洪 晨,李益飛,司艷曉,邢 奕,4*,王志強,張瑩瑩(.北京科技大學能源與環境工程學院,北京0008;2.中國科學院生態環境研究中心,北京 00085;.清華大學環境學院,北京 00084;4.北京科技大學工業典型污染物資源化處理北京市重點實驗室,北京 0008)
土壤芽孢桿菌產胞外聚合物對Pb2+吸附特性研究
洪 晨1,2,李益飛1,司艷曉3,邢 奕1,4*,王志強1,張瑩瑩1(1.北京科技大學能源與環境工程學院,北京100083;2.中國科學院生態環境研究中心,北京 100085;3.清華大學環境學院,北京 100084;4.北京科技大學工業典型污染物資源化處理北京市重點實驗室,北京 100083)
根據與細菌菌體結合的緊密程度,胞外聚合物(EPS)可以分為粘液層EPS(S-EPS)、松散附著EPS(LB-EPS)、緊密附著EPS(TB-EPS),以土壤芽孢桿菌作為實驗菌株,研究了各層EPS在不同溫度、pH值條件下對Pb2+的吸附特性,建立了EPS的吸附動力學模型和吸附等溫線模型,并采用掃描電子顯微鏡(SEM)觀察各層EPS吸附Pb2+前后的表觀形態的變化.當吸附溫度為35℃、pH值為5.5時,S-EPS、LB-EPS、TB-EPS對Pb2+的吸附量分別為91.35、100.61和90.28mg/g,表明LB-EPS對Pb2+的吸附能力更強.各層EPS吸附Pb2+的吸附動力學模型和吸附等溫線模型均符合準二級動力學模型和Langmuir等溫吸附模型,表明吸附過程分別受化學吸附機理控制和單分子層吸附控制,并通過Langmuir模型計算得到,S-EPS、LB-EPS、TB-EPS對Pb2+的最大吸附量分別為124.224、127.389和119.760mg/g.同時,掃描電鏡結果表明吸附前后各層EPS表觀形態均差異明顯,其中LB-EPS呈肺泡狀,具有更大的比表面積,因此更多的Pb2+吸附在其表面.
EPS;吸附;Pb2+;動力學;SEM
我國是礦產資源大國,但長期以來由于資金與管理等原因,在礦山勘探、開采、選礦及礦物加工等礦區活動對周圍的環境,尤其是土壤,造成了嚴重影響[1-3].重金屬污染[4-5]是礦區環境的主要污染問題之一,重金屬在環境中具有相對穩定性,很難從環境中徹底清除.
重金屬污染的生物修復技術一直是國內外研究的熱點[6-9].微生物修復法作為一種新興的處理技術,在處理低濃度重金屬污染廢水方面,有著廣闊的應用前景[10-11].Guibaud等[12]從活性污泥中提取的胞外聚合物,并采用SMDE極譜法測量了胞外聚合物與金屬的絡合電位,結果表明,SMDE極譜法能夠有效測定溶液中游離態金屬的含量.Tunali等[13]研究了葡萄孢菌菌體對Zn2+的吸附效果,發現物理化學預處理方法均能夠有效提高葡萄孢菌菌體吸附Zn2+的性能.Mesa等[14]發現植物根際部分的細菌對多種重金屬具有抗性,并且這些細菌能夠有效地促進植物的生長.Oves等[15]從工業污水灌溉的土壤中分離出蘇云金芽孢桿菌菌株,發現其對鎘、鉻、銅、鉛和鎳等金屬離子均具有顯著的吸附作用.Guibaud等[16]在研究中發現從活性污泥中提取的胞外聚合物(EPS)對于金屬有很強的結合能力,這種能力有助于保護細胞不受到重金屬活性污泥中金屬成分的有害影響.
微生物菌體生長過程中,隨著新陳代謝的進行在菌體表面會產生主要由多糖、蛋白質、核酸、腐殖質等物質組合團聚而成的大分子聚合物[17-19],即胞外聚合物(EPS).根據 EPS與微生物菌體結合的緊密程度,EPS分為三類:粘液層EPS(S-EPS),松散附著 EPS(LB-EPS),緊密附著EPS(TB-EPS).隨著生物修復技術研究的發展,EPS在生物修復中的作用也日益受到人們的重視.很多研究表明EPS對重金屬離子具有吸附效果,Pe′rez等[20]研究了杰米拉類芽孢桿菌的EPS,發現EPS能夠有效地吸附Pb2+.Wei等[21]研究好氧污泥中 EPS對 Zn(II)的吸附過程,發現EPS中的蛋白質在絡合 Zn(II)中發揮了重要作用.Ye等[22]從節桿菌中提取EPS,研究了EPS對Cu2+,Pb2+,Cr6+等金屬離子的吸附效果,結果表明EPS能夠有效地去除廢水中的重金屬離子.已有的研究在 EPS修復重金屬土壤方面已經做了大量的工作,但在不同層組EPS吸附重金屬機理方面的研究還較少.
本文從鉛鋅礦土壤中提取的抗鉛微生物,研究培養條件對 EPS產量的影響,分析不同層組EPS對 Pb2+的吸附效果.通過吸附動力學模型、吸附等溫線模型、掃描電鏡分析明確不同層組EPS吸附 Pb2+的作用機理.以期對于 EPS吸附Pb2+的過程分析提供一定的實驗和理論依據.
1.1 樣品采集及處理
1.1.1 微生物 土壤芽孢桿菌提取自江西上饒德興銀山的某鉛鋅礦區內的土壤,是通過對土壤中微生物進行抗鉛的篩選及純化,得到具有抗鉛性的優化菌種.
1.1.2 EPS提取 (1)菌種在發酵培養基(1000mL)中培養1~3d,取400mL在5000r/min條件下離心10min,收獲細胞.
(2) 將上清液在再生纖維素(RC)透析袋內透析得到 S-EPS,轉移并保存(-20 ).℃ 試驗重復3次.
(3) 將步驟(1)中沉淀物溶解至超純水中至40mL并在40W下超聲處理1min,再將懸浮液在7000r/min下離心20min.透析得到為LB-EPS溶液,轉移并保存.
(4) 將步驟(3)中沉淀物溶解至超純水中至原體積(10mL),在15000r/min下離心20min.透析得到TB-EPS,轉移并保存.將3個層組的EPS溶液冷凍干燥,制得EPS固體,置于-20℃保存.
1.2 EPS吸附Pb2+試驗
向 Pb2+水溶液中分別加入 EPS,進行如下 4組實驗:(1)溫度對吸附量的影響實驗,Pb2+濃度為150mg/L,EPS投加量為1g/L,pH值為5.5,溫度為25~40 ;(2)pH℃ 值對吸附量的影響實驗,Pb2+濃度為150mg/L,EPS投加量為1g/L,溫度為35 ,pH℃ 值為3~7;(3)吸附時間對Pb2+吸附量的影響實驗,Pb2+濃度為 150mg/L,EPS投加量為1g/L,pH 值為 5.5,溫度為 35 ;(4)℃ 平衡濃度對Pb2+吸附量的影響實驗,Pb2+濃度為 50mg/L~500mg/L, EPS投加量為1g/L,35℃ , pH 5.5.在恒溫空氣浴振蕩培養箱(一恒科學儀器有限公司,DHP-9052,中國)中振蕩吸附 120min,將吸附后的溶液通過 0.22μm 的微孔濾膜進行過濾,分離出上清液和吸附后的EPS樣品.采用電感耦合等離子體發射光譜儀(ICP-OES)(Varian,720-ES,美國)測定上清液中剩余Pb2+的濃度,計算Pb2+吸附量.
Pb2+吸附量如式(1)

式中:qt為吸附量(mg/g);Co為鉛離子初始濃度(mg/L);Ce為鉛離子最終濃度(mg/L);V為反應液的體積,L;M為EPS的質量,g.
1.3 SEM測定
分別準確稱取兩份各層胞外聚合物 0.1g,其中一份并加入到100mL、150mg/L的硝酸鉛溶液中,調節pH值5.5,置于35℃空氣浴震蕩培養箱中震蕩吸附 2小時后取出,將吸附后的溶液通過0.22μm的微孔濾膜進行過濾,分離出上清液和吸附后的EPS樣品.再經①漂洗(生理鹽水);②前固定(2,5%戊二醇,4℃冰箱 2h);③漂洗(磷酸緩沖液,5次,每次7min);④后固定(1%鋨酸2h);⑤漂洗(磷酸緩沖液,5次,每次7min);⑥梯度脫水(50%、70%、85%、95%、100%乙醇各一次,每次15min);⑦浸透;⑧純包埋液過夜處理,將制備好的固定樣品送去進行 SEM 檢測[23].采用生物掃描電子顯微鏡(SEM)(卡爾蔡司,ZeissEVO-18,德國)對吸附前后的各層EPS樣品進行觀察.
2.1 EPS產生量分析
培養溫度與pH值是影響微生物生長存活的重要因素,也同樣影響各層EPS的產量[22,24-26],如圖1所示.在適宜的條件下,微生物生長迅速,產生的 EPS的量更多.當溫度為 35℃、pH值為 5.5時,S-EPS、LB-EPS、TB-EPS產量均達到最高分別為 762.10mg/L,161.12mg/L,28.61mg/L.三層EPS的所占比例差別明顯,S-EPS比例最高(80.06%)、LB-EPS次之(16.93%)、TB-EPS比例最低(3.01%),Hou等[30]的研究也表明 S-EPS、LB-EPS在EPS總量中占主導.
EPS具有抵抗干燥,抵御捕食者以及躲避紫外線等作用,因此EPS大多數以鞘狀,膠囊狀或粘液狀的形式留在細胞表面來隔離或固定營養物質與金屬離子,減少外界環境的不利影響.環境溫度在25-35℃或pH值在4.0~5.5范圍內,溫度較低或 pH值較低時,抑制了細胞內酶的活性,使得EPS產量較低,隨著溫度或pH值的升高,細胞為了適應環境而使得EPS產量逐漸增大.在溫度為35~40℃或pH值為5.5~6.0時,EPS產量下降.這是因為環境條件逐漸適于細胞生長,使得細胞將營養物質用于其他代謝物質的合成,許多研究也有類似的結果[27-30].

圖1 EPS產生量(a)溫度影響(培養時間30h,溫度25~40℃),pH5.5;pH值影響(培養時間30h,溫度35℃,pH 4~6)Fig.1 Effect of (a) temperature (cultivate time 30h, temperature 25~40℃), (b)pH on yield of EPS (cultivate time 30h, temperature 35℃, pH 4~6)
2.2 EPS吸附Pb2+
S-EPS、LB-EPS、TB-EPS在不同溫度、pH值條件下對Pb2+的吸附效果如圖2所示.隨著溫度的升高,EPS對鉛離子的吸附量先增大后減小,如圖2(a)所示.總體而言,各層EPS吸附Pb2+的量隨溫度升高的變化較小,這可能是由于在 25~40℃范圍內,吸附溫度對各層 EPS的官能團種類、數量和性質的影響較小.

圖2 吸附溫度和pH對EPS吸附Pb2+效果的影響Fig.2 Effect of temperature and pH on adsorption of Pb2+
pH值對EPS吸附Pb2+的效果有明顯影響,隨著pH值(3~5.5)升高,各層EPS對Pb2+的吸附量顯著升高,如圖2(b)所示.這是由于溶液pH值升高過程中,EPS的表面電荷和官能團也會發生一定的改變[31-32].EPS中蛋白質、多糖等有機物逐漸去質子化并且帶負電,形成-NH-,-COO-, -O-等官能團[33].這些官能團易與Pb2+絡合,從而增加吸附量.同時,隨著吸附過程中 PbOH+含量的逐漸增加,促進絡合作用會進一步增強.當 pH值(5.5~7)繼續升高,Pb2+會與(OH)2+結合,發生羥基化反應并形成絡合物[34].這些絡合物在形成過程中會與 EPS中的活性位點發生競爭,從而降低EPS的吸附能力,使得EPS對Pb2+的吸附量下降[35].溫度為 35℃的條件下,S-EPS、LBEPS、TB-EPS對Pb2+的吸附量在pH=5.5時達到最大,分別為 91.35mg/g、100.61mg/g、90.28mg/g.
2.3 EPS吸附動力學
隨著吸附時間的增加,EPS對 Pb2+的吸附量總體呈現出逐漸增大的變化趨勢.在80min時達到吸附平衡,如圖3所示.

圖3 吸附時間對Pb2+吸附量的影響Fig.3 Effect of time on adsorption of Pb2+
采用準一級和準二級模型對 S-EPS、LB-EPS、TB-EPS的吸附動力學進行研究,吸附動力學表達式如式(2)、(3)[34]:

式中:qe(mg/g)和qt(mg/g)是關于平衡和接觸時間t (min)的金屬離子吸附量,qe,cal(mg/g)是計算得到的平衡吸附量,qe,exp(mg/g)是實驗得到的平衡吸附量.K1和K2是準一級和準二級比例常數.
將S-EPS、LB-EPS、TB-EPS吸附Pb2+的實驗結果按照上述方程分別進行線性回歸運算,得到準一級和準二級動力學模型相關參數[36],結果如表1所示.表1中k1由圖4(a)中ln(qe-qt)與t經線性擬合得到,k2分別由圖4(b)中t/qt與t經線性擬合得到.根據表 1中的相關性系數(R2)可知,準二級模型可以更好地描述吸附過程(R2>0.99),如圖 4(c)所示.S-EPS、LB-EPS、TB-EPS吸附量的計算值與實驗結果的吻合度較好(S-EPS、LB-EPS吸附量誤差<14%,TB-EPS吸附量誤差<10%).EPS吸附 Pb2+符合準二級動力學模型,表明在吸附過程中EPS和Pb2+之間的吸附速率是受化學吸附機理控制的,吸附行為是通過EPS與Pb2+共享電子來完成的.

圖4 吸附動力學分析Fig.4 kinetics fit of Pb2+adsorption

表1 EPS對Pb2+的吸附動力學參數Table 1 Kinetic parameters for adsorption of Pb2+by EPS
2.4 EPS吸附等溫線
隨著Pb2+平衡濃度增加,EPS對Pb2+的吸附量呈現出增大的趨勢. Pb2+平衡濃度在0-60mg/L范圍內,吸附量快速提高;當 Pb2+平衡濃度>60mg/L,各層 EPS的吸附量增長變緩.Pb2+平衡濃 度 為 140.26mg/L(S-EPS),134.09mg/L(LBEPS), 147.71mg/L(TB-EPS)時,三層EPS吸附量達到最大,分別為 103.74mg/g, 111.91mg/g, 106.29mg/g, 如圖5所示.

圖5 平衡濃度對Pb2+吸附量的影響Fig.5 Effect of equilibrium concentration on adsorption of Pb2+
EPS對 Pb2+的吸附是一個動態平衡過程,為了探討 EPS吸附過程的規律,采用經典的Langmuir,Freundlich和Temkin模型對吸附等溫結果進行分析.Langmuir模型[37-38]假設吸附的發生是通過吸附劑表面的單分子層來實現的,并且沒有吸附質間的相互作用[34],如式(4):

式中:Ce(mg/L)是達到吸附平衡時的Pb2+濃度; qe(mg/g)是吸附量;qmax(mg/g)是最大吸附量, Keq(L/mg)是Langmuir常數與吸附自由能相關[39].
Freundlich模型假設在吸附劑的不均勻表面上發生多分子層吸附[40],如式(5)

式中:Kf[mg/g?(L?mg)1/n]是 Freundlich常數表示吸附質的吸附量,nf是不均勻因素,該因素表明了吸附劑的吸附強度.
Temkin模型考慮了吸附質間的相互作用,如式(6)

式中:A(L/g)和B(J/mol)是Temkin常數,R是理想氣體常數8.314J/(mol?K);T(K)是絕對溫度.

圖6 吸附等溫線分析Fig. 6 Isotherm for adsorption of Pb2+

表2 EPS吸附Pb2+的Langmuir等溫吸附模型參數Table 2 Langmuir model Isotherm parameters for adsorption of Pb2+by EPS
吸附等溫線參數如表2~表4所示,相應的吸附等溫線模型如圖6所示.表2中keq值由圖6(a)中1/qe與1/ce經線性擬合得到,表3中kf值由圖6(b)中lnqe與lnce經線性擬合得到,表4中A值與B值由圖6(c)中qe與lnce經線性擬合得到.從圖 6(d)比較可知,EPS 對 Pb2+的吸附符合Langmuir吸附模型,其中 S-EPS、LB-EPS、TB-EPS的Langmuir吸附模型的相關性系數如表2、表3、表4所示,R2分別為0.999、0.998、0.999.吸附等溫線結果表明,S-EPS、LB-EPS、TB-EPS對 Pb2+的吸附作用均為單分子層吸附,即吸附只發生在EPS的外表面,相關研究也得出類似的結論[41].通過 Langmuir模型計算得到,S-EPS、LB-EPS、TB-EPS對Pb2+的最大吸附量分別為124.224, 127.389和119.760mg/g.

表3 EPS吸附Pb2+的Freundlich等溫吸附模型參數Table 3 Freundlich model Isotherm parameters for adsorption of Pb2+by EPS

表4 EPS吸附Pb2+的Temkin等溫吸附模型參數Table 4 Temkin model Isotherm parameters for adsorption of Pb2+by EPS
2.5 SEM掃描電鏡分析
采用生物掃描電子顯微鏡(SEM)觀察各層EPS吸附Pb2+前后的表觀形態的變化,如圖7所示.可以看出各層EPS的形貌特征有較大差別[23].沒有吸附Pb2+的各層EPS中,S-EPS呈現片層狀,表面比較光滑;而LB-EPS表面由很多肺泡狀突起堆疊而成,與 S-EPS相比,LB-EPS的比表面積明顯增大;TB-EPS則呈現絲狀,并纏繞在一起.EPS能夠與Pb2+發生了離子交換[35],部分基團與Pb2+發生絡合,并通過表面沉淀作用沉積在 EPS表層[34].吸附后,呈片狀的S-EPS表面附著有大量小的塊狀鉛離子絡合產物,即大量鉛離子被吸附到 S-EPS表面;肺泡狀的LB-EPS表面團聚較多的鉛離子絡合產物并團聚呈球狀,LB-EPS比表面積更大,更多的Pb2+吸附在其表面,這也是LB-EPS對鉛離子吸附效果優于 S-EPS的原因;由于吸附 Pb2+并形成絡合物,TB-EPS表面也明顯附著有大量塊狀物,絲狀的TB-EPS比表面積最小,因而單位質量TB-EPS能夠吸附的Pb2+有限,這也是TB-EPS吸附效果不如LB-EPS、S-EPS的原因.

圖7 各層EPS吸附鉛前后掃描電鏡圖Fig. 7 scanning electron microscope micrographs of EPS before and after Pb2+adsorption
3.1 土壤芽孢桿菌產生的EPS能有效吸附Pb2+,單位吸附量LB-EPS>S-EPS>TB-EPS.吸附溫度為35 ,pH℃ 為5.5時,S-EPS、LB-EPS、TB-EPS的吸附量最大,分別為91.35、100.61、90.28mg/g.
3.2 各層EPS對Pb2+吸附均符合準二級動力學模型,吸附速率是受化學吸附機理控制;等溫吸附分析結果表明EPS等溫吸附過程符合Langmuir吸附等溫線模型,各層EPS對Pb2+的吸附是發生在EPS表面的單分子層吸附.
3.3 生物掃描電子顯微鏡結果表明,S-EPS、LB-EPS、TB-EPS的表觀形態差異明顯,LBEPS呈肺泡狀,比表面積更大,更多的 Pb2+吸附在其表面.
[1] 錢春香,王明明,許燕波.土壤重金屬污染現狀及微生物修復技術研究進展 [J]. 東南大學學報(自然科學版), 2013,43(3):669-674.
[2] 黃科瑞,劉 芳,張金磊,等.百色不同功能區土壤重金屬形態分布及其生態風險評價 [J]. 廣東農業科學, 2013,40(11):165-168.
[3] 徐水太,饒運章.礦山開發重金屬污染的評價與研究進展 [J].銅業工程, 2010,(4):5-9.
[4] 趙永紅,張 靜,周 丹,等.贛南某鎢礦區土壤重金屬污染狀況研究 [J]. 中國環境科學, 2015,35(8):2477-2484.
[5] 劉敬勇,常向陽,涂湘林.礦山開發過程中重金屬污染研究綜述[J]. 礦產與地質. 2006,20(6):645-650.
[6] 邱孟龍,李芳柏,王 琦,等.工業發達城市區域耕地土壤重金屬時空變異與來源變化 [J]. 農業工程學報, 2015,31(2):298-305.
[7] 歐陽林男,吳曉芙,李 蕓,等.錳礦修復區泡桐與欒樹生長與重金屬積累特性 [J]. 中國環境科學, 2016,36(3):908-916.
[8] Gutiérrez C, Fernández C, Escuer M, et al. Effect of soil properties, heavy metals and emerging contaminants in the soil nematodes diversity [J]. Environmental Pollution, 2016,213: 184-194.
[9] Banerjee R, Goswami P, Pathak K, et al. Vetiver grass: An environment clean-up tool for heavy metal contaminated iron ore mine-soil [J]. Ecological Engineering, 2016,90:25-34.
[10] Colin V L, Villegas L B, Abate C M. Indigenous microorganisms as potential bioremediators for environments contaminated with heavy metals [J]. International Biodeterioration & Biodegradation, 2012,69:28-37.
[11] Tayel A A, Gharieb M M, Zaki H R, et al. Bio-clarification of water from heavy metals and microbial effluence using fungal chitosan [J]. International Journal of Biological Macromolecules, 2016,83:277-281.
[12] Guibaud G, Comte S, Bordas F, et al. Metal removal from single and multimetallic equimolar systems by extracellular polymers extracted from activated sludges as evaluated by SMDE polarography [J]. Process Biochemistry, 2005,40(2):661-668.
[13] Tunali S, Akar T. Zn(II) biosorption properties of Botrytis cinerea biomass [J]. Journal of Hazardous Materials, 2006,131(1-3): 137-145.
[14] Mesa J, Mateos-Naranjo E, Caviedes M A, et al. Scouting contaminated estuaries: Heavy metal resistant and plant growth promoting rhizobacteria in the native metal rhizoaccumulator Spartina maritime [J]. Marine Pollution Bulletin, 2015, 90(1/2):150-159.
[15] Oves M, Khan M S, Zaidi A. Biosorption of heavy metals by Bacillus thuringiensis strain OSM29 originating from industrial effluent contaminated north Indian soil [J]. Saudi Journal of Biological Sciences, 2013,20(2):121-129.
[16] Guibaud G, Comte S, Bordas F, et al. Comparison of the complexation potential of extracellular polymeric substances (EPS), extracted from activated sludges and produced by pure bacteria strains, for cadmium, lead and nickel [J]. Chemosphere, 2005,59(5):629-638.
[17] Yang Z, Xu R, Zheng Y, et al. Characterization of extracellular polymeric substances and microbial diversity in anaerobic co-digestion reactor treated sewage sludge with fat, oil, grease [J]. Bioresource Technology, 2016,212:164-173.
[18] Deng S, Wang L, Su H. Role and influence of extracellular polymeric substances on the preparation of aerobic granular sludge [J]. Journal of Environmental Management, 2016,173:49-54.
[19] Yue Z, Li Q, Li C, et al. Component analysis and heavy metal adsorption ability of extracellular polymeric substances (EPS) from sulfate reducing bacteria [J]. Bioresource Technology, 2015,194:399-402.
[20] Morillo Pérez J A, García-Ribera R, Quesada T, et al. Biosorption of heavy metals by the exopolysaccharide produced by Paenibacillus jamilae [J]. World Journal of Microbiology and Biotechnology, 2008,24(11):2699-2704.
[21] Wei D, Li M, Wang X, et al. Extracellular polymeric substances for Zn (II) binding during its sorption process onto aerobic granular sludge [J]. Journal of Hazardous Materials, 2016,301: 407-415.
[22] Ye S, Zhang M, Yang H, et al. Biosorption of Cu 2+, Pb 2+ and Cr 6+ by a novel exopolysaccharide from Arthrobacter ps-5 [J].Carbohydrate Polymers, 2014,101(1):50-56.
[23] 韓潤平,鄒衛華,張敬華,等.谷殼的差熱紅外掃描電鏡分析及對銅鉛離子的生物吸附研究 [J]. 環境科學學報, 2006,36(1): 32-39.
[24] Guisado I M, Purswani J, Gonzalez-Lopez J, et al. Physiological and genetic screening methods for the isolation of methyl tert -butyl ether-degrading bacteria for bioremediation purposes [J]. International Biodeterioration & Biodegradation, 2015,97:67-74.
[25] Das S, Jean J S, Kar S, et al. Screening of plant growthpromoting traits in arsenic-resistant bacteria isolated from agricultural soil and their potential implication for arsenic bioremediation [J]. Journal of Hazardous Materials, 2014, 272(10):112-120.
[26] Sahlan O, Belma A, Zekiye S. Evaluation of chromium (VI) removal behaviour by two isolates of Synechocystis sp. in terms of exopolysaccharide (EPS) production and monomer composition. [J]. Bioresource Technology, 2009,100(23):5588-5593.
[27] 旭日花,馬世敏,劉麗莎,等.培養條件對雙歧桿菌 EPS各組分產量及比例的影響 [J]. 微生物學通報, 2013,(11):2066-2074.
[28] 劉麗波,李 春,孟祥晨.1株高產EPS嗜熱鏈球菌的篩選及培養條件優化 [J]. 中國食品學報, 2007,(3):64-68.
[29] Li D, Li J, Zhao F, et al. The influence of fermentation condition on production and molecular mass of EPS produced by Streptococcus thermophilus 05~34 in milk-based medium [J]. Food Chemistry, 2016,197:367-372.
[30] Hou W, Ma Z, Sun L, et al. Extracellular polymeric substances from copper-tolerance Sinorhizobium meliloti immobilize Cu2+[J]. Journal of Hazardous Materials, 2013,261:614-620.
[31] Kinoshita H, Sohma Y, Ohtake F, et al. Biosorption of heavy metals by lactic acid bacteria and identification of mercury binding protein [J]. Research in Microbiology, 2013,164(7):701-709.
[32] Comte S, Guibaud G, Baudu M. Biosorption properties of extracellular polymeric substances (EPS) towards Cd, Cu and Pb for different pH values [J]. Journal of Hazardous Materials, 2008,151(1):185-193.
[33] Wei X, Fang L, Cai P, et al. Influence of extracellular polymeric substances (EPS) on Cd adsorption by bacteria [J]. Environmental Pollution, 2011,159(5):1369-1374.
[34] Liu W, Zhang J, Jin Y, et al. Adsorption of Pb(II), Cd(II) and Zn(II) by extracellular polymeric substances extracted from aerobic granular sludge: Efficiency of protein [J]. Journal of Environmental Chemical Engineering, 2015,3(2):1223-1232.
[35] Li W, Yu H. Insight into the roles of microbial extracellular polymer substances in metal biosorption [J]. Bioresource Technology, 2014,160:15-23.
[36] Chen Z, Ma W, Han M. Biosorption of nickel and copper onto treated alga (Undaria pinnatifida): Application of isotherm and kinetic models [J]. Journal of Hazardous Materials, 2008, 155(1/2):327-333.
[37] Akkaya R. Removal of radioactive elements from aqueous solutions by adsorption onto polyacrylamide-expanded perlite: Equilibrium, kinetic, and thermodynamic study [J]. Desalination, 2013,321:3-8.
[38] Figueroa-Torres G M, Certucha-Barragán M T, Acedo-Félix E, et al. Kinetic studies of heavy metals biosorption by acidogenic biomass immobilized in clinoptilolite [J]. Journal of the Taiwan Institute of Chemical Engineers, 2016,61:241-246.
[39] Sudheer Khan S, Mukherjee A, Chandrasekaran N. Interaction of colloidal silver nanoparticles (SNPs) with exopolysaccharides (EPS) and its adsorption isotherms and kinetics [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 381(1-3):99-105.
[40] Moon S, Park C, Kim Y, et al. Biosorption isotherms of Pb (II) and Zn (II) on Pestan, an extracellular polysaccharide, of Pestalotiopsis sp. KCTC 8637P [J]. Process Biochemistry, 2006,41(2):312-316.
[41] Yao L, Ye Z, Wang Z, et al. Characteristics of Pb2+biosorption with aerobic granular biomass [J]. Science Bulletin, 2008,53(6): 948-953.
Pb2+adsorption features of extracellular polymeric substance producted by a Brevibacillus agri strain.
HONG Chen1,2, LI Yi-fei1, SI Yan-xiao3, XING Yi1,4*, WANG Zhi-qiang1, ZHANG Ying-ying1(1.School of Civil and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China;2.Research Center for Eco-Environmental Sciences, Chinese Academy Science, Beijing 100085, China;3.School of Environment, Tsinghua University, Beijing 100084, China;4.Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China), China Environmental Science, 2017,37(5):1805~1813
Extracellular polymeric substances (EPS) were categorized based on the compactness: soluble EPS (S-EPS), loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS). The EPS used for experiment was extracted from Brevibacillus agri strain and the adsorption characteristics of Pb2+onto S-EPS, LB-EPS and TB-EPS were investigated at different temperature and pH. Meanwhile, adsorption kinetics model and adsorption isotherm model were also be established and the change of surface morphology of EPS before and after adsorption were observed by scanning electron microscope (SEM). When temperature was 35 ℃ and pH was 5.5, the Pb2+adsorption capacity of S-EPS, LB-EPS, TB-EPS was 91.35, 100.61, and 90.28mg/g, respectively. The results showed that the Pb2+adsorbability of LB-EPS was better than those of S-EPS and TB-EPS. Additionally, adsorption kinetics and adsorption isotherm of EPS for Pb2+fitted Pseudo second order kinetic model and Langmuir adsorption isotherm model. The results indicated that adsorption process was controlled by chemisorption mechanism and monolayer adsorption, respectively. The largest adsorption capacities calculated by Langmuir adsorption isotherm model of S-EPS, LB-EPS, TB-EPS were 124.224, 127.389 and 119.760mg/g, respectively. Furthermore, SEM analysis confirmed that surface morphology of S-EPS, LB-EPS, and TB-EPS changed significantly before and after adsorption. In which, LB-EPS had the largest adsorption capacity as its pulmonary alveoli structure and large specific surface area.
EPS;adsorption;Pb2+;kinetic;SEM
X703
A
1000-6923(2017)05-1805-09
洪 晨(1984-),男,河北三河人,講師,博士,從事市政污泥處理與資源化方面的研究.發表論文40篇.
2016-10-10
國家自然科學基金資助項目(41273091);科技北京百名領軍人才培養工程資助項目(LJ201620)
* 責任作者, 教授, xingyi@ustb.edu.cn