周春燕
摘 要:自始以來,由于地理位置的影響我國的石油資源處于緊缺的狀態,傳統的人工技術已不能滿足我國石油需求的問題,那么將大數據技術應用于油田的建設中是一項急不可待的工程。文章以新疆油田公司為例,利用數據挖掘技術發掘油田隱藏的數據價值,提高數據的使用效率,利用數據找到合適油田,指導生產工作,更好地節約成本,提高綜合效益。
關鍵詞:油田生產;大數據;數據挖掘
前言
新疆油田重油開發公司是以稠油開采為主的采油廠。有著將近10年的數字油田建設歷史。而且中心數據庫已經做得很成熟,主要包括五大業務板塊數據。即勘探業務板塊、開發業務板塊、生產業務板塊、經營業務板塊的數據庫。數據庫包括的內容主要有單井、區塊的日月報數據、試井與生產測井數據、分析化驗數據、井下作業和地理信息數據等。數據庫的數據資源種類齊全,質量高。2010年新疆油田重油開發公司正式開始進行智能化油田建設工作,利用物聯網診斷單井問題,使用大數據技術對油田進行全面感知、分析預測、優化決策找到油水井的生產規律,從而有助于油田生產工作進行。
1 油田大數據的概念及處理流程
大數據有四個特點即量大(Volume)、快速生產(Velocity)、類型豐富(Variety)、真實性(Veracity),被稱為4V[1]。由于數據的數量非常大,就將數據組成數據集,進行管理、處理實現數據的價值。大數據對數據庫的整理流程是將數據轉化為信息,將信息轉化為知識,再將知識轉化為智慧。這個過程應用于油田可以理解為是對油田的生產和管理工作。大數據的七個處理步驟包括:對數據的提取和收集、清洗數據、分析數據找到潛在的內在價值規律、建立預測模型、對結果進行可視化的估計、驗證結果、評估模型。
2 大數據分析平臺及體系架構研究
新疆油田為了滿足生產應用,構建了一個有效的大數據分析平臺及體系架構。此平臺主要包括四個基礎架構:數據抽取平臺、進行分布式的存儲平臺、大數據的分析與展示平臺。最底層是數據抽取平臺主要是實現數據的整合,將數據轉化成適合進行數據挖掘或者建模的形式,構建可靠的樣本數據集。存儲平臺主要是對數據進行匯總、建模、分析,最后將處理好的數據進行儲存。其功能與數據倉庫相似。大數據分析層,是在大數據建模的工具和算法基礎上,挖掘隱藏的數據模式和關系,利用數據軟件進行分類、建模,生成預測的結果,結合專家經驗利用測試的樣本選定評價方案不斷提高模型的精度,更好的用于油田的決策。數據應用層主要是把建立的模型設計為運行軟件,運用建模方法實現數據的可視化界面設計,更好的實現人機交互。
3 大數據分析技術研究
進行大數據分析時我們經常采用兩大技術即大數據預處理和抽取技術,大數據分析技術。
3.1 大數據抽取及預處理技術
大數據預處理和抽取技術的原理是指將不同名稱,不同時間,不同地點的多種不同結構和類別的數據抽取處理成一種所表達的算法和內涵一致便于處理類型的數據結構[2]。在檢查數據缺失、數據異常時可以使用數據清洗方法確定有用的數據,一般采用剔除法或估計值法、填補平均值替換錯誤的數據。為了滿足建模所需的大量數據,創建新的字段時需要進行數據庫的構建。將原始數據用一定的方法如歸一法轉換為可用于數據挖掘的數據,這個過程為數據轉換。
3.2 大數據分析技術
應用于油田的大數據分析技術為:因子分析技術、聚類分析技術、回歸分析技術和數據挖掘技術。其中的因子分析技術是指,利用少數的因子對多個指標和因素間的相關性進行描述,一般將密切相關的多個變量歸納為一類,這一類數據就屬于一個影響因子,用較少的因子反應大量數據的信息。聚類分析技術是指把具有某種共同特性的事物或者物體歸屬于一個類型,并按照這些特性劃分為幾個類別,同種類型的事物相似性較高。這樣更利于辨別預先未知的事物特征。回歸分析是指在一組數據的基礎之上,研究一個變量和其他變量間隱藏的關系。利用回歸方程,進行回歸分析,從而有規律地把變量之間的不規則,不確定的復雜關系簡單得表示出來。
在使用大數據進行分析時,數據挖掘技術是最關鍵的一門技術。該技術將大量復雜的、隨機性的、模糊的、不完整的數據進行分析,挖掘出對人類未來有用的數據,即提前獲得未知信息的過程[3]。數據挖掘功能分為預測功能和描述功能。數據預測是指對數據進行處理推算,完成預測的目的。數據描述是展現集體數據的特性。數據挖掘功能是與數據的目標類型有關,有的功能適用于不同類型的數據,有的功能則只適用于特定功能的數據。數據挖掘的作用就是讓人們能夠提前得到未知的消息,提升數據的有效性,使其可以應用于不同的領域。
4 大數據分析在油田生產中的應用研究
4.1 異常井自動識別
油田生產過程中影響最大的一個因素是異常井的出現,因此生產管理人員加大了對異常井的重視。最初,異常井的識別主要是依靠生產部門的生產人員,必須經過人工查閱許多關于油田生產的資料才能確定異常井,這種人工檢閱的方法存在很多缺陷。比如說大量的檢索工作、耗費時間長等,對異常井的診斷和措施制定造成很大的困難。異常井是指油井當天的產油量和上個月相比波動很大,并大于正常的波動范圍。目前廣泛采用數據挖掘技術和聚類分析技術對異常井進行識別,提高效率。為了實現算法編譯使用ASP.NET技術,系統架構B/S模式進行發布,能夠及時發現異常井的存在。
4.2 異常井智能診斷
異常井診斷是油田每天進行生產必須要完成的工序。而大部分油田采用人工方法對其進行異常診斷,工作量極大,影響因素較多,診斷結果的可靠性較低,對后期進行計劃實施造成很大的影響。這時可以采用智能診斷方法,利用灰度圖像處理技術和人臉識別算法建立抽油井的特征功圖庫,對比油井當前的功圖和所建立的特征功圖,實現異常井的診斷。若是相似則不屬于異常井,反之,則為異常井。但是有時一種工況可能會有許多中表現方式,致使功圖解釋存在很多種狀況,可以采取因子分析法,分析每個工況下關聯的因子間是如何變化,然后建立參數診斷數據庫,對比相關因子的指標項,找到異常的原因,采取適合的方案進行修改,從而提高單井的生產效率。
4.3 間抽井開關井計劃制訂
當油田開發進入后期階段就會出現很多問題,過度開發使得地層的能量越來越少,致使更多供液不足的井開發出來。將這類井稱之為間歇出油井。新疆油田一般會使用人工方法制訂間歇出油井的開關時間計劃,但是對于計劃的合理性沒有進行檢驗。若是能夠控制好間歇出油井的開關時間,對油田實現節能減排是至關重要的。這時可以采用因子分析方法和回歸分析法進行研究,利用數據挖掘技術找出影響間歇出油井的開關時間的因素,建立合適的分析模型,對模型進行線性回歸,進行歸一化處理。從而為業務人員提供制訂間歇出油井開關時間的合理方案,達到節能減排的效果。
4.4 油井清防蠟預測
目前油田上對于油井清蠟采取平均每口井一個月清洗一次蠟的措施,按照人工計劃進行,出現了許多問題。比如,一些井還沒有結蠟就已被清洗,有些井已經結蠟,卻沒有得到及時清洗。這樣既浪費大量的人力物力,而且還對油田的生產效率產生不利影響。若是利用因子分析法,將收集的關于結蠟周期、清蠟方式、清蠟用量、油井狀況等數據進行分析,建立油井結蠟模型,再利用回歸分析法對建立的模型建立曲線方程,進行預測,找到結蠟時間,推斷出結蠟周期,更好的指導油田清蠟工序的進行,提高油田的精細化管理。
5 結束語
總之,對比以前利用人工進行油田生產可以發現大數據對于油田生產是非常必要的,可以更快的挖掘油田的生產作業規律,解決油田生產的困難。而且,可以利用油田數據進行可視化分析,關注問題的主要影響因素找到管理中存在的不足,預防未來問題的出現。大數據的核心價值就是通過以往大量數據進行分析,預測出未來,從而更好地指導油田的生產工作。
參考文獻
[1]楊澤民.數據挖掘中關聯規則算法的研究[J].軟件,2013(11):71-72.
[2]鄔賀銓.數據挖掘技術在保險公司客戶評估中的應用研究[J].求是,2014(4).
[3]葛春燕.大數據的機遇與挑戰[J].軟件,2014(1):116-118.