

摘要:分布式電源并網運行的穩定性一直是限制其推廣應用的主要因素。隨著分布式電源的大規模接入,其所在電力系統發生故障的危害隨之增加。為了精確計算與并網運行的高穿透分布式能源的故障電流,文章構建了具體模型,在故障點設置了電弧,重點研究分布式電源對故障等級的影響與建立電弧模型對保護整定的意義。
關鍵詞:分布式電源;配電網;閃絡故障;電弧電阻;保護整定;配網運行 文獻標識碼:A
中圖分類號:TM761 文章編號:1009-2374(2017)06-0195-02 DOI:10.13535/j.cnki.11-4406/n.2017.06.097
1 概述
近年許多研究表明,分布式電源大規模并網運行存在著許多技術困難及安全隱患。而故障電流的升高及對系統保護配置原則的挑戰是阻礙配電網大規模接入分布式電源的主要原因之一。傳統的配電網規劃及運行方案基于單向電力潮流分析及放射電網技術。故障電流恒定流向下級元件有利于保護裝置等二次設備配置原則相對簡單。而分布式電源的引入將原本的無源網變革為有源網,徹底地改變了這一現狀。保護整定原則應做出相應調整以適應有源網的變革與分布式電源并網運行對其的影響。其重點考慮因素應為以下四點:(1)靈敏度;(2)選擇性;(3)重合閘動作邏輯;(4)孤島系統問題。
在配電網運行分析工作中,短路電流的計算決定著環網柜等電氣設備的設計參數及保護整定值的計算。而分布式電源的并網運行致使精確計算短路電流顯得尤為重要。由于電網短路容量的限制,并網運行的分布式電源也應相應有所限制。一般情況下,如果給出配電網相關數據及分布式電源參數則可計算出系統的最大及最小短路電流。在計算最大短路電流時,應假設所有電源均有效接入、最大負荷運行并發生金屬性接地故障(及故障阻抗為零)。而在計算最小短路電流時,應假設并網運行的電源點數目最少、負荷最輕并發生非金屬接地故障。在這種情況下的故障阻抗應將塔基阻抗和電弧電阻考慮在內。在實際工作中,故障阻抗往往僅憑經驗估算得出。而如果經驗值與實際故障阻抗值具有較大差異,則此時的短路電流計算值也會具有較大誤差進而造成電力系統分析及保護整定值計算的重大錯誤。
統計數據表明,超過80%的故障屬于閃絡故障,因此電弧電阻值的計算在電力系統分析中顯得尤為重要。由于閃絡故障的故障電流取決于電弧電阻值,而電弧電阻非純電阻不遵循線性電阻曲線,致使精確計算電弧電阻及故障電流一直是電力系統分析工作中的重點問題。由于電弧電阻不遵循線性電阻曲線故而使用歐姆定律進行計算會產生較大誤差。電弧電阻的大小取決于電弧長度及通過電弧的電流大小。電弧電阻與電弧長度成正比,與電弧電流成反比。
35kV架空輸電線路發生三相閃絡故障如圖1所示。與輸電網不同的是,配網發生閃絡故障(包括分布式電源接入的配電網)沒有明顯的特征。
本文將重點討論分布式電源發生閃絡故障對配網造成的沖擊。重點研究分布式電源對故障等級的影響與建立電弧模型對保護整定的意義。
2 故障分析及電弧電阻計算
上述公式適用于中、高壓電壓等級。簡而言之,故障電流越大、溫度越高,電弧電阻值越小。電弧電阻值越小,造成的電壓降越小。在電弧長度L一定的情況下,電弧電壓梯度相應越小。
如上公式所述,電弧電阻值遵循為非線性函數變化。其阻值與電弧長度成正比,與電弧電流成負相關,因此如何將非線性的電弧電阻引入現有的故障分析模型并提高其計算精確度是下一步討論的問題。本文將構建一個新型混合故障模型,并在其故障點位置設置閃絡故障,借助此模型可以快速計算出故障電流及電弧電阻。
為計算故障電流及電弧電阻,模型參數如下設置(k為相干指數):(1)設定電弧電阻初始值為0,即;(2)故障點初始故障電流計算由得出;(3)相干參數以自然數增長;(4)故障電流的計算需引入戴維南等效阻抗矩陣。的大小與故障點(k)有關;(5)設定邏輯判斷語句,“if”。
上述算法可應用于計算取決于故障電流的電弧電阻阻值。
根據設備類型及并網協議,分布式電源可有以下三種情況:(1)保持并網運行,可供給較大符合并為電網持續輸入有功、無功;(2)在一定的功率因數下并網運行;(3)在一定的終端電壓下并網運行。
在潮流分布方面,前兩種情況的分布式電源的節點可使用PQ節點模型。在分析這種類型分布式電源潮流分布時,需要將原有的潮流算法調整為電流流向母線。在第三種情況下,由于控制因素為該節點電壓值,其歸屬于PV節點模型。如果無功輸出的計算值超過無功輸出限制,則此時該設備應采用PQ節點模型進行模擬。
本文所展示的故障電流算法適用于大多數中壓配電線路:三股、四股,接地或不接地。不同的變壓器配置(中性點接地方式)及負荷類型同樣對短路電流計算產生不同影響。所以在開展故障電流、電弧電阻分析計算時,合理、恰當的選擇電網參數顯得尤為重要。
3 模型驗證
上文所述之故障電流及電弧電阻算法在如圖2所示34節點放射結構架空配電網模型中進行驗證。總體負荷需求為1770kW。同時,72%的負載集中在距離供電節點56km處。距離該節點最遠一處負載約為59km。該電網的初始電壓。在19-20節點間設置配電變壓器24.9kV/4.16kV。本配網模型僅由單一電壓進行模擬并給出等效系統阻抗69kV/24.9kV(角形接線或星形接線中性點接地),2500kVA為/相。
為了分析分布式電源在此配網中發生故障的故障電流及電弧電阻,在23節點處設置分布式電源電并以PV節點模式進行模擬。此分布式電源參數如下:有功=300kW,額定電壓=25.100kV,內部電阻為=(0.6+j1.5)Ω/相。在下述模擬中電弧長度均設定為L=1m。電弧長度越長,電弧電阻阻值越大從而對故障電流造成影響。下一節將重點研究有無分布式電源接入的配網發生短路故障的現象。
4 模型驗證
在如下模擬中,均忽略接地故障電阻(均視為金屬性接地)。為了模擬系統發生相間故障及兩相接地故障,本文給出不同算法得出兩組故障電流及電弧電阻值。
如圖3和圖4所示,在分布式能源不同接入狀態下、不同節點發生單相接地故障及三相接地故障電弧電阻計算值。
如圖5和圖6所示,在分布式能源不同接入狀態下、不同節點發生單相接地故障及三相接地故障故障電流計算值。
通過分析上述實驗結果可以得出,在電力系統發生接地故障時,分布式能源的接入會降低電弧電阻阻值從而提升故障電流大小,同樣的實驗結果出現在相間故障模擬中。為了進一步分析分布式電源對電弧電阻的影響,本文引入無分布式電源故障時電弧電阻及接入分布式電源的電弧電阻。二者作差為。如圖7所示,模擬發生單相接地時分布式電源對電弧電阻的影響在不同節點計算值。如前文所述,設置節點0為母線。則可從圖中得出,離電源越遠(即饋線末端),分布式電源的接入對電弧電阻影響越大。
5 結語
本文重點研究了分布式電源的接入對配網故障電流及電弧電阻的影響。通過建立34節點配網模型進行故障模擬得出結論,分布式電源的接入明顯升高故障電流,降低了電弧電阻值。越靠近饋線末端的節點受到分布式電源接入的影響越大。
參考文獻
[1] Hadjsaid,N.,Canard,J.-F.R.,Dumas.Dispersedgenerationimpacton distributionnetworks[J].IEEE Computer Applications in Power,1999,(20).
作者簡介:孫闊(1990-),男,山東莒南人,供職于國網天津市電力公司城西供電分公司,碩士,研究方向:電網運行。
(責任編輯:小 燕)