王 伸, 鄧良偉, 徐 則 , 王 霜, 姜奕圻, 鄭 丹
( 1.農業部沼氣科學研究所, 成都 610041; 2.農業部農村可再生能源開發利用重點實驗室, 成都 610041)
豬場廢水厭氧消化液好氧處理過程酸化改進及菌群結構變化
王 伸1,2, 鄧良偉1,2, 徐 則1,2, 王 霜1,2, 姜奕圻1,2, 鄭 丹1,2
( 1.農業部沼氣科學研究所, 成都 610041; 2.農業部農村可再生能源開發利用重點實驗室, 成都 610041)

豬場廢水厭氧消化液; SBR; pH值; 16SrRna; 厭氧氨氧化

1.1 污泥和污水
試驗所用接種污泥來源于實驗室培養的好氧污泥(具有硝化、反硝化活性)和厭氧氨氧化污泥。試驗進水為四川邛崍某豬場廢水處理沼氣工程厭氧反應器出水(厭氧消化液),以及經過固液分離但未經過厭氧處理的固液分離出水,簡稱原水。
1.2 試驗裝置
試驗采用SBR工藝,實驗裝置為直徑17 cm,高度33.8 cm的刻度塑料桶,總容積6.0 L,有效容積為5.0 L。
1.3 試驗方案

1.4 檢測項目及分析方法

1.5 微生物高通量測序分析
取適量污泥樣品,使用E.Z.N.A Soil DNA 試劑盒(Omega Bio-tek,Norcross,GA,U.S.)提取微生物總DNA。以16S rRNA V3~V4 區內338F (5'-ACTCCT ACGGGAGGCAGCA-3')和806R (5'-GGACTAC HVGGGTWTCTAA T-3')為特征引物,采用20 L混合反應體系,在GeneAmp 9700(ABI)型PCR 擴增儀上完成目標片段擴增。反應程序為95℃預變性2 min,95℃變性30s,55℃退火30 s, 72℃延伸30 s,25個循環后,72℃延伸5 min,每個樣品重復3次。使用AxyPrepDNA凝膠回收試劑盒(Axygen,Union City,CA,U.S.)對PCR 擴增產物進行回收。基于Illumina Miseq PE300 平臺,委托上海美吉生物醫藥科技有限公司完成對PCR 擴增產物的高通量測序,在多樣性評估的基礎上,采用Qiime 軟件進行微生物分類學分析。
2.1 反應器中混合液pH值變化
當反應器混合液pH值<6.5時,可以認為是酸化。3個反應器中混合液pH值變化列于圖1。從圖1中可以看出,試驗期間只有CG組出現明顯酸化現象,從第49天起pH值開始下降,直至穩定在5.8左右。兩種改進策略AN組合RW組,只有AN組在第58~66天,出現短暫的酸化,其他時間都未出現酸化。在試驗后期(第68天后),pH值比較穩定,AN組、RW組出水pH值平均值分別為7.7和7.7,說明兩種改進策略能明顯抑制酸化。

圖1 不同反應器曝氣結束時混合液pH值
2.2 SBR對COD的去除
圖2和圖3顯示了SBR對豬場廢水厭氧消化液COD去除效果。從圖2和圖3可知,在試驗前期(低68 d前),CG組和AN組進水為厭氧消化液,其COD濃度為461 mg·L-1,COD去除率分別為7.09%和26.6%,波動較大。添加原水的RW組,進水COD為1806 mg·L-1,去除率為65.3%,隨著進水COD升高,COD去除率也相應升高。在第69~91 d期間,CG組和AN組進水(厭氧消化液)COD濃度為621 mg·L-1,COD去除率分別為-13.2%和47.0%。添加原水的RW組,進水COD為3761 mg·L-1,去除率為89.4%。通過和CG組對比發現,兩種酸化改進策略都能提高COD去除率,AN組和RW組分別提高了60.2%和102.6%,其中添加原水組最明顯,但AN組出水COD濃度比較低。酸化后有機物的去除效果差的原因是異養細菌的最適生長pH值范圍為6.5~7.5。當pH值在6.5以下時,異養細菌活性將受到抑制,在低pH值下微生物解體[18],導致出水COD大于進水COD,COD去除率為負值。添加原水后COD去除效率提高的原因是,厭氧消化液BOD5/COD 值0.26(見表1),不易生化降解;添加原水后 BOD5/COD由0.26提高到0.32改善了可生化性,為后處理中好氧微生物的生長提供了易降解的有機碳源[19],關鍵是pH值處于穩定在7.7左右,有利于微生物生長代謝;對于AN組,同樣也是因為未出現酸化,系統處于有利于異養微生物生長的pH值之間。Bortone[20]等研究發現豬糞污水好氧生化處理出水中含有大約300 mg·L-1的難降解COD,說明AN組和RW組對COD已經達到最大程度去除。

圖2 進出水 COD 濃度

圖3 進出水COD 去除率
2.3 SBR對氮的去除
2.3.1 氨氮濃度和氨氮轉化率

表1 運行穩定時(第69~91天)進出水主要污染物濃度和污染物去除率
2.3.2 氨氮轉化產物和TIN去除率

圖4 進出水濃度

圖5 進出水-N去除率
2.4 微生物菌群結構的變化
利用Miseq 高通量測序平臺對對照組和改進組污泥中微生物多樣性進行了分析。高達99.69%以上的覆蓋率表明,測序結果能真實反映樣品中的菌群分布情況。CG組,AN組和RW組得到相同的24523條有效序列,平均長度為分別為443,441和441 bp,其中片段長度在421~460 bp之間旳序列占總序列數的99.89%,在97%的相似水平上可聚類產生458,502和440個OTU。從稀釋度曲線可看出(圖5),4組樣品的曲線均趨于平坦,樣品的測序數據量有效,可反映樣本真實的微生物群落結構。不同反應器中樣品在97%相似性上的維恩圖如圖8所示,顯示了不同樣品的OTU數目組成相似性及重疊情況。其中,有370個OTU為3組樣品所共有,占各組總數的73.7%以上。不同樣品的細菌群落多樣性指數如表2所示。表中Chao和ACE表征菌群的豐富度,數值越大,表示樣品中群落結構越豐富。Shannon和Simpson指數常用來估算樣本中微生物的多樣性,Shannon值越大,說明群落多樣性越高,而Simpson指數值越大,說明群落多樣性越低,均一性越差。表2中數據可看出,改進AN組增加了反應器中細菌群落的豐富度和多樣性,同時也增加了細菌群落的均一性;而改進RW組也增加了反應器中細菌群落的豐富度和多樣性,同時也增加了細菌群落的均一性,但效果不明顯。對測序樣品得到的序列進行比對分析,3組樣品在生物分類學門的水平上進行分類,均檢測到12個門,且3者門的組成類別相同,但所占比例不同,占總比例的96.1%以上。由圖8可知變形菌門 (Proteobacteria) 和擬桿菌門(Bacteroidetes)為3組反應器共有的優勢菌門。改進組使變形菌門 (Proteobacteria) 和擬桿菌門(Bacteroidetes)豐度顯著減少,而豐度有所減小。圖8顯示,Proteobacteria( 變形菌門) 是各污泥樣品中最豐富的門,CG,AN和RW分別占37.1%,35.1%和32.4%,改進組AN和RW組豐度分別下降2.0%和4.7%。其中,變形菌門是細菌中最大的一個門,包含多種代謝種類的細菌,變形菌門細菌根據rRNA序列被分為五類,分別以希臘字母分別以希臘字母α,β,γ,δ和ε命名,β變形菌和γ變形菌以有機物為碳源,以呼吸和發酵代謝方式進行兼性異養生長,去除廢水中有機物主要參與者[27-28];δ變形菌包括嚴格厭氧的一些種類,同樣也具有降解COD功能。另外,α-,β-和γ這3類變形菌包含了常見的氨氧化細菌(AOB),亞硝酸氧化細菌(NOB)以及反硝化細菌種屬[29],是廢水處理系統中含氮污染物去除的主要參與者。筆者實驗中這3類細菌的大量出現,推測與本反應器中氮素的去除相關。CG,AN,和RW組第二主要門是擬桿菌門(Bacteroidetes),分別占29.2%,24.5%和20.8%。擬桿菌門細菌是反應器中的另一類優勢菌。擬桿菌是化能有機營養細菌,代謝碳水化合物,能夠將復雜的有機物如:纖維素、淀粉等水解為單糖,再降解為乳糖、乙酸、甲酸等;將蛋白質水解為氨基酸和有機酸等;將脂類水解為低級的脂肪酸[30]。筆者研究中檢測到在擬桿菌門具有一定的優勢,可能在有機物的去除中發揮了作用。

圖6 各反應器出水 -N 濃度變化

圖7 各反應器出水 -N濃度變化

圖8 各反應器出水 NOx--N 濃度變化

圖9 3個反應器的TIN去除率

表2 微生物豐度和多樣性情況

圖10 3個樣品稀釋曲線圖

圖11 3個反應器各菌群的Venn圖
圖12顯示的是4個樣品在屬的水平上主要菌群的分布情況。和CG組相比,AN組豐度下降最明顯的3個組分別是Nitrosomonas,從7.95%下降到4.25%;OPB35_soil_group_norank從6.44%下降到3.19%;Ferruginibacter從2.90%下降到0.81%;增加最明顯的三個組分別是:OPB56_norank從0.71%上升到3.67%;Deltaproteobacteria_unclassified從0.11%上升到3.11%;Candidate_division_WS6_norank從0.95%上升到2.84%。和CG組相比,RW組豐度下降最明顯的三個組分別是Bacteroidetes_vadinHA17_norank從8.46%下降到1.16%;Nitrosomonas從7.95%下降到0.79%;BD1-7_clade從4.33%下降到1.16%;增加最明顯的3個組分別是:Candidate_division_WS6_norank從0.95%上升到9.35%;OPB56_norank從0.71%上升到6.90%;Sterolibacterium從0.16%上升到2.82%;筆者就3個反應器出現最主要的幾個屬水平的細菌進行分析;在CG組,AN組和RW都發現好氧異養菌(如Saprospiraceae[31], Chitinophagaceae_uncultured[32]) ,和缺氧異養菌(如Bacteroidetes_vadinHA17_norank[33])和脫氮菌(如 Thermomonas[34], Comamonadaceae[35])出現富集,這些細菌以硝酸鹽為電子受體來降解COD;同時也富集了屬于疣微菌門(Verrucomicrobia)的OPB35_soil_group_norank, Verrucomicrobia是好氧甲烷氧化菌,有助于減少溫室氣體甲烷的排放[36];在AN組和RW組中也富集了,有助于降解高分子化合物水解和酸化細菌(如Candidate_division_WS6_norank(AN =2.84%, RW=9.35%)[37-38]和Saccharibacteria_norank. (AN =2.18%, RW=5.19%[39]),但RW組富集程度高于AN組,可能原因是RW組進水含有大量的高分子化合物,更有利于水解和酸化細菌富集。

圖12 3個反應器各菌群在門屬水平上的相對豐度


圖13 3個反應器各菌群在屬水平上的相對豐度

(2) 接種厭氧氨氧化污泥(AN組)和厭氧消化液中添加豬場廢水原水(RW組)對COD去除率分別提高60.2%和102.6%,總無機氮(TIN)去除率分別為提高了11.1%和73.3%,其中RW組效果最明顯。
(3) 接種厭氧氨氧化污泥(AN組)和對照(CG)組的AOB相對豐度大于NOB,出現亞硝酸積累;RW組富集的AOB相對豐度小于NOB,沒出現亞硝酸積累,出水中硝酸鹽以硝酸鹽形式存在。
(4) 接種厭氧氨氧化污泥(AN組)富集的厭氧氨氧化細菌低于高效自養脫氮需求。
[1] Q Sui, H Dong, Z Zhu, D Guo. Ammonia stripping control parameters for improving effluent treatment effect in anaerobic digesters of piggery wastewater[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012(28) :205-211.
[2] 鄧良偉, 陳子愛, 袁心飛, 周文龍. 規模化豬場糞污處理工程模式與技術定位[J].養豬, 2008:21-24.
[3] G Anup, K Woo-Chang, O Sang-Eun. Removal of nitrogen from anaerobically digested swine wastewater using an anoxic/oxic (A/O) process complemented with a sulfur-packed biofilter[J]. African Journal of Biotechnology, 2013,10:9831-9838.
[4] T Pan, C M Drapcho, T Pan, C M Drapcho. Biological anoxic/aerobic treatment of swine waste for reduction of organic carbon, nitrogen, and odor[J]. Transactions of the Asae, 2001,44:1789-1796.
[5] 許振成, 諶建宇, 曾雁湘, 彭曉春, 陳 亮. 集約化豬場廢水強化生化處理工藝試驗研究[J].農業工程學報, 2007,10:037.
[6] Y H Song, G L Qiu, P Yuan, X Y Cui, J F Peng, P Zeng, L Duan, L C Xiang, F Qian. Nutrients removal and recovery from anaerobically digested swine wastewater by struvite crystallization without chemical additions[J]. Journal of hazardous materials, 2011,190:140-149.
[7] D Scaglione, G Tornotti, A Teli, L Lorenzoni, E Ficara, R Canziani, F Malpei. Nitrification denitrification via nitrite in a pilot-scale SBR treating the liquid fraction of co-digested piggery/poultry manure and agro-wastes[J]. Chemical Engineering Journal, 2013,228:935-943.
[8] J Meng, J Li, B Zhao, K Deng, Influence of aeration rate on shortcut nitrification in an SBR treating anaerobic-digested piggery wastewater[J]. Desalination and Water Treatment,2015:1-7.
[9] F J Cervantes, A David, J Gómez. Nitrogen removal from wastewaters at low C/N ratios with ammonium and acetate as electron donors[J]. Bioresource Technology, 2001,79:165-170.
[10] G Zhu, Y Peng, L Zhai, Y Wang, S Wang. Performance and optimization of biological nitrogen removal process enhanced by anoxic/oxic step feeding[J]. Biochemical Engineering Journal, 2009,43: 280-287.
[11] L Deng, P Zheng, Z Chen, Q Mahmood. Improvement in post-treatment of digested swine wastewater[J]. Bioresource Technology, 2008,99:3136-3145.
[12] D Yang, L Deng, D Zheng, L Wang, Y Liu. Separation of swine wastewater into different concentration fractions and its contribution to combined anaerobic-aerobic process[J]. Journal of environmental management, 2016,168:87-93.
[13] 鄧良偉, 蔡昌達, 陳鉻銘, 陳子愛. 豬場廢水厭氧消化液后處理技術研究及工程應用[J].農業工程學報, 2002,18: 92-94.
[14] 鄧良偉, 鄭 平, 陳子愛. Anarwia工藝處理豬場廢水節能效果的研究[J].農業工程學報, 2006,22:172-175.
[15] 鄭 丹, 鄧良偉, 楊 浩, 李淑蘭, 張國治, 樊戰輝, 陳 闖. 豬場廢水厭氧消化液的厭氧氨氧化脫氮研究進展[J].中國沼氣, 2011,29:3-8.
[16] I S Hwang, K S Min, E Choi, Z Yun. Nitrogen removal from piggery waste using the combined SHARON and ANAMMOX process[J]. Water Science Technology, 2005,52:487-494.
[17] 趙楠婕, 解慶林, 游少鴻, 周海妙, 史利榮. 厭氧氨氧化工藝處理豬場廢水沼液的試驗研究[J].四川環境, 2012,31:4-7.
[18] 王 伸, 鄧良偉, 徐 則, 鄭 丹, 王 蘭, 王 霜. pH值對好氧處理及污泥性能的影響[J].中國沼氣, 2016,34.
[19] 鄧良偉, 鄭 平, 李淑蘭, 孫 欣, 湯玉珍. 添加原水改善 SBR 工藝處理豬場廢水厭氧消化液性能[J].環境科學, 2006,26:105-109.
[20] G Bortone, S Gemelli, A Rambaldi, A Tilche. Nitrification, denitrification and biological phosphate removal in sequencing batch reactors treating piggery wastewater[J]. Water Science Technology, 1992,26:977-985.
[21] B Boiran, Y Couton, J Germon. Nitrification and denitrification of liquid lagoon piggery waste in a biofilm infiltration-percolation aerated system (BIPAS) reactor[J]. Bioresource technology, 1996,55: 63-77.
[22] W Bae, S Baek, J Chung, Y Lee. Optimal operational factors for nitrite accumulation in batch reactors[J]. Biodegradation, 2001,12:359-366.
[23] G Bitton. Wastewater Microbiology, 3ra. edic., New Jersey[J]. Editorial John Wiley Sons,2005:346-347.
[24] M H Gerardi. Nitrification and denitrification in the activated sludge process[J]. John Wiley Sons, 2003.
[25] S E Jorgensen, B Fath. Encyclopedia of Ecology[J]. Elsevier, 2008,5.
[26] T Fujii. New concepts of ammonia removal from digested swine effluents using anammox based deammonification process[J].Coastal Plain Soil,2013,3
[27] Y Miura, M N Hiraiwa, T Ito, T Itonaga, Y Watanabe, S Okabe. Bacterial community structures in MBRs treating municipal wastewater: relationship between community stability and reactor performance[J]. Water Research, 2007,41:627-637.
[28] 竇娜莎, 王 琳. 16S rDNA克隆文庫法分析Biostyr曝氣生物濾池處理城市污水的細菌多樣性研究[J].環境科學學報, 2011,31:2117-2124.
[29] M Kumar, J G Lin. Co-existence of anammox and denitrification for simultaneous nitrogen and carbon removal—Strategies and issues[J]. Journal of Hazardous Materials, 2010,178: 1-9.
[30] A M K Vincent R Hill, Narayanan Jothikumar, Trisha B Johnson, Donghyun Hahn, Theresa L. Cromeans, Multistate Evaluation of an Ultrafiltration-Based Procedure for Simultaneous Recovery of Enteric Microbes in 100-Liter Tap Water Samples[J]. Applied Environmental Microbiology, 2007,73: 4218-4225.
[31] F Ju, T Zhang. Bacterial assembly and temporal dynamics in activated sludge of a full-scale municipal wastewater treatment plant[J]. Isme Journal,2014,9: 683-695.
[32] P K?mpfer, N Lodders, E Falsen. Hydrotalea flava gen. nov, sp. nov, a new member of the phylum Bacteroidetes and allocation of the genera Chitinophaga, Sediminibacterium, Lacibacter, Flavihumibacter, Flavisolibacter, Niabella, Niastella, Segetibacter, Parasegetibacter, Terrimonas, Ferr[J]. International Journal of Systematic Evolutionary Microbiology, 2011(61): 518-523.
[33] Y Feng, X Li, Y Yu, J Qi, X Jia, J Wang, X Li. Production of unburned calcium silicon filter material (UCSFM) from oyster shell and its performance investigation in an A/O integrated biological aerated filter reactor(A/O-BAF) [J]. Rsc Advances,2016,6.
[34] S J Mcilroy, A Starnawska, P Starnawski, A M Saunders, M Nierychlo, P H Nielsen, J L Nielsen. Identification of active denitrifiers in full-scale nutrient removal wastewater treatment systems[J]. Environmental Microbiology, 2016,18:1-24.
[35] T Sadaie, A Sadaie, M Takada, K Hamano, J Ohnishi, N Ohta, K Matsumoto, Y Sadaie. Reducing sludge production and the domination of Comamonadaceae by reducing the oxygen supply in the wastewater treatment procedure of a food-processing factory[J]. Agricultural and Biological Chemistry, 2007,71:791-799.
[36] P F Dunfield, A Yuryev, P Senin, A V Smirnova, M B Stott, S Hou, B Ly, J H Saw, Z Zhou, Y Ren. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia[J]. Nature, 2007,450:879-882.
[37] M Khoshnoodi. Microbes involved in arsenic removal in passive treatment systems[M]. Vancoaver:University of British Columbia,2014.
[38] M A Dojka, J K Harris, N R Pace. Expanding the known diversity and environmental distribution of an uncultured phylogenetic division of bacteria[J]. Applied Environmental Microbiology, 2000,66: 1617-1621.
[39] M Albertsen, P Hugenholtz, A Skarshewski, K L Nielsen, G W Tyson, P H Nielsen. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes[J]. Nature Biotechnology, 2013,31:533-538.
[40] N Igarashi, H Moriyama, T Fujiwara, Y Fukumori, N Tanaka. The 2.8 A structure of hydroxylamine oxidoreductase from a nitrifying chemoautotrophic bacterium, Nitrosomonas europaea[J]. Nature Structural Biology, 1997,4:276-284.
[41] Y Yue, J Liu, B Ma, L Ye, W Bo, Y Peng. Improving municipal wastewater nitrogen and phosphorous removal by feeding sludge fermentation products to sequencing batch reactor (SBR) [J]. Bioresource Technology, 2016,222:326-334.
[42] J M Regan, G W Harrington, D R Noguera. Ammonia- and nitrite-oxidizing bacterial communities in a pilot-scale chloraminated drinking water distribution system[J]. Applied Environmental Microbiology, 2002,68:73-81.
[43] S Lücker, J Schwarz, C Gruberdorninger, E Spieck, M Wagner, H Daims. Nitrotoga-like bacteria are previously unrecognized key nitrite oxidizers in full-scale wastewater treatment plants[J]. Isme Journal, 2014,9:708-720.
[44] B Kartal, N L Van, J Rattray, V D V Jl, M C Schmid, D J Sinninghe, M S Jetten, M Strous. Candidatus ‘Brocadia fulgida’: an autofluorescent anaerobic ammonium oxidizing bacterium[J]. FEMS Microbiology Ecology, 2008,63:46-55.
Improvement in Acidification during Aerobic Treatment of Digested Swine Wastewater and Its Microbial Community Variation /
WANG Shen1,2, DENG Liang-wei1,2, XU Ze1,2, WANG Shuang1,2, JIANG Yi-qi1,2, ZHENG Dan1,2/
( 1.Biogas Institute of Ministry of Agriculture,Chengdu 610041,China; 2. Laboratory of Development and Application of Rural Renewable Energy,Ministry of Agriculture,Chengdu 610041,China)

Digested swine wastewater; SBR; pH; 16S rRNA; Anammox
2017-01-05
項目來源: 國家自然科學基金(31572450); 國家生豬技術產業體系(CARS-36-10B)
王 伸(1990-),男,安徽亳州人,在讀碩士,研究方向為農村廢棄物處理技術,E-mail:ws55185366@163.com
鄧良偉,E-mail:dengliangwei@caas.cn
S216.4; X703
A
1000-1166(2017)02-0015-09