低且操作簡單,但長期大量使用化學(xué)藥劑會造成大氣、土壤等環(huán)境污染乃至生態(tài)平衡破壞。隨著社會的發(fā)展,尋求高效、無害、無毒、無污染和不產(chǎn)生抗藥性的生物防治措施已成為首要任務(wù),不僅為農(nóng)業(yè)可持續(xù)發(fā)展提供保障,也符合人們對綠色食品的需求;目前,生物防治僅處于萌芽階段,對其防御機(jī)制還缺乏系統(tǒng)研究[58-60]。近些年,學(xué)者們一方面建立對病原菌準(zhǔn)確、快速的早期檢測技術(shù);一方面,篩選對病原菌拮抗效果較好的生防菌菌株,如放線菌、枯草芽孢桿菌和鏈霉菌等菌株(表4)。可見,對丁香假單胞菌的防治經(jīng)歷了傳統(tǒng)的化學(xué)藥劑防治、植物源制劑、病原菌的拮抗作用以及分子生物學(xué)方法(基因組信息、生物信息學(xué)、轉(zhuǎn)座突變和構(gòu)建過表達(dá)載體技術(shù))等幾個(gè)階段。隨著后基因組時(shí)代的到來,基因功能研究越顯重要,一方面侵染后,通過調(diào)節(jié)功能基因激活植物抗病防衛(wèi)反應(yīng)信號分子水楊酸(salicylic acid,SA),導(dǎo)致內(nèi)源SA水平增加,激活抗病反應(yīng),加強(qiáng)寄主對病原菌的抵抗能力;另一方面通過調(diào)節(jié)細(xì)胞壁相關(guān)基因強(qiáng)烈表達(dá)使細(xì)胞壁顯著增厚,以防御該病原菌的侵染;再者,人工合成或從植物中獲得如咖啡酸之類衍生物的植物源制劑作為殺菌劑,其效果顯著且對環(huán)境污染較小,甚至無污染。因此,可采用該類植物源制劑作為開發(fā)丁香假單胞菌防治專用抑菌劑成分。

表4 丁香假單胞菌防治研究Table 4 Research of Pseudomonas syringae prevention
綜上所述,丁香假單胞菌的致病性嚴(yán)重影響農(nóng)業(yè)的發(fā)展,應(yīng)用生物防治控制植物病害已經(jīng)越發(fā)受到世界各國學(xué)者的重視。目前,國內(nèi)外學(xué)者對病原菌的分類、生物學(xué)特性、致病力和快速檢測等方面的研究取得一定成果,但也存在一些問題。首先,栽培區(qū)零散,沒有統(tǒng)一的管理機(jī)構(gòu),從業(yè)人員缺乏疫病防治知識;尤其未檢疫種子或苗木的遠(yuǎn)距離輸送,更加劇疫病的擴(kuò)散;第二,盲目追求優(yōu)勢品種的經(jīng)濟(jì)價(jià)值,忽視品種抗病性差的缺點(diǎn),致使園區(qū)感病風(fēng)險(xiǎn)較大;第三,科研力量薄弱,如抗病品種的選育、防治藥劑的篩選、傳播媒介昆蟲的防治以及無病癥帶菌苗木的早期檢疫技術(shù)不成熟等,加之,互作機(jī)制、流行機(jī)制等方面研究也有待完善,如病原菌的侵染途徑(傳播媒介昆蟲、花粉、根系是否帶菌等)、侵染過程、擴(kuò)散等。目前,對丁香假單胞菌生物防治的研究較多,但能用到實(shí)際生產(chǎn)中的卻少之又少,往往在實(shí)驗(yàn)室分離的具有較優(yōu)生物防治效果的生防菌,田間測試時(shí),效果卻差強(qiáng)人意,可能是由于生防菌自身種群的繁殖或作用效果易受環(huán)境因素影響,以及對農(nóng)藥的敏感性,抗菌譜較窄,致使防治效果慢而不穩(wěn)定,尤其生防菌對作物的有害性等都是生防菌篩選過程中關(guān)鍵問題;第四,中國是開展生物防治最早的國家,近年發(fā)展反而滯緩,主要是生物防治見效慢、費(fèi)時(shí)費(fèi)工,沒有化學(xué)藥劑立竿見影的效果,所以農(nóng)民對生物防治新技術(shù)不輕易接受。
基于丁香假單胞菌的研究現(xiàn)狀,筆者認(rèn)為未來應(yīng)從以下幾方面開展工作,降低疫病發(fā)生率:第一,對新引進(jìn)的種子及苗木實(shí)行嚴(yán)格的檢驗(yàn)檢疫,并建立標(biāo)準(zhǔn)的疫病隔離體系,嚴(yán)格劃分疫病區(qū),做好隔離防護(hù),組織從業(yè)人員學(xué)習(xí)疫病相關(guān)知識;第二,加強(qiáng)科研力度,大力資助相關(guān)項(xiàng)目,以探究病原菌與寄主植物的互作體系,建立完善的早期檢疫體系,分析病原菌的起源、分布、遺傳結(jié)構(gòu)及致病力差異等,并結(jié)合環(huán)境因素分析病原菌的發(fā)病及流行規(guī)律;并通過人工接種進(jìn)行模擬活體檢測來進(jìn)一步驗(yàn)證方法的可靠性和實(shí)用性,以達(dá)到應(yīng)用于實(shí)際檢疫工作的目的。第三,重視生物防治藥劑的篩選及田間推廣的實(shí)用性,探究生防藥劑的作用機(jī)制及對病原菌產(chǎn)生抗性的問題;加強(qiáng)生防菌生態(tài)適應(yīng)性,降低生防菌對寄主的毒害,加快生防菌在植物病害防治的應(yīng)用;第四,篩選抗病品種,一方面通過基因組測序分析,比對、查找抗病基因,采用圖位克隆、mRNA差異顯示等技術(shù)定位、擴(kuò)增,開發(fā)分子標(biāo)記抗病基因,進(jìn)行抗病分子輔助育種;一方面,采用分子手段及誘變技術(shù)將拮抗基因、裂殖基因、耐殺菌劑基因等導(dǎo)入生防菌中,改良其遺傳結(jié)構(gòu)形成高抗逆性、廣適應(yīng)性和抗菌譜寬的遺傳工程菌,若篩選的生防菌能促進(jìn)植物的生長發(fā)育,便可達(dá)到防病增產(chǎn)的目的,這將是未來生防工作發(fā)展的重點(diǎn);第五,抗病菌株與生防菌的拮抗基因?yàn)榛蚬こ烫峁┴S富的基因資源,為構(gòu)建植物抗體文庫和改良抗病轉(zhuǎn)基因植物的特性奠定基礎(chǔ)。如李梅云等[70]通過對香料煙品種細(xì)菌性斑點(diǎn)病的抗性鑒定,得到高抗品種包括‘巴斯瑪1號’‘卡拉巴格拉’‘杰尼克’‘羅香1號’‘沙姆遜’‘巴斯瑪14號’和‘基可納巴斯瑪’;擬南芥能抵抗丁香假單胞菌主要是由于自身 AZI1基因能促進(jìn)木質(zhì)素的合成,通過加厚細(xì)胞壁,提高擬南芥對丁香假單胞菌的抗性[71],未來可采用上述高抗品種或基因選育新品種;此外,可利用植物自身含有的活性抑菌成分,包括萜類、含氮含硫化合物、芳香族化合物、蛋白質(zhì)類及脂肪類化合物等開發(fā)特異性分子標(biāo)記,進(jìn)行植物抗病分子輔助育種,以及通過轉(zhuǎn)基因技術(shù)將上述殺菌、抑制病原菌生長發(fā)育的拮抗基因?qū)胱魑铮嘤哂锌共∧芰Φ男缕贩N,但需保證對原品種的農(nóng)藝性狀無影響或影響較小,否則會因產(chǎn)品農(nóng)藝性狀不好而被淘汰。因此,未來可從上述5方面對疫病進(jìn)行防治,從根本上降低丁香假單胞菌對農(nóng)業(yè)生產(chǎn)帶來的損失與風(fēng)險(xiǎn)。
Reference:
[1] EVERETT K R,TAYLOR R K,ROMBERG M K,etal.First report ofPseudomonassyringaepv.actinidiaecausing kiwifruit bacterial canker in New Zealand [J].AustralasianPlantDiseaseNotes,2011,6(1):67-71.
[2] VANNESTE J L,POLIAKOFF F,AUDUSSEAU C,etal.First report ofPseudomonassyringaepv.actinidiae,the causal agent of bacterial canker of kiwifruit in France [J].PlantDisease,2011,95(10):1311.
[3] BASTAS K K,KARAKAYA A.First report of bacterial canker of kiwifruit caused byPseudomonassyringaepv.actinidiaein Turkey[J].PlantDisease,2012,96(3):447-452.
[4] MARCELLETTI S,FERRANTE P,PETRICCIONE M,etal.Pseudomonassyringaepv.actinidiaedraft genomes comparison reveal strain-specific features involved in adaptation and virulence toActinidiaspecies[J].PublicLibraryofScienceOne,2011,6(11):1-17.
[5] 王金生.植物病源細(xì)菌學(xué)[M].北京:中國農(nóng)業(yè)出版社,2000:352-484.
WANG J SH.Plant Pathogenic Bacteria [M].Beijing:China Agriculture Press,2000:352-484(in Chinese).
[6] REES-GEROGE J,VANNESTE J L,CORNISH D A,etal.Detection ofPseudomonassyringaepv.actinidiaeusing polymerase chain reaction ( PCR) primers based on the 16S-23S rDNA intertranscribed spacer region and comparison with PCR primers based on other gene regions[J].PlantPathology,2010,59:453-464.
[7] 朱海云,李 勃,李 燕,等.丁香假單胞菌獼猴桃致病變種的遺傳多樣性及進(jìn)化關(guān)系[J].微生物學(xué)雜志,2013,33(4):66-71.
ZHU H Y,LI B,LI Y,etal.Relation of genetic diversity and evolution of kiwifruit pathogenPseudomonassyringaepv.actinidiae[J].JournalofMicrobiology,2013,33(4):66-71(in Chinese with English abstract).
[8] FERRANTE P,SCORTICHINI M.Molecular and phenotypic variability ofP.avellanae,P.syringaepv.actinidiaeandP.syringaepv.theae[J].JournalofPlantPathology,2011,93:659-666.
[9] KOH Y,NOU I.DNA markers for identification ofPseudomonassyringaepv.actinidiae[J].MoleculesandCell,2002,13:309-314.
[10] SAWADA H,KANAYA S,TSUDA M,etal.A phylogenomic study of the OCTase genes inPseudomonassyringaepathovars:the horizontal transfer of the argK-tox cluster and the evolutionary history of OCTase genes on their genomes [J].JournalofMolecularEvolution,2002,54:437-457.
[11] TEMPLETON M D,REINHARDT L A,COLLYER C A,etal.Kinetic analysis of the L-ornithine transcarbamoylase fromPseudomonassavastanoipv.phaseolicolathat is resistant to the transition state analogue (R) -N delta-(N′-Sulfodiaminophosphinyl) -L-ornithine [J].Biochemistry(Washington),2005,44:4408-4415.
[12] SCORTICHINI M,MARCHESI U,DI PROSPERO P.Genetic relatedness amongP.avellanae,P.syringaepv.theaeandP.syringaepv.actinidiae,and their identification [J].EuropeanJournalofPlantPathology,2002,108:269-278.
[13] MANCEAU C,BRIN C.Pathovars ofPseudomonassyringaeAre Structured in Genetic Populations Allowing the Selection of Specific Markers for Their Detection in Plant Samples [M].Dordrecht:Kluwer Academic Publishers,2003,503-512.
[14] IVANOVIC Z,GAVRILOVIC V.REP-PCR as a method for determining diversity amongPseudomonassyringaestrains from fruit trees [J].ArchivesofBiologicalSciences,2009,46:264-268.
[15] MARCELLETTI S,SCORTICHINI M.Clonal outbreaks of bacterial canker caused byPseudomonassyringaepv.actinidiaeonActinidiachinensisandActinidiadeliciosain Italy [J].JournalofPlantPathology,2011,93:479-483.
[16] GALLELLI A,LAERORA A,LORETI S.Gene sequence analysis for the molecular detection ofPseudomonassyringaepv.actinidiae:developing diagnostic protocols [J].JournalofPlantPathology,2011,93:425-435.
[17] BALESTRA G M,RENZI M,MAZZAGLIA A.First report of bacterial canker ofActinidiadeliciosacaused byPseudomonassyringaepv.actinidiaein Portugal [J].NewDiseaseReports,2010,22:3-10.
[18] FERRANTE P,SCORTICHINI M.Identification ofPseudomonassyringaepv.actinidiaeas causal agent of bacterial canker of yellow kiwifruit (ActinidiachinensisPlanchon) in central Italy [J].JournalofPhytopathology-PhytopathologischeZeitschrift,2009,157:768-770.
[19] BASTAS K K,KARAKAYA A.First report of bacterial canker of kiwifruit caused byPseudomonassyringaepv.actinidiaein Turkey [J].PlantDisease,2012,96:441-452.
[20] 張立新,李莎莎,檀根甲.獼猴桃潰瘍病菌的鑒定及其對不同獼猴桃品種的致病力分析[G]//中國植物保護(hù)學(xué)會2011年學(xué)術(shù)年會論文集.北京:中國農(nóng)業(yè)科學(xué)技術(shù)出版社,2011:241-243.
ZHANG L X,LI SH SH,TAN G J.Identification of the pathogen of the bacterial pathogen of the fruit of the kiwifruit and analysis of the pathogenicity of different varieties of the kiwifruit [G]// China Society of Plant Protection,Proceedings of the 2011 Academic Year.Beijing:The Science and Technology of China’s Agriculture,2011:241-243(in Chinese with English abstract).
[21] 連玲麗,洪旭鴻,鄭璐平,等.丁香假單胞菌基因組內(nèi)簡單重復(fù)序列的比較分析[J].四川農(nóng)業(yè)大學(xué)學(xué)報(bào),2012,30(2):150-155.
LIAN L L,HONG X H,ZHENG L P,etal.Comparative analysis of SSR inPseudomonassyringaegenomes [J].JournalofSichuanAgriculturalUniversity,2012,30(2):150-155(in Chinese with English abstract).
[22] 包 奇,曹夢琪,周 雨,等.基于實(shí)時(shí)熒光定量PCR技術(shù)檢測桑丁香假單胞菌[J].蠶業(yè)科學(xué),2016,42(2):210-218.
BAO Q,CAO M Q,ZHOU Y,etal.Detection ofPseudomonassyringaepv.moribased on real-time quantitative PCR technology [J].ScienceofSericulture,2016,42(2):210-218(in Chinese with English abstract).
[23] AMANDINE C,SOPHIE C,MARTIAL B,etal.Draft genome sequences of fivePseudomonassyringaepv.actinidifoliorumstrain isolated in France [J].BrazilianJournalofMicrobiology,2016,43(2):336-347.
[24] ZHANG Z B,GAO X N,YANG D H,etal.Field detection of canker-causing bacteria on kiwifruit trees:Pseudomonassyringaepv.actinidiaeis the major causal agent [J].CropProtection,2015,75:55-62.
[25] IRINA A M,VERA K B,EUGENIA V M,etal.Intragenomic heterogeneity of the 16S rRNA-23S rRNA internal transcribed spacer amongPseudomonassyringaeandPseudomonasfluorescensstrains [J].FEMSMicrobiologyLetters,2004,239:17-23.
[26] LI W,XU Y P,JEAN P M,etal.Functional identification of phenazine biosynthesis genes in plant pathogenic bacteriaPseudomonassyringaepv.tomatoandXanthomonasoryzaepv.oryzae[J].JournalofIntegrativeAgriculture,2016,15(4):812-821.
[27] SIMONA P,LUCA N,GRAZIANO V,etal.Effect of bacterial canker caused byPseudomonassyringaepv.actinidiaeon postharvest quality and rots of kiwifruit “Hayward” [J].PostharvestBiologyandTechnology,2016,113:119-124.
[28] HACKER J,CAMIEL E.Ecological fitness,genomic islands and bacterial pathogenicity [J].EMBOReports,2001,2(5):376-381.
[29] KIM J F,ALFNAO J R.Pathogenicity islands and virulence plasmids of bacterial plant pathogens [J].CurrenttopicsinMicrobiologyandImmunology,2002,264(2):127-147.
[30] 楊 軍,尹啟生,宋紀(jì)真,等.植物病原細(xì)菌的hrp基因 [J].遺傳,2005,27(5):852-858.
YANG J,YIN Q SH,SONG J ZH,etal.hrpgene of plant pathogenic bacteria [J].Genetics,2005,27(5):852-858(in Chinese with English abstract).
[31] 孟 姍,何 彥,張中娜,等.丁香假單胞菌基因inaQ變速箱啟動子結(jié)構(gòu)與活性分析 [J].氨基酸和生物資源,2014,36(4):47-53.
MENG SH,HE Y,ZHANG ZH N,etal.Structure and activity characterization of a gearbox-type promoter fromPseudomonassyringaeice-nucleating geneinaQ[J].AminoAcidandBioticResources,2014,36(4):47-53(in Chinese with English abstract).
[32] KOEBNIK R.The role of bacterial pili in protein and DNA translocation [J].TrendsMicrobio,2001,9(12):586-590.
[33] HAAPALAINEN M,DAUPHIN A,LI C M,etal.HrpZ harpins from differentPseudomonassyringaepathovars differ in molecular interactions and in induction of anion channel responses inArabidopsisthalianasuspension cells [J].PlantPhysiologyandBiochemistry,2012,51:168-174.
[34] LEE Y H,KOLADE O O,NOMURA K,etal.Use of dominant-negative HrpA mutants to dissecthrppilus assembly and type Ⅲ secretion inPseudomonassyringaepv.tomato[J].JournalofBiologicalChemistry,2005,280(22):21409-21417.
[35] NOEL L,THIEME F,NENNSTIEL D,etal.Two novel type Ⅲ-secreted proteins ofXanthomonascampestrispv.vesicatoriaare encoded within thehrppathogenicity island [J].JournalofBacteriol,2002,184(5):1340-1348.
[36] HE S Y,HUANG H C,COLLMAR A.Pseudomonassyringaepv.syringaeharpin:a protein that is secreted via thehrppathway and elicits the hypersensitive response in plant [J].Cell,1993,73(7):1255-1266.
[37] ANGOT A,VERGUNST A,GENIN S,etal.Exploitation of eukaryotic u-biquitin signaling pathways by effectors translocated by bacterial type Ⅲand type Ⅳ secretion systems[J].PlosPathogens,2007,3(1):1-3.
[38] ALFANO J R,COLLMER A.Type Ⅲ secretion system effectors proteins:double agents in bacterial disease and plant defense [J].Annualreviewofphytopathology,2004,42:385-414.
[39] XIAO F M,GIAVALISCO P,GREGORY B M.PseudomonassyringaeType Ⅲ Effector AvrPtoB is phosphorylated in plant cells on Serine 258 promoting its virulence activity [J].JournalofBiologicalChemistry,2007,282(42):30737-30744.
[40] SHAN L,THANA V K,MARTIN G B,etal.ThePseudomonassyringaeAvrPto protein is differentially recognized by tomato and tobacco and is localized to the plant plasma membrane[J].PlantCell,2000,12(12):2323-2338.
[41] ZACHARY N,ERIC M,SUSANNE K,etal.Eukaryotic fatty acylation drives plasma membrane targeting and enhances function of several type Ⅲ effectors proteins fromPseudomonassyringae[J].Cell,2000,101(4):353-363.
[42] GUTTMAN D S,VINATZER B A,SARKAR S F,etal.A functional screen for the type Ⅲ (hrp) secretome of the plant pathogenPseudomonassyringae[J].Science,2002,295:1722-1726.
[43 ] LINDGREN P B,PEET R C,PANOPOULOS N J.Gene cluster ofPseudomouassyringaepv.phaseolicolacontrols pathogenmicity of bean plants and hypersensitivity of non-host plants[J].JournalofBacteriol,1986,168(2):512-522.
[44] ROMAN G G,MICHAEL H.Protein secretion systems and adhesions:the molecular armory of gram-negative pathogens [J].InternationalJournalofMedicalMicrobiology,2007,297(6):401-415.
[45] WEI W,LABY R J,ZUMNOFF C H,etal.Harpin,elicitor of the hypersensitive response produced by the plant pathogenErwiniaamylovora[J].Science,1992,257(5066):85-88.
[46] GOUGH C L,GENIN S,ZISCHEK C A.Thehrpgenes ofPseudomonassolanacearumare homologous to pathogenicity determinants of animal pathogenic bacteria and are conserved among plant pathogenic bacterial [J].MolecularPlant-MicrobeInteractions,1992,5(5):384-389.
[47] MUDGETT M B.New insights to the function of phytopathogenic bacterial type Ⅲ effectors in plants [J].TheAnnualReviewofPlantBiology,2005,56:509-31.
[48] JIN Q,HE S Y.Role of thehrppilus in type Ⅲ protein secretion inPseudomonassyringae[J].Science,2001,294(5551):2556-2558.
[49] LORANG J M,KEEN N T.Characterization of avrE formPseudomonassyringaepv.tomato:ahrp-linked virulence locus consisting of at least two transcriptional units [J].MolecularPlant-MicrobeInteractions,1995,8(1):49-57.
[50] 丁 玲,孟小林,徐進(jìn)平,等.HrpZ基因在大腸桿菌中的高效表達(dá)與活性檢測[J].西北植物學(xué)報(bào),2005,25 (12):2391-2394.
DING L,MENG X L,XU J P,etal.High expression and activity detection ofHrpZgene inEscherichiacoli[J].ActaBotanicaBoreali-OccidentaliaSinica,2005,25 (12):2391-2394(in Chinese with English abstract).
[51] 袁 軍,劉海榮,莊振宏,等.丁香假單胞菌極毛蛋白hrpA基因克隆與表達(dá)[J].福建農(nóng)林大學(xué)學(xué)報(bào)(自然科學(xué)版),2012,41(5):518-522.
YUAN J,LIU H R,ZHUANG ZH H,etal.Cloning and expression of hrpA gene ofPseudomonassyringae[J].JournalofFujianAgricultureandForestryUniversity(NaturalScienceEdition),2012,41(5):518-522(in Chinese with English abstract).
[52] WENGELNIK K,ROSSIER O,BONAS U.Mutations in the regulatory gene hrpG ofXanthomonascampestrispv.vesicatoriaresult in constitutive expression of allhrpGenes[J].JournalofBacterial,1999,181(21):6828-6831.
[53] RAHME L G,MINDRINOS M N,PANOPOULOS N J.Plant and environmental sensory signals control the expression ofhrpgenes inPseudomonassyrqngaepv.phaseolicola[J].JournalofBacterial,1992,174(11):3499-3507.
[54] ALEXANDRA C,CHRISTIAN L,ERICH G.Expression of antimicrobial peptides under control of a camalexin-biosynthetic promoter confers enhanced resistance againstPseudomonassyringae[J].Phytochemistry,2016,122:76-80.
[55] HEATH E O,DARRELL D,DAVID S G.Next-generation genomics ofPseudomonassyringae[J].Microbiology,2011,14(24):24-30.
[56] SUSANA D T,SELENE A,ENRIQUE I L,etal.Gene expression ofPhtcluster genes and putative non-ribosomal peptide systhetase required for phaseolotoxin production is regulated by CacS/CacA inPseudomonassyringaepv.phaseolicola[J].ResearchinMicrobiologys,2011,162:488-498.
[57] CHA J Y,LEE D G,LEE J S,etal.CacA directly regulated expression of several virulence genes inPseudomonassyringaepv.tabaci11528 [J].BiochemicalandBiophysicalResearchCommunications,2012,417:665-672.
[58] HARDIAN S A,WIWIEK S W.Nucleic acid and protein profile of bacteriophages that infectPseudomonassyringaepv.glycinebacterial blight on soybean [J].Procedia,2016 (9):475-481.
[59] ALEXANDRA C,CHRISTIAN L,ERICH G.Expression of antimicrobial peptides under control of a camalexin-biosynthetic promoter confers enhanced resistance againstPseudomonassyringae[J].Phytochemistry,2016,122:76-80.
[60] LENZ O,BERAN P,FOUSEK J,etal.A microarray for screening the variability of 16S-23S rRNA internal transcribed spacer inPseudomonassyringae[J].JournalofMicrobiologicalMethods,2010,82:90-94.
[61] 魏海娟,劉 萍,楊 燕,等.多羥基雙萘醛提取物對獼猴桃潰瘍病菌的抑制作用[J].西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2011,39(1):126-130.
WEI H J,LIU P,YANG Y,etal.Antimicrobial inhibition of polyhydroxy dinaphthaldehyde extracts (WCT) onPseudomonassyringaepv.actinidiaein kiwifruit [J].JournalofNorthwestSci-TechUniversityofAgricultureandForestry(NaturalSciencesEdition),2011,39(1):126-130(in Chinese with English abstract).
[62] 宋紅志,王芳芹,王 俊,等.幾種咖啡酸酯類衍生物對桑丁香假單胞菌的抑制活性鑒定[J].蠶業(yè)科學(xué),2016,42(1):53-60.
SONG H ZH,WANG F Q,WANG J,etal.Identification on inhibition activity of several caffeic acid alkyl ester derivatives againstPseudomonassyringaepv.mori[J].ScienceofSericulture,2016,42(1):53-60(in Chinese with English abstract).
[63] YOUNG J M.Pseudomonassyringaepv.actinidiaein New Zealand [J].JournalofPlantPathology,2012,94 (S1):5-10.
[64] 蘇 品,劉 勇,譚新球,等.沼澤紅假單包菌PSB06對擬南芥抗丁香假單胞菌DC3000的誘導(dǎo)作用[J].生態(tài)文明建設(shè)與綠色植保,2014,1(1):21-29.
SU P,LIU Y,TAN X Q,etal.Effect ofPseudomonasaeruginosaPSB06 on the induction ofPseudomonassyringaepv.tomatoDC3000 inArabidopsisthaliana[J].TheEcologicalCivilizationandGreenPlantProtection,2014,1(1):21-29(in Chinese with English abstract).
[65] MELLGREN E M,KLOEK A P,KUNKEL B N.Mqo,a tricarboxylic acid cycle enzyme,is required for virulence ofPseudomonassyringaepv.tomatostrain DC 3000 onArabidopsisthaliana[J].JournalofBacteriology,2009,191(9):3132-3141.
[66] 萬東莉.CBP60g正調(diào)控?cái)M南芥對丁香假單胞菌、脫落酸和干旱的響應(yīng)[D].呼和浩特:內(nèi)蒙古農(nóng)業(yè)大學(xué),2012:1-86.
WAN D L.CBP60g positively regulates the responses ofArabidopsisthalianatoPseudomonassyringae,abscisic acid and drought [D].Hohhot:Inner Mongolia Agricultural University,2012:1-86(in Chinese with English abstract).
[67] FU L W,YU X CH,AN CH C.Overexpression of constitutively active OsCPK10 increasesAravidopsisresistance againstPseudomonassyringaepv.tomatoand rice resistance againstMagnaporthegrisea[J].PlantPhysiologyandBiochemistry,2013,73:202-2810.
[68] ZHANG M,KANG H H,CHEN Y H,etal.Overexpression of TaUb2 enhances disease resistance toPseudomonassyringaepv.tomatoDC3000 in tobacco [J].PhysiologicalandMolecularPlantPathology,2015,13(1):1-7.
[69] 張 倩,鮑依群,譚小云.擬南芥果膠甲酯化酶基因 PME17 在抵御丁香假單胞桿菌番茄致病變種DC3000株中的功能[J].植物生理學(xué)報(bào),2015,51(7):1061-1066.
ZHANG Q,BAO Y Q,TAN X Y.Functional analysis ofArabidopsisthalianapectin methylesterase gene PME17 in immunity againstPseudomonassyringaepv.tomatoDC 3000 [J].PlantPhysiologyJournal,2015,51(7):1061-1066(in Chinese with English abstract).
[70] 李梅云,張辰東,蘇澤春,等.香料煙品種細(xì)菌性斑點(diǎn)病的抗性鑒定[J].中國農(nóng)學(xué)通報(bào),2010,26(18):301-305.
LI M Y,ZHANG CH D,SU Z CH,etal.Resistance determination of oriental tobacco varieties to bacterial leaf spot disease[J].ChineseAgriculturalScienceBulletin,2010,26(18):301-305(in Chinese with English abstract).
[71] 高 航,杜改亮,麻 力,等.擬南芥抵抗丁香假單胞桿菌過程中 AZI1 基因功能研究[J].西北植物學(xué)報(bào),2013,33(3):429-436.
GAO H,DU G L,MA L,etal.Function of AZI1 gene inArabidopsisresistance againstPseudomonassyringae[J].ActaBotanicaBoreali-OccidentaliaSinica,2013,33(3):429-436(in Chinese with English abstract).
(責(zé)任編輯:郭柏壽 Responsible editor:GUO Baishou)
Research Advancement of Molecular Biology inPseudomonassyringae
WANG Dandan1and WANG Qingming2
(1.College of Agriculture,Eastern Liaoning University,Dandong Liaoning 118003,China; 2.Guangyuan Research Institute of Agricultural Sciences,Guangyuan Sichuan 628017,China)
Pseudomonassyringaeis an aerobic and strong saprophytic Gram-negative bacteria,the occurrence rate of its plant disease rankes first in the ten major bacterial plant diseases,the blight outbreaks in large-agricultural countries,there is a tendency to spread across the world,and it caused huge economic losses to agriculture country. Based on the latest research on molecular biology,this study summarized pathogenic variants ofPseudomonassyringae,pathogenic bacteria identification,early rapid detection technology,pathogenic molecular mechanism and biological control,etc. ofPseudomonassyringae,and discussed the problems existing at the recent research, research directions and prevention in the future as well as control programs of the blight.
Pseudomonassyringae; Testing; TTSS system;Hrpgene; Biological control
WANG Dandan,female,lecturer. Research area:biochemistry and molecular biology.E-mail:wangdandansq@sina.com
日期:2017-03-30
2016-12-25
2017-02-20
國家自然科學(xué)基金(31370400);丹東市2016科技攻關(guān)(2016KJ001);遼東學(xué)院青年基金(2015QN006)。
王丹丹,女,講師,從事生物化學(xué)與分子生物學(xué)研究。E-mail:wangdandansq@sina.com
Q663.4
A
1004-1389(2017)04-0487-10
網(wǎng)絡(luò)出版地址:http://kns.cnki.net/kcms/detail/61.1220.S.20170330.1508.002.html
Received 2016-12-25 Returned 2017-02-20
Foundation item The National Natural Science Foundation of China(No.31370400); Dandong Key Project of Science and Technology in 2016(No.2016KJ001); Youth Fund of Eastern Liaoning University Foundation (No.2015QN006).