袁 磊,李文周,陳文偉,張金波,3,4,5*,蔡祖聰,3,4,5
(1 南京師范大學地理科學學院,南京 210023;2 戴云山國家級自然保護區管理局,福建德化 362500;3 江蘇省地理環境演化國家重點實驗室培育建設點,南京 210023;4 江蘇省地理信息資源開發與利用協同創新中心,南京 210023;5 南京師范大學虛擬地理環境教育部重點實驗室,南京 210023)
戴云山自然保護區森林土壤氮轉化特點研究①
袁 磊1,李文周2,陳文偉2,張金波1,3,4,5*,蔡祖聰1,3,4,5
(1 南京師范大學地理科學學院,南京 210023;2 戴云山國家級自然保護區管理局,福建德化 362500;3 江蘇省地理環境演化國家重點實驗室培育建設點,南京 210023;4 江蘇省地理信息資源開發與利用協同創新中心,南京 210023;5 南京師范大學虛擬地理環境教育部重點實驗室,南京 210023)
利用15N穩定同位素成對標記法并結合MCMC數值模型,研究了戴云山國家級自然保護區天然毛竹林(BF)及其鄰近黃山松–杉木林(NF)土壤氮素初級轉化速率,以評估該地區森林生態系統土壤氮狀態,并分析其保氮機制。結果表明:BF土壤-N的總產生速率(以N量計,13.16 μg/(g?d))是NF土壤的2倍(6.25 μg/(g?d)),其中黏土礦物對-N的解吸作用是BF產生-N的主要過程(55%),而NF主要以有機氮的礦化作用為主(56%)。BF土壤氮素初級礦化速率為 5.56 μg/(g?d),顯著高于 NF的 3.40 μg/(g?d)。土壤氮素初級礦化速率與土壤全氮含量顯著正相關( P<0.05),而與C/N比表現顯著負相關(P<0.05)。BF與NF土壤-N總產生量的90% 均被土壤微生物的同化作用以及黏土礦物的吸附作用所消耗。兩種土壤的硝化作用微弱,BF土壤總硝化速率(以N量計,0.23 μg/(g?d))與NF土壤(0.26 μg/(g?d))相差不大。兩種林地土壤硝化作用均以有機氮的異養硝化為主,自養硝化過程可忽略不計。BF與NF土壤中-N消耗速率均超過了產生速率,表明BF與NF土壤均能有效降低-N的潛在淋失風險,其中BF土壤中-N的消耗以微生物的同化作用為主(58%),而NF土壤以-N異化還原為-N過程為主(68%)。戴云山國家級自然保護區兩種亞熱帶森林土壤的氮轉化過程均以-N轉化為主,產生的絕大多數-N會迅速通過微生物對-N的同化作用以及黏土礦物對-N的吸附作用固持到有機氮庫中;自養硝化過程微弱,使得無機氮主要以-N的形式保存于土壤中,同時酸性土壤環境有效削弱了-N的揮發損失。此外,相對較高的-N微生物同化速率以及異化還原為-N速率,進一步有效降低了-N的淋溶損失以及反硝化作用的氣態損失風險,使該地區森林土壤能夠在多雨的條件下有效保持氮素,滿足植物的生長需求。
15N成對標記;MCMC數值優化模型;氮初級轉化速率;保氮機制
氮素是植物生長所需的必要營養元素之一[1],同時也是控制生態系統物種組成及多樣性、影響生態系統穩定性及其功能的關鍵因子[2],氮素的缺失將限制森林生態系統生產力[3]。地球表面的大部分地區,尤其是溫帶及北方森林,生態系統中的植被生長及微生物量的累積過程都是受氮素供應限制的[4]。
由于燃燒化石燃料、施用農業氮肥及種植豆科作物等人類活動的影響,大氣中活性氮的沉降量日益增加[5]。短期、少量的氮沉降使生態系統中可利用氮素增加,有利于提高生態系統生產力及生物量的累積[4]。在受氮沉降影響較小的低污染地區,如瑞典中部及挪威等地,大氣氮沉降絕大部分(超過95%)被植物林冠吸收,此時氮沉降作為一種養分來源而表現一定的施肥作用。研究表明,生態系統有限的保氮能力伴隨著持續增加的大氣氮沉降量將達到氮飽和狀態[6–7]。此時,氮沉降的施肥作用逐漸消失、氮素的氣態或淋溶損失風險增加,氮沉降可能造成空氣質量下降[8]、水體酸化和富營養化[9]以及森林衰退[10]等危害,對生態系統的結構和功能造成嚴重影響。一般認為土壤保氮機制主要包括:①較低的有機氮礦化速率與-N自養硝化速率[11];②較高自養硝化速率結合較高的-N微生物同化速率[12];③較高的-N異化還原為-N作用[13–14]等。這些氮轉化特點均能有效地將氮素固持于生態系統內,降低系統氮素的損失風險。因此,明確土壤氮轉化的主要特點是評價土壤氮素保持能力的關鍵之一。土壤氮轉化表征的是一種形態氮素向另一種形態氮素的轉變過程[15]。土壤氮素的轉化速率包括凈轉換速率和初級轉化速率。凈轉化速率是指單位時間內某種特定形態氮素含量的變化速率,表征的是氮素的含量變化,不能指示該形態氮素含量變化的相關具體氮轉化過程的實際轉化速率。而初級轉化速率是指單位時間內一種形態的氮素轉變為另一種氮素形態的變化速率[16],是確定土壤氮素各轉化過程真實速率的最佳指標。研究土壤氮素初級轉化速率的基本方法是15N同位素稀釋法[17]。隨著分析技術的發展,15N同位素稀釋法測定土壤氮素初級轉化速率的原理與計算方法日趨完善。Müller等[18]在總結前人研究成果的基礎上,建立了15N穩定同位素成對標記結合MCMC(Markov chain Monte Carlo)優化數值模型(圖1),其能同時計算10個氮素轉化過程的總轉化速率,這是目前描述氮轉化過程較為詳細的15N概念模型之一。
戴云山國家級自然保護區屬于典型的亞熱帶海洋性季風氣候,夏季高溫多雨。不同于溫帶森林生態系統受氮限制,一般認為亞熱帶森林土壤氮是相對富集、能夠滿足植物生長的需求。在溫暖濕潤且伴隨強烈風化的環境條件下,亞熱帶森林土壤氮的潛在淋失風險較高,為什么氮素會表現出相對富集的狀態?研究該地區土壤氮轉化特點,明確其相關保氮機制,對于該地區活性氮的調控具有積極意義。毛竹林作為戴云山自然保護區主要植被群系之一,是福建省最主要的竹林(全省種植面積55.6萬hm2),同時黃山松也是該地區代表性的植被。因此,本研究采集戴云山自然保護區內天然毛竹林土壤及其鄰近黃山松-杉木林土壤樣品,利用15N成對標記法并結合數值MCMC模型,測定土壤氮素初級轉化速率,以期從土壤氮轉化過程角度明確土壤保氮機制,研究結果對于更加準確地預測全球變化,如氣候變化、氮沉降等條件下土壤氮動態具有一定的科學意義。
1.1 材料
戴云山國家級自然保護區位于福建省泉州市德化縣內,屬于典型的亞熱帶海洋性季風氣候區。根據保護區內九仙山氣象站資料記錄,保護區年平均降雨量1 700 ~ 2 000 mm,80% 左右集中在3—9月;年平均氣溫15.6 ~ 19.5℃,其中最冷月1月均溫6.5 ~10.5℃,最熱月7月均溫23 ~ 27.5℃;霧日年平均達220 d。
本研究土壤樣品采自保護區內西溪村一片天然毛竹林及其臨近的黃山松-杉木林,地理位置為118°05′ ~118°09′ E,25°38′ ~ 25°41′ N。毛竹林(BF)為純林,林內其他喬木、灌木較少;黃山松-杉木(NF)林下植被以鐵芒萁為主,地表枯枝落葉層約5 ~ 10 cm。在選定的樣地內,隨機劃分出6個1 m × 1 m 的小區,每個小區距離50 m以上。每個小區內采用“S”型6點混合采樣方法采集0 ~ 15 cm表層土壤樣品,每個林型采集6個土壤樣品。土壤樣品帶回實驗室,挑出碎石及細根,過2 mm篩,儲存于4℃冰柜,用于相關理化性質分析和培養實驗。
1.2 方法
1.2.1 土壤理化性質測定 土壤樣品相關理化性質的測定參照《土壤農業化學分析方法》[19]。土壤pH采用DMP-2 mV/pH計(Quark Ltd, Nanjing, China)測定;土壤有機碳和全氮分別采用重鉻酸鉀容量法以及半微量開氏法測量;土壤無機氮(-N和-N)含量由流動分析儀(Skalar, Breda, Netherlands)測定。圖2為土壤樣品具體的相關理化指標。
1.2.215N成對標記實驗 分別稱取相當于20 g干土重的鮮土土壤樣品于250 ml錐形瓶中,每個土壤24瓶,在25℃恒溫培養箱中預培養24 h。每個土壤樣品分別設置15NH4NO3和NO3兩個標記處理,每個處理12瓶。用移液管向預培養24 h后土壤樣品中逐滴加入2 ml15NH4NO3(10.23% atom)或NO3(10.12% atom)標記液,使其均勻分布于土壤表面,-N和-N的加入量均為N 20 μg/g干土。加入蒸餾水調節土壤含水量至60%WHC,用保鮮膜封住錐形瓶口,將土樣放入 25℃恒溫培養箱中培養。在加入標記液后的0.5 h、2 d、4 d和6 d,每個標記處理隨機取3個重復,按水土比為5∶1比例加入100 ml 2 mol/L KCl溶液浸提無機氮,在25℃ 250 r/min搖床振蕩60 min,定性濾紙過濾。KCl浸提液中無機氮含量由氧化鎂-代氏合金蒸餾法測定[20],具體操作為:先在 KCl浸提液中加氧化鎂,蒸餾測定無機氮中-N;再加入代氏合金,將NO3–-N還原成-N,繼續蒸餾測定-N。餾出液經過硼酸和混合指示劑(甲基紅+溴甲酚綠)吸收液吸收,再由 0.02 mol/L H2SO4標準液滴定測定-N 和-N濃度。在蒸餾前,要先測定定氮儀-N 和-N的回收率,即用已知濃度的標準液(-N含量 1 g/L和-N含量 1 g/L)按上述操作蒸餾,結果表明-N和-N回收率分別為99% 和95%。經過H2SO4標準液滴定后的餾出液置于80℃烘箱中濃縮,烘干,由同位素質譜儀(IRMS 20-22, SerCon)測定-N和-N的15N豐度。
1.2.3 MCMC數值模型 Müller等[18]建立了馬爾科夫鏈蒙特卡洛隨機采樣方法(Markov chain Monte Carlo, MCMC),該模型(圖1)區分了5個氮庫,其中將土壤有機氮庫分為易礦化和難礦化氮庫;能同時計算10個氮素轉化過程的總轉化速率,包括了難分解有機氮和易分解有機氮的礦化作用(MNrec和 MNlab)、-N被微生物固持于難分解有機氮庫和易分解有機氮庫(INH4_Nrec和INH4_Nlab)、黏土礦物對NH4+-N的吸附與解吸作用(ANH4和RNH4ads)-N自養硝化作用(ONH4)、有機氮異養硝化作用(ONrec)、-N的異化還原為-N (DNO3)以及微生物對-N的同化作用(INO3)。這是目前描述氮轉化過程較為詳細的15N概念模型之一。關于MCMC數值模型介紹、參數設置及具體操作在Müller等[18]、Rütting等[14]以及Zhang等[21]中有詳細說明。

圖115N示蹤模型Fig. 115N tracing model
1.3 數據處理
采用 T檢驗來比較兩類土壤樣品基本理化性質以及土壤氮轉化各過程的初級轉化速率之間的差異,當P<0.05時,說明被檢測的因素之間存在顯著差異。利用Pearson相關系數對氮轉化過程與土壤理化性質之間以及各氮轉化過程之間的相關性進行統計分析,對于相關性顯著的因子通過建立回歸方程來分析其相互關系。所有統計分析在SPSS19.0軟件上完成,圖形制作使用Origin Pro 9.0軟件。
2.1 土壤理化性質
兩種林地土壤樣品的pH在4.31 ~ 4.80,其中毛竹林(BF)土壤樣品pH均值為4.66(圖2),顯著高于黃山松–杉木林(NF)土壤 (pH 4.45) (P<0.01)。BF和NF土壤有機碳平均含量分別為53.19 g/kg和54.44 g/kg,全氮平均含量分別為3.71 g/kg和3.26 g/kg,但兩種林地間差異均不顯著。BF土壤C/N比為4.32,明顯低于NF土壤(16.82)(P<0.01)。兩種林地土壤中-N占無機氮總量比例均大于0.5,表明無機氮組成形式均以-N為主,兩種土壤-N含量差別不大(BF為2.74 mg/kg,NF為2.64 mg/kg)。BF土壤-N含量(1.76 mg/kg)顯著高于NF (0.43 mg/kg) (P<0.001)。

圖2 BF與NF表層土壤理化性質Fig. 2 Physical and chemical properties in studied forest soils
2.2 土壤氮素初級轉化速率

圖3 BF與NF土壤氮素初級轉化速率(μg/(g?d))Fig. 3 Gross N transformation rates in studied forest soils estimated by15N tracing model
INO3與DNO3作用是-N的兩種主要利用途徑。BF與NF土壤總-N的消耗速率(INO3+DNO3)分別為0.46 μg/(g?d)和0.32 μg/(g?d),但差異不顯著。在BF與NF土壤中,-N消耗速率均超過了-N的總產生速率,其中INO3占BF土壤-N總消耗量的58%,而NF土壤以DNO3作用為主(68%)。BF與NF土壤INO3分別為0.32 μg/(g?d)和0.23 μg/(g?d),同時DNO3分別對應0.14 μg/(g?d)和0.09 μg/(g?d),但差異均不明顯。BF與NF兩種林地土壤,ONH4、ONre、INO3以及DNO3過程均與土壤理化性質如pH、有機碳、全氮、C/N比等無明顯相關性。

圖4 土壤氮素礦化速率(μg/(g?d))與土壤理化性質的相關性Fig. 4 Correlation between N mineralization rates and soil physical and chemical properties
3.1 NH4+-N動態
一般認為,森林土壤氮素總初級礦化速率低于10 μg/(g?d)[22]。BF土壤氮素初級礦化速率在4.33 ~7.59 μg/(g?d),其平均礦化速率為5.56 μg/(g?d),這與亞馬遜東部原始低地森林砂質土的季節性平均礦化速率(6.0 μg/(g?d))[23]以及印度尼西亞受氮素限制的山地森林土壤礦化速率(>5.0 μg/(g?d))[24]相近。NF土壤氮素初級礦化速率在2.37 ~ 4.55 μg/(g?d),其平均礦化速率(3.40 μg/(g?d))與江西的次生常綠闊葉林(3.70 μg/(g?d))[21]以及 Zhang等[25]研究中國東部福建(2.72 μg/(g?d))以及廣東(2.64 μg/(g?d))森林土壤相近。然而BF與NF兩種林地土壤氮素總初級礦化速率,均低于亞馬遜東部原始低地森林黏土的季節性平均礦化速率(13.5 μg/(g?d))[23]以及智利南部的原始森林土壤(14.7 μg/(g?d))[13]。
BF土壤氮素平均初級礦化速率顯著高于NF土壤。土壤氮素初級礦化速率主要受土壤有機氮含量與質量(C/N)的影響[26]。土壤氮素初級礦化速率隨土壤全氮含量的增加而增加,體現了基質在無機氮產生過程中的重要性。初級礦化速率與土壤 C/N比顯著負相關,這與很多研究結果相一致[15,27],較低的 C/N比意味著土壤有機質可利用性較高[28],這也體現了基質質量在礦化過程中的重要性。BF與NF土壤都來自氣候條件、土壤類型等相似的鄰近區域,造成BF與 NF土壤氮素初級礦化速率不同的關鍵因素在于不同典型植被下土壤性質的差異。許多研究發現,植被種類的差異以及不同植被下凋落物質量的差異是控制森林土壤氮素礦化作用的重要因素[29]。植被類型的差異直接影響由植物殘體及根系分泌物產生而來的土壤有機質的質量及其數量,進而導致土壤微生物群落的改變,而對土壤氮轉化過程產生一定的影響[30]。此外,MNrec與土壤 pH顯著正相關,可能是pH升高促使土壤有機質的可溶性增加,提高了土壤碳、氮的可利用性[31]。
已有的研究發現,硝化作用對土壤pH的變化很敏感[36],并且pH是控制ONH4和ONrec過程的重要因素之一[25]。在pH<5的土壤中,微生物將-N氧化為-N的過程微弱[37]。本研究中,BF與NF土壤pH在4.31 ~ 4.80,兩種林地土壤總-N產生的90% 均來自 ONrec,ONH4相對 ONrec可忽略不計,這也證實了“即使-N含量充足時,自養硝化作用在一些酸性森林土壤中意義不大”的觀點[38]。自養硝化作用受抑制,減少生態系統中氮素損失,可作為一種有效的保氮機制[11]。一般認為,異養硝化作用是由真菌起主導作用,并且廣泛存在于擁有高度穩定微生物群落的原始森林生態系統中[39]。BF與NF土壤的硝化作用均以異養硝化為主,這與眾多研究結果一致[34–35],表明異養硝化在土壤有機碳含量較高、pH較低的酸性森林土壤中有重要作用,是-N的主要產生途徑。
BF與 NF土壤 DNO3作用的變化范圍為 0.05 ~0.18 μg/(g?d),這與德國的溫帶草地土壤結果相近(0.090 μg/(g?d))[43],但低于熱帶高地森林土壤(0.23 ~0.6 μg/(g?d))[44]、亞馬遜東部的原始低地森林(0.3 ~0.8 μg/(g?d))[23]以及智利南部的原始森林(0.45 μg/(g?d))[13]。DNO3是NF土壤N的一種重要的消耗方式。已有的研究結果表明,在土壤有機質含量較高且降雨豐富的(亞)熱帶濕潤土壤中 DNO3廣泛存在[45]。DNO3將N轉化為更易被植物、微生物吸收利用且以不易移動的N形式,避免了更多氮素的淋溶或者氣態損失,有效地將氮素保存于生態系統中[46]。Behrendt等[47]發現一些細菌能夠同時進行 ONrec與DNO3,ONrec與DNO3的結合相對于礦化作用,能夠提供另一種將土壤有機氮轉化為N的途徑。隨著大氣 CO2濃度的持續增加,可能加大植被對土壤氮素的需求,甚至造成缺氮的狀況;而有效的保氮機制,如N微生物同化和DNO3作用,對于維持生態系統的生產力將尤為重要[48]。
[1] Binkley D, Hart S C. The components of nitrogen availability assessments in forest soils[M]//Advances in soil science. New York: Springer, 1989: 57–112
[2] Bobbink R, Roelofs J G M. Nitrogen critical loads for natural and semi-natural ecosystems: The empirical approach[J]. Water, Air, and Soil Pollution, 1995, 85(4): 2413–2418
[3] Reich P B, Grigal D F, Aber J D, et al. Nitrogen mineralization and productivity in 50 hardwood and conifer stands on diverse soils[J]. Ecology, 1997, 78(2): 335–347
[4] Vitousek P M, Howarth R W. Nitrogen limitation on land and in the sea: how can it occur?[J]. Biogeochemistry, 1991, 13(2): 87–115
[5] Galloway J N, Hiram Levy I I, Kasibhatla P S. Year 2020: Consequences of population growth and development on deposition of oxidized nitrogen[J]. Ambio, 1994, 23(2): 120–123
[6] Aber J D. Nitrogen cycling and nitrogen saturation in temperate forest ecosystems[J]. Trends in Ecology & Evolution, 1992, 7(7): 220–224
[7] Aber J D, Nadelhoffer K J, Steudler P, et al. Nitrogen saturation in northern forest ecosystems[J]. BioScience, 1989, 39(6): 378–286
[8] Crutzen P J, Ehhalt D H. Effects of nitrogen fertilizers and combustion on the stratospheric ozone layer[J]. Ambio, 1977, 6(2/3): 112–117
[9] Boxman A W, van Dam D, van Dijk H F G, et al. Ecosystem responses to reduced nitrogen and sulphur inputs into two coniferous forest stands in the Netherlands[J]. Forest Ecology and Management, 1995, 71(1): 7–29
[10] Schulze E D. Air pollution and forest decline in a spruce (Picea abies) forest[J]. Science, 1989, 244(4906): 776–783
[11] Vitousek P M, Gosz J R, Grier C C, et al. Nitrate losses from disturbed ecosystems[J]. Science, 1979, 204(4392): 469–474
[12] Stark J M, Hart S C. High rates of nitrification and nitrate turnover in undisturbed coniferous forests[J]. Nature, 1997, 385(6611): 61–64
[13] Huygens D, Rütting T, Boeckx P, et al. Soil nitrogen conservation mechanisms in a pristine south Chilean Nothofagus forest ecosystem[J]. Soil Biology and Biochemistry, 2007, 39(10): 2448–2458
[14] Rütting T, Huygens D, Müller C, et al. Functional role of DNRA and nitrite reduction in a pristine south Chilean Nothofagus forest[J]. Biogeochemistry, 2008, 90(3): 243–258
[15] Hart S C, Nason G E, Myrold D D, et al. Dynamics of gross nitrogen transformations in an old-growth forest: The carbon connection[J]. Ecology, 1994, 75(4): 880–891
[16] Di H J, Cameron K C, McLaren R G. Isotopic dilution methods to determine the gross transformation rates of nitrogen, phosphorus, and sulfur in soil: A review of thetheory, methodologies, and limitations[J]. Soil Research, 2000, 38(1): 213–230
[17] Stark J M. Nutrient transformations[M]//Sala O E, Jackson R B, Mooney H A, et al. Methods in ecosystem science. New York: Springer, 2000: 215–234
[18] Müller C, Rütting T, Kattge J, et al. Estimation of parameters in complex15N tracing models by Monte Carlo sampling[J]. Soil Biology and Biochemistry, 2007, 39(3): 715–726
[19] 魯如坤. 土壤農業化學分析方法[M]. 中國農業科技出版社, 2000
[20] Zhang J, Cai Z, Cheng Y, et al. Denitrification and total nitrogen gas production from forest soils of Eastern China[J]. Soil Biology and Biochemistry, 2009, 41(12): 2551–2557
[21] Zhang J, Müller C, Zhu T B, et al. Heterotrophic nitrification is the predominantproduction mechanism in coniferous but not broad-leaf acid forest soil in subtropical China[J]. Biology and Fertility of Soils, 2011, 47(5): 533–542
[22] Booth M S, Stark J M, Rastetter E. Controls on nitrogen cycling in terrestrial ecosystems: A synthetic analysis of literature data[J]. Ecological monographs, 2005, 75(2): 139–157
[23] Sotta E D, Corre M D, Veldkamp E. Differing N status and N retention processes of soils under old-growth lowland forest in Eastern Amazonia, Caxiuan?, Brazil[J]. Soil Biology and Biochemistry, 2008, 40(3): 740–750
[24] Corre M D, Dechert G, Veldkamp E. Soil nitrogen cycling following montane forest conversion in central Sulawesi, Indonesia[J]. Soil Science Society of America Journal, 2006, 70(2): 359–366
[25] Zhang J, Zhu T B, Cai Z C, et al. Nitrogen cycling in forest soils across climate gradients in Eastern China[J]. Plant and Soil, 2011b, 342(1/2): 419–432
[26] Ste-Marie C, Houle D. Forest floor gross and net nitrogen mineralization in three forest types in Quebec, Canada[J]. Soil Biology and Biochemistry, 2006, 38(8): 2135–2143
[27] Mack M C, D'Antonio C M. Exotic grasses alter controls over soil nitrogen dynamics in a Hawaii an woodland[J]. Ecological Applications, 2003, 13(1): 154–166
[28] Attiwill P M, Adams M A. Nutrient cycling in forests[J]. New Phytologist, 1993, 124(4): 561–582
[29] Lovett G M, Rueth H. Potential nitrogen mineralization and nitrification in American beech and sugar maple stands along a nitrogen deposition gradient in the northeastern US[J]. Ecological Applications, 1999, 9(1330): 44
[30] Patra A K, Abbadie L, Clays-Josserand A, et al. Effects of management regime and plant species on the enzyme activity and genetic structure of N-fixing, denitrifying and nitrifying bacterial communities in grassland soils[J]. Environmental Microbiology, 2006, 8(6): 1005–1016
[31] Curtin D, Campbell C A, Jalil A. Effects of acidity on mineralization: pH-dependence of organic matter mineralization in weakly acidic soils[J]. Soil Biology and Biochemistry, 1998, 30(1): 57–64
[32] Brady N C, Weil R R. The nature and properties of soils[M]. Prentice-Hall Inc., 1996
[33] Zhang J B, Zhu T B, Cai Z C, et al. Effects of long-term repeated mineral and organic fertilizer applications on soil nitrogen transformations[J]. European Journal of Soil Science, 2012, 63(1): 75–85
[34] Hall S J, Matson P A. Nutrient status of tropical rain forests influences soil N dynamics after N additions[J]. Ecological Monographs, 2003, 73(1): 107–129
[35] Corre M D, Brumme R, Veldkamp E, et al. Changes in nitrogen cycling and retention processes in soils under spruce forests along a nitrogen enrichment gradient in Germany[J]. Global Change Biology, 2007, 13(7): 1509–1527
[36] De Boer W, Kowalchuk G A. Nitrification in acid soils: Micro-organisms and mechanisms[J]. Soil Biology and Biochemistry, 2001, 33(7): 853–866
[37] Weber D F, Gainey P L. Relative sensitivity of nitrifying organisms to hydrogen ions in soils and in solution[J]. Soil Science, 1962, 94(3): 138–145
[38] Schimel J P, Firestone M K, Killham K S. Identification of heterotrophic nitrification in a Sierran forest soil[J]. Applied and Environmental Microbiology, 1984, 48(4): 802–806
[39] Wood P M. Autotrophic and heterotrophic mechanisms for ammonia oxidation[J]. Soil Use and Management, 1990, 6(2): 78–79
[40] Recous S, Machet J M, Mary B. The partitioning of fertilizer-N between soil and crop: Comparison of ammonium and nitrate applications[J]. Plant and Soil, 1992, 144(1): 101–111
[41] Recous S, Mary B, Faurie G. Microbial immobilization of ammonium and nitrate in cultivated soils[J]. Soil Biology and Biochemistry, 1990, 22(7): 913–922
[42] Magill A H, Aber J D, Hendricks J J, et al. Biogeochemical response of forest ecosystems to simulated chronic nitrogen deposition[J]. Ecological applications, 1997, 7(2): 402–415
[43] Rütting T, Müller C. Process-specific analysis of nitrite dynamics in a permanent grassland soil by using a Monte Carlo sampling technique[J]. European Journal of Soil Science, 2008, 59(2): 208–215
[44] Silver W L, Thompson A W, Reich A, et al. Nitrogen cycling in tropical plantation forests: potential controls on nitrogen retention[J]. Ecological Applications, 2005, 15(5): 1604–1614
[45] Templer P H, Silver W L, Pett-Ridge J, et al. Plant and microbial controls on nitrogen retention and loss in a humid tropical forest[J]. Ecology, 2008, 89(11): 3030–3040
[46] Tiedje J M. Ecology of denitrification and dissimilatory nitrate reduction to ammonium[J]. Biology of Anaerobic Microorganisms, 1988, 717: 179–244
[47] Behrendt U, Schumann P, Stieglmeier M, et al. Characterization of heterotrophic nitrifying bacteria with respiratory ammonification and denitrification activity-Description of Paenibacillus uliginis sp. nov., an inhabitant of fen peat soil and Paenibacillus purispatii sp. nov.,isolated from a spacecraft assembly clean room[J]. Systematic and Applied Microbiology, 2010, 33(6): 328–336
[48] Hungate B A, Dukes J S, Shaw M R, et al. Nitrogen and climate change[J]. Science, 2003, 302(5650): 1512–1513
Nitrogen Transformation of Different Subtropical Forest Soils in Daiyun Mountain National Nature Reserve
YUAN Lei1, LI Wenzhou2, CHEN Wenwei2, ZHANG Jinbo1,3,4,5*, CAI Zucong1,3,4,5
(1 School of Geography Science, Nanjing Normal University, Nanjing 210023, China; 2 Daiyun Mountain National Nature Reserve, Dehua, Fujian 362500, China; 3 State Key Laboratory Cultivation Base of Geographical Environment Evolution, Nanjing 210023, China; 4 Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China; 5 Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing 210023, China)
A15N tracing study was carried out to identify the potential gross nitrogen transformations of natural Moso Bamboo forest (BF) soil and adjacent native forest of Huangshan pine (NF) soil in Daiyun Mountain National Nature Reserve of Fujian Province. The results showed that total-N production (N13.16 μg/(g?d)) was twice higher in BF soil than that in NF soil (6.25 μg/(g?d)) soil with amounted to 55% of totalN production came from release of adsorbedin BF soil while equal to 56% in NF soil was mineralization of soil labile and recalcitrant organic matter. Gross mineralization rate was significantly faster in BF soil (5.56 μg/(g?d)) compared to NF soil (3.40 μg/(g?d)) and gross mineralization rate was found positive correlated with TN and negative correlated with C/N ratio. Approximately 90% of totalN production was consumed by immobilization ofand adsorption ofon cation exchange sites in the two soils. TotalN production in BF soil (0.23 μg/(g?d)) was almost the same with NF soil (0.26 μg/(g?d)), of which approximately 90% were came from heterotrophic nitrification and oxidation ofwere negligible compared to ONrecin the two soils. TotalN consumption exceeded totalN production in both soils, which may reduce the risk of potential for N losses. INO3amounted to 58% of total-N consumption in BF soil while DNO3responsible for 68% of total consumption ofin NF soil. The N transformation processes in the two soils were dominant by-N dynamics and most of totalN production was immediately counterbalanced byimmobilization and adsorption ofon cation exchange sites. Soil inorganic nitrogen was mainly in form of-N as oxidation of-N was insignificant in combination with acidic soil environment inhibited ammonium volatilization. Moreover, higher INO3and DNO3can significantly reduce potential-N leaching or gaseous losses under this high temperature and rainfall condition and retain abundant available N in soil to maintain plant growth.
15N tracing; MCMC; Gross nitrogen transformation; Nitrogen retention mechanism
S158.3
A
10.13758/j.cnki.tr.2017.02.005
國家重大科學研究計劃項目(2014CB953803)與江蘇高校優勢學科建設工程項目資助。
* 通訊作者(zhangjinbo@njnu.edu.cn)
袁磊(1990—),男,湖北黃岡人,碩士研究生,主要從事氮循環及其環境效應方面的研究。E-mail: 13776641831@163.com