李福穎,牛 玉,王仁章,王緒緒
(1.三明學院資源與化工學院,福建 三明 365004;2.福州大學光催化研究所,福建 福州 350002; 3.福州大學石油化工學院,福建 福州 350116)
醇分子作為犧牲劑對Pt/TiO2光催化水解產氫效率的影響
李福穎1,2,牛 玉1,3,王仁章1,王緒緒2
(1.三明學院資源與化工學院,福建 三明 365004;2.福州大學光催化研究所,福建 福州 350002; 3.福州大學石油化工學院,福建 福州 350116)
鑒于太陽光催化分解水獲取氫能源反應中,產氫效率受到犧牲劑組成和結構的影響,以Pt/TiO2為模型催化劑,125 W高壓汞燈為光源,在常壓環境下,比較不同一元醇(甲醇、乙醇、正丙醇、正丁醇)和多元醇(乙二醇、丙三醇、丁四醇、聚乙二醇)的反應性能.實驗結果發現,乙二醇作為犧牲劑時產氫效率最高,可達到17.62 mmol·(g·h)-1.研究還發現,反應不僅生成了H2和CO2,還生成了CO、CH4、C2H6、C2H4等產物.基于產物分布,進一步對醇分子作為犧牲劑時,光解水的產氫機理進行了探討.
光催化作用; 水解離; 醇分子犧牲劑; 乙二醇;氫能源
光催化技術由于能將水還原成氫氣、將二氧化碳還原為有機物和將有機污染物降解,一直吸引著人們的高度關注.對于光催化分解水(光解水)反應,目前為止,以TiO2及其改性修飾材料為基礎研發的光催化材料已達兩百多種[1-2].令人欣喜的是一批非二氧化鈦類光催化材料,如金屬鹽類(NiO/NaTaO3、SrNb2O7、SrTa2O6、In1-xNixTaO4及PbBi2Nb2O9等)、摻雜氫氧化物和固溶體氧化物類(Ga1-xZnxO1-xNx、In(OH)ySz、Sm2Ti2O5S2、LaTiO2N及TaON 等)、多元金屬硫化物類(Zn1-xCuxS、AglnZn7S9及Pt-PdS/CdS等)等被證實有比TiO2類材料更優良的光解水產氫活性.少數一些材料,如NiO/La/KTaO3、Cr/Rh/GaN/ZnO、RhO2/Mo-BiVO4等具有非常高的光量子效率[3-5].光解水產氫技術研究發展前景光明.
雖然這些研究進展令人振奮,但詳細的綜合分析發現,在所報道的光催化材料中,僅有個別材料能在紫外光下使水完全分解,許多被聲稱能光解水成氧氣和氫氣的材料,實際上只能分別在電子給予體犧牲劑或電子接受體犧牲劑存在的條件下光解水產生氫氣或者氧氣,并不能單獨使純水完全分解.外加的電子給予體犧牲劑,因具有比催化劑價帶電位負的多的氧化還原電勢,當體系受光照激發時易于俘獲價帶的光生空穴,以其“氧化犧牲”為代價換取光催化劑導帶電子對于H+到氫氣的還原和保證催化劑自身被氧化失活.同理,外加的電子接受體犧牲劑,因具有比催化劑導帶電位正的多的氧化還原電勢,當體系受光照激發時易于俘獲導帶的光生電子,以其“還原犧牲”為代價換取光催化劑價導帶空穴對于水到氫氣的氧化和保證催化劑自身不被還原失活.在可見光分解水研究中,幾乎所有的催化劑只能在犧牲劑存在的條件下,才能獲得氧氣或氫氣.所以,研究添加犧牲劑對光解水的影響,探究其作用規律,通過選擇優良的犧牲劑提高產氫或產氧效率,具有重要的科學和實際意義[6-11].
常使用的電子給予體犧牲劑包括甲醇、乙醇、丙三醇[12]、三乙胺、三乙醇胺[13]、乙二胺四乙酸[14]、硫化鈉/亞硫酸鈉[15]、葡萄糖[16]等,電子接受體犧牲劑包括硝酸銀[17]、碘酸鹽[18]、過硫酸鹽[19]等.其中,在評價光解水產氫活性時,甲醇犧牲劑的使用最為廣泛.由于復雜的中間體,多樣的犧牲劑,加之很難將表面分析技術應用到懸浮液體系中等因素,至今未能建立一個清晰的解釋犧牲劑在光解水反應中的作用機制.為此,在常壓條件下,以Pt/TiO2為模型催化劑,考察了幾種醇分子犧牲劑紫外光解水的產物分布,以探討犧牲劑的作用機理[20-21].
1.1 光催化劑制備
采用原位光還原沉積法,制備Pt負載TiO2型光催化劑:在水溶液中,加入適量TiO2銳鈦礦納米粒子(純度99.9 %,粒徑15 nm,Alfa Aesar)和H2PtC16溶液,超聲分散5 min后,在磁力攪拌的條件下,以300 W氙燈為光源,在含乙醇10%(體積分數)的水溶液中,原位光沉積反應5 h;再經抽濾、洗滌、干燥、研磨,得到含Pt 1%(質量分數)的Pt/TiO2催化劑.
1.2 光催化劑表征
樣品的晶相結構采用 Bruker D8 Advance型X射線粉末衍射儀分析;光吸收性能在 Varian Cary 500型UV-Vis-NIR紫外可見漫反射吸收光譜儀上測定;表面形貌和粒徑大小采用JEM 2010型透射電子顯微鏡觀測TEM和高分辨TEM譜圖;光電子能譜采用ESCALAB 250型X射線光電子能譜儀測定;表面積和孔結構采用Micromeritics ASAP 2020型全自動物理化學吸附儀測定.
1.3 光催化性能評價

圖1 光解水反應裝置Fig.1 Schematic diagram of water splitting system
反應在如圖1所示的密閉玻璃循環體系中進行,在圓柱形夾套玻璃反應器中加入165 mL去離子水、50 mg Pt/TiO2和5 mL醇分子犧牲劑,通過磁力攪拌器攪拌均勻,并使用冷凝水將反應液溫度始終控制在10 ℃左右.反應前,使用機械泵將整個體系抽真空,然后充入高純氮氣,此過程重復3次,以便將體系內的空氣除盡.反應液吸脫附30 min后,開啟內插式光源(125 W高壓汞燈)和氣體循環泵,每小時通過氣相色譜分析氣相產物.
2.1 樣品的晶相
圖2為TiO2銳鈦礦和Pt/TiO2樣品的XRD譜圖.譜圖中2θ= 25.1°、37.6°、48.0°、53.8°、55.0°和 62.7°(JCPDS 21-1272)處的峰均為TiO2銳鈦礦特征衍射[22].可能由于Pt含量低或分散度高,未能發現任何與Pt有關的衍射峰.根據25.3°處衍射峰的半峰寬,用Scherrer方程估算出銳鈦礦TiO2的平均顆粒大小為(13±2)nm.表明負載Pt沒有改變TiO2基底的晶相結構和晶體大小.
2.2 樣品的光吸收
圖3為銳鈦礦TiO2和Pt/TiO2樣品的紫外-可見漫反射光譜.以標準BaSO4粉末為參比,發現在TiO2表面負載Pt后,與純TiO2樣品的光吸收閾值380 nm 相比,Pt/TiO2的紫外吸收帶邊發生紅移,說明負載Pt使得光吸收能力略有增強[23].

圖2 樣品的XRD光譜 Fig.2 XRD of the samples

圖3 樣品的紫外可見漫反射光譜Fig.3 UV-Vis DRS of the samples
2.3 樣品的形貌
圖4、5分別是Pt/TiO2樣品的TEM圖和HTEM圖.可以看出,Pt修飾TiO2表面后其晶體結構沒有發生變化,顆粒尺寸都約為15 nm,與XRD計算的結果一致.在 HTEM 圖上,觀察到晶格間距為 0.35和0.209 nm的晶格條紋,與銳鈦礦TiO2的d101和Pt的d200一致.另外還發現,采用光沉積法負載的Pt在TiO2表面不同區域的分布有明顯差別,存在團簇現象.

圖4 Pt/TiO2樣品的TEM圖Fig.4 TEM of the Pt/TiO2 sample

圖5 Pt/TiO2樣品的HTEM圖Fig.5 HTEM of the Pt/TiO2 sample
2.4 元素的化學狀態
圖6、7分別為Pt/TiO2樣品的全掃描和精細掃描譜圖.從圖6可以看出,樣品除了 C 1s吸收峰外,沒有發現其它雜質峰.圖7表明,Ti 2P1/2和Ti 2P3/2的結合能分別為 464.35和458.55 eV,O 1s 的結合能為529.87 eV,與文獻報道的數值幾乎相同[24].在74.08 和70.78 eV觀察到兩個峰,分別屬于Pt 4f7/2和Pt 4f5/2的結合能,很好地與Pt0相匹配,說明負載的Pt主要以零價態存在.

圖6 Pt/TiO2樣品的寬掃描XPS譜圖Fig.6 Wide scan XPS spectra of the Pt/TiO2 sample

圖7 Pt/TiO2樣品的Ti 2P,O 1s 和 Pt 4f 窄掃描XPS譜圖Fig.7 High-resolution XPS spectra of Ti 2P,O 1s and Pt 4f regions of the Pt/TiO2 sample
2.5 樣品的織構

表1 樣品的物理化學參數Tab.1 Physicochemical characteristics of as-prepared samples
圖8、9分別為銳鈦礦TiO2和Pt/TiO2樣品的低溫(77 K)N2吸脫附和孔徑分布曲線.樣品的物理化學參數列于表1.由圖8、9和表1可知,Pt/TiO2樣品的吸附等溫線、比表面積、孔體積和孔徑幾乎與純TiO2樣品的一致.表明負載Pt沒有明顯改變TiO2的結構性質,同時也表明Pt納米顆粒高度分散在TiO2表面.

圖8 樣品的低溫氮氣吸附—脫附曲線Fig.8 N2-sorption isotherms of the samples

圖9 樣品的孔徑分布曲線Fig.9 BJH pore-size distributions of the samples
2.6 醇分子犧牲劑對Pt/TiO2光催化產氫活性的影響
以50 mg Pt/TiO2為催化劑,以5 mL甲醇、乙醇、正丙醇、正丁醇、乙二醇、丙三醇,或5 mg丁四醇、聚乙二醇為犧牲劑,探討光催化醇分子犧牲劑的產物生成規律,結果如圖10所示.其中,乙二醇表現出最好的光解水產氫活性.
2.6.1 光催化一元醇犧牲劑的產物分析
以50 mg Pt/TiO2催化劑和5 mL甲醇、乙醇、正丙醇、正丁醇等一元醇,探討光催化一元醇犧牲劑的產物生成規律,結果如圖11所示.由圖11可知,產氫活性順序為:甲醇>乙醇>正丙醇>正丁醇.顯然,一元醇的產氫活性隨著碳鏈的增長逐漸降低.可能是由于一元醇的溶劑極性差異所致,碳鏈越短極性越強,在催化劑表面吸附能力越強,也說明吸附作用是光化學反應的決速步[26].
以一元醇為犧牲劑的光催化反應中,除了CO、CO2還檢測到CH4、C2H6和C2H4等氣相產物,這些氣相產物隨反應時間線性增加.以不同一元醇為犧牲劑時Pt/TiO2光解水反應10 h后,各氣相產物分布列在表2中.從實驗結果可以看出,以不同一元醇為犧牲劑時Pt/TiO2光解水的烴類氣相產物比例存在很大差異,乙醇、正丙醇、正丁醇為犧牲劑時分別大量生成了CH4、C2H6、C2H4.

圖10 醇類光解水產氫的對比實驗Fig.10 Photolysis aquatic hydrogen contrast experiment of alcohols

圖11 一元醇光解水產氫的對比實驗Fig.11 Photolysis aquatic hydrogen contrast experiment of monobasic alcohol

表2 不同一元醇犧牲劑時Pt/TiO2光解水反應氣相產物分布Tab.2 Gasous product distributions of the photocatalytic descomposirion of water on Pt/TiO2 with different monohydric alcohols as sacrificial agents (mmol)
2.6.2 光催化多元醇犧牲劑的產物分析

圖12 多元醇光解水產氫的對比實驗Fig.12 Photolysis aquatic hydrogen contrast experiment of polyhydric alcohol
以50 mg Pt/TiO2催化劑和5 mL乙二醇、丙三醇(或50 mg丁四醇、聚乙二醇)等多元醇,探討光催化多元醇犧牲劑的產物生成規律,結果如圖12所示.由圖12可知,產氫活性順序為:乙二醇>丙三醇>丁四醇>聚乙二醇.分析得出,多元醇犧牲劑的產氫活性隨著羥基數目的增多和碳鏈的增長而逐漸降低.由此得出,多元醇的羥基并沒能全部參與羥基解離,反而由于碳鏈的增長發生了光催化重整,產氫速率逐漸降低.
同樣,在以多元醇為犧牲劑的光催化反應中,也檢測到了CO、CO2、CH4、C2H6和C2H4等氣相產物,這些氣相產物隨反應時間線性遞增.從采用不同多元醇犧牲劑,Pt/TiO2光催化水分解反應10 h的實驗數據,可以看出烴類氣相產物比例沒有明顯差異.各氣相產物分布列在表3中.

表3 不同多元醇犧牲劑時Pt/TiO2光解水反應氣相產物分布Tab.3 Gasous product distributions of the photocatalytic descomposirion of water on Pt/TiO2 with different polyhydric alcohols as sacrificial agents (mmol)
基于無氧氣氛下的光催化反應中,空穴和·OH為主要氧化物種,對一元醇為犧牲劑的光催化反應歷程做如下推測[27-28]:首先一元醇在Pt/TiO2表面通過其羥基氧與TiO2表面5配位的Ti原子配位吸附,隨后羥基上的氫解離,生成H+和RCH2O-,解離的質子遷移到Pt顆粒表面,與光生電子反應生成H2,而RCH2O-則被空穴氧化,生成·RCHOH自由基;該自由基發生羥基解離從而生成RCHO;RCHO進一步被·OH氧化脫氫,生成RCOOH,或被H2還原生成RCH2OH;RCOOH經photo-Kolbe反應脫羧生成CO2(CO2還可被H2還原成CO)及CxHy.

副產物醛和酸可進一步被氧化:
在化學反應中,多元醇一般先只有一個羥基發生反應,在高溫、強酸等條件下,才可使多個羥基參與反應.所以,在光催化反應中,多元醇為犧牲劑時的反應歷程非常復雜,不僅發生光生空穴猝滅,而且存在光催化重整,至今未見詳細報道其參與反應的歷程.
在常壓、惰性氣氛條件下,以Pt/TiO2為模型光催化劑,比較醇分子犧牲劑的紫外光解水產氫活性時,發現乙二醇最佳.可能是由于乙二醇的相對介電常數高于一元醇,且短碳鏈的二元醇能夠較多的參與羥基解離,其真實的反應歷程較為復雜,需借助原位分析檢測等手段做進一步的深入研究.
1)醇分子犧牲劑的作用.氫源作為光致電子-空穴復合抑制劑[29],其氧化產生的羥基自由基連續不斷地抑制光生電子-空穴復合,提高催化劑表面的氧化能力,同時捐助額外的電子,增加表面量子產率,促進光解水產氫速率.
2)Pt/TiO2下醇分子犧牲劑的光解水產氫活性規律.產氫活性與醇分子犧牲劑的碳鏈長度和羥基數目有關,等長度碳鏈時羥基越多產氫效率越高,生成烴類氣體的概率越小.常壓、惰性氣氛條件下對比發現,乙二醇為犧牲劑時,Pt/TiO2光解水產氫活性最高.
3)光還原的影響.醇分子作為犧牲劑時,生成的CO2和H2可能會發生光還原反應,一方面消耗了H2,另一方面阻礙了催化劑表面電子傳遞,致使光解水產氫效率降低.因此,抑制CO2在催化劑表面的光還原顯得十分必要.
[1] 李濤海,吳季懷,陳秀琴.需要犧牲劑可見光下分解水的光催化材料[J].化工新型材料,2004,32 (4):1-4.
[2] 劉恢.可見光響應光催化劑及其分解水的研究[D].上海:上海交通大學,2008:31-35.
[3] LIANOS P.Production of electricity and hydrogen by photocatalytic degradation of organic wastes in a photoelectrochemical cell:the concept of the Photofuelcell:a review of a re-emerging research fiel[J].Journal of Hazardous Materials,2011,185(2/3):575-590.
[4] ESSWEIN A J,NOCERA D G.Hydrogen production by molecular photocatalysis[J].Chemical Reviews,2007,107(10):4 022-4 047.
[5] YOSHIDA H,HIRAO K,NISHIMOTO J I,etal.Hydrogen production from methane and water on platinum loaded titanium oxide photocatalysts[J].Journal of Physical Chemistry C,2008,112(14):5 542-5 551.
[6] MILLS A,ILUNTE S L.An overview of semiconductor photocatalysis[J].Journal of Photochemistry and Photobiology A:Chemistry,1997,108(1):1-35.
[7] YANG J H,WANG D,HAN H X,etal.Roles of cocatalysts in photocatalysis and photoelectrocatalysis[J].Accounts of Chemical Research,2013,46(8):1 900-1 909.
[8] KHO Y K,IWASE A,TEOH W Y,etal.Photocatalytic H2evolution over TiO2nanoparticles.The synergistic effect of anatase and rutile[J].Journal of Physical Chemistry C,2010,114(6):2 821-2 829.
[9] BARRECA D,FOMASIERO P,GASPAROTTO A,etal.The potential of supported Cu2O and CuO nanosystems in photocatalytic H2production[J].Chemistry and Sustainable Chemistry,2009,2(3):230-233.
[10] LI Y B,WU J H,HUANG Y F,etal.Photocatalytic water splitting on new layered perovskite A2.33Sr0.67Nb5O14.335(A=K,H)[J].International Journal of Hydrogen Energy,2009,34(19):7 927-7 933.
[11] GENTILIA P L,PENCONI M,ORTICA F,etal.Synergistic effects in hydrogen production through water sonophotolysis catalyzed by new La2xGa2yIn2(1LxLy)O3solid solutions[J].International Journal of Hydrogen Energy,2009,34(22):9 042-9 049.
[12] GOMBAC V,SORDELLI L,MONTINI T,etal.CuOx-TiO2photocatalysts for H2production from ethanol and glycerol solutions[J].Journal of Physical Chemistry A ,2010,114(11):3 916-3 925.
[13] ZHANG P,JACQUES P A,MURIELLE C K,etal.Phosphine coordination to a cobalt diimine-dioxime catalyst increases stability during light-driven H2production[J].Inorganic Chemistry,2012,51(4):2 115-2 120.
[14] KOBAYASHI M,MASAOKA S,SAKAI K.Photoinduced hydrogen evolution from water by a simple platinum(II)terpyridine derivative:a Z-scheme photosynthesis[J].Angewandte Chemie International Edition,2012,51(30):7 431-7 434.
[15] ZHANG J,YU J G,JARONIEC M,etal.Noble metal-free reduced graphene oxide-ZnxCd1-xS nanocomposite with enhanced solar photocatalytic H2- production performanc[J].Nano Letters,2012,12(9):4 584-4 589.
[16] FU X L,LONG J L,WANG X X,etal.Photocatalytic reforming of biomass:a systematic study of hydrogen evolution from glucose solution[J].International Journal of Hydrogen Energy,2008,33(22):6 484-6 491.
[17] AMEY D,WATKINS T,MAGGARD P A.Effects of particle surface areas and microstructures on photocatalytic H2and O2production over PbTiO3[J].Journal of the American Ceramic Society,2011,94(5):1 483-1 489.
[18] HARA S,YOSHIMIZU M,TANIGAWA S,etal.Hydrogen and oxygen evolution photocatalysts synthesized from strontium titanate by controlled doping and their performance in two-step overall water splitting under visible light[J].Journal of Physical Chemistry C,2012,116(33):17 458-17 463.
[19] PUNTORIERO F,SARTOREL A,ORLANDI M,etal.Photoinduced water oxidation using dendrimeric Ru(II)complexes as photosensitizers[J].Coordination Chemistry Reviews,2011,255(21/22):2 594-2 601.
[20] CHO H W,WU J J.Photoreduction of graphene oxide enhanced by sacrificial agents[J].Journal of Colloid and Interface Science,2015,438(15):291-295.
[21]KEFAYAT U,ASGHAR A,SHU Y,etal.Microwave-assisted synthesis of Pt-graphene/TiO2nanocomposites and their efficiency in assisting hydrogen evolution from water in the presence of sacrificial agents[J].Science of Advanced Materials,2015,7(4):606-614.
[22] FU X L,WANG X X,DENNI Y C,etal.Photocatalytic reforming of C3-polyols for H2production:Part (I).Role of their OH groups[J].Applied Catalysis B:Environmental,2011,106(supp 3/4):681-688.
[23] ZHANG F X,CHEN J X,ZHANG X,etal.Synthesis of titania-supported platinum catalyst:the effect of pH on morphology control and valence state during photodeposition[J].Langmuir,2004,20(21):9 329-9 334.
[24] BOND G C,FLAMERZ S.Structure and reactivity of titania-supported oxides:IV Characterisation of dried vanadia/titania catalyst precursor[J].Applied Catalysis,1989,46(1):89-102.
[25] LO C C,HUNG C H,YUAN C S,etal.Photoreduction of carbon dioxide with H2and H2O over TiO2and ZrO2in a circulated photocatalytic reactor[J].Solar Energy Materials and Solar Cells,2007,91(19):1 765-1 774.
[26] SUN W,ZHANG S Q,LIU Z X,etal.Studies on the enhanced photocatalytic hydrogen evolution over Pt/PEG-modified TiO2photocatalysts[J].International Journal of Hydrogen Energy,2008,33(4):1 112-1 117.
[27] WEI Y L,LI J,HUANG Y F,etal.Photocatalytic water splitting with in-doped H2LaNb2O7composite oxide semiconductors[J].Solar Energy Materials and Solar Cells,2009,93(8):1 176-1 181.
[28] MAENAKA Y,SUENOBU T,FUKUZUMI S.Hydrogen evolution from aliphatic alcohols and 1,4-selective hydrogenation of NAD+catalyzed by a [C,N] and a [C,C] cyclometalated organoiridium complex at room temperature in water[J].Journal of the American Chemical Society,2012,134 (22):9 417-9 427.
[29] BARRECA D,FOMASIERO P,GASPAROTTO A,etal.The potential of supported nanosystems in photocatalytic H2production[J].Chemistry and Sustainable Chemistry,2009,2(3):230-233.
(責任編輯:洪江星)
Effect of different alcohols as sacrificial agents on efficiency of the photocatalytic decomposition of water to hydrogen over Pt/TiO2
LI Fuying1,2,NIU Yu1,3,WANG Renzhang1,WANG Xuxu2
(1.College of Resources and Chemical Engineering,Sanming University,Sanming,Fujian 365004,China;2.Research Institute of Photocatalysis,Fuzhou University,Fuzhou,Fujian 350002,China;3.School of Chemical Engineering,Fuzhou University,Fuzhou,Fujian 350116,China)
In the process of photocatalytic water splitting,some alcoholic compounds are frequently used as the sacrificial agents capturing photogenerated holes to facilitate reduction of water molecules by the conduction band electron.In previous studies,more attention has been paired to development of novel and highly efficient photocatalysts,few researches involve the effect of composition and structure of the sacrificial agents on the production efficiency of hydrogen.Pt/TiO2was used as the model photocatalyst,a 125 W high pressure mercury lamp was used as the light source irradiation.When methanol,ethanol,propanol,n-butyl alcohol,glycol,glycerin,erythritol and polyethylene glycol were used as the sacrificial agents,the water splitting results show that the rates of hydrogen production was the highest when glycol was used as the sacrificial agent,attained 17.62 mmol·(g·h)-1.The experiment results not only generated H2and CO2,but also had the production of CO,CH4,C2H6and C2H4.The mechanism of hydrogen production was discussed based on the distribution of photocatalytic reaction products.
photocatalysis; water splitting; alcohols sacrificial agents; glycol;hydrogen energy
10.7631/issn.1000-2243.2017.02.0268
1000-2243(2017)02-0268-07
2015-12-15
王緒緒 (1955- ),教授,主要從事環境光催化方面的研究,xwang@fzu.edu.cn
福建省自然科學基金資助項目(2015J01601); 福建省2011潔凈煤氣化技術協同創新中心資助項目(XK1401,XK1403);福建省教育廳青年基金資助項目(JA15475)
TQ426.1
A