王洪濤,韓靜宇,張 莉,金英杰,李 萍,趙杉林
(遼寧石油化工大學 化學化工與 環境學部,遼寧 撫順 113001)
BEA、MOR、MFI及其二元共生沸石的介孔改性
王洪濤,韓靜宇,張 莉,金英杰,李 萍,趙杉林
(遼寧石油化工大學 化學化工與 環境學部,遼寧 撫順 113001)
用晶種誘導法合成二元共生沸石β(BEA)-絲光(MOR)(w(MOR)= 50%)和ZSM-5(MFI)-MOR(w(MOR)= 58%)。用堿酸處理法對商業BEA、MOR、MFI及共生沸石進行介孔改性。采用XRD、N2吸附-脫附、ICP-AES、TEM、SEM/EDX等技術研究改性沸石的晶體結構和織構介孔性質。借助純硅BEA,MOR,MFI的骨架密度、孔道拓撲和生成焓數據,考察脫硅選擇性、介孔性質與沸石骨架結構和熱力學穩定性的關系。實驗結果表明,系列改性沸石具有較高的介孔率和結晶度保留率;改性沸石的介孔面積及介孔體積由大至小依次為BEA(t),BEA-MOR(t),MFI-MOR(t),MFI(t),MOR(t)。骨架密度和熱力學穩定性降低導致脫硅選擇性降低和介孔面積效率提高。
沸石結構;介孔改性;脫硅;β-沸石;絲光沸石;ZSM-5沸石;共生沸石
傳統沸石是由均一、有序排列的孔和籠構成的結晶性微孔硅鋁酸鹽,骨架具有特征的孔道拓撲結構和分子篩分的效應[1]。在石油化工、煤化工和精細化工等領域,酸型沸石作為固體酸催化劑被廣泛用于多相催化過程[2]。但沸石固有的微孔結構對大分子傳輸會產生內擴散限制[3],導致催化劑的效率因子和表觀活性下降[4]。通過骨架原子抽提向沸石晶體內引入多級介孔,可有效提高烴分子傳質效率[5],改進催化劑性能[6–8]。Groen等[9]對ZSM-5沸石(MFI)[10]、絲光沸石(MOR)[11]、β沸石(BEA)[12]、Y型沸石(FAU)[13]等進行改性研究,提出沸石組成和骨架負電荷屏蔽效應是影響沸石控制脫硅的關鍵因素[14],沸石的微孔結構對附加介孔的形成具有誘導作用[15]。不同骨架結構的硅鋁沸石顯現出不同的脫硅行為[16],導致改性沸石具有不同的結晶度、織構性介孔率與孔徑分布[17-18],骨架硅鋁比、[AlO4]-四面體配位環境、酸性和催化性能也存在顯著差異[19-20]。迄今為止,有關脫硅行為和織構介孔性質與沸石骨架結構及熱力學穩定性的關聯研究較少[21-22]。
本工作對單相沸石BEA、MOR、MFI及相關二元共生沸石進行介孔改性對比研究。采用XRD、N2吸附-脫附、ICP-AES、TEM、SEM/EDX等技術研究改性沸石的晶體結構和織構介孔性質。借助純硅BEA,MOR,MFI的骨架密度、孔道拓撲和生成焓數據,考察脫硅選擇性、介孔性質與沸石骨架結構和熱力學穩定性的關系。
1.1 沸石的合成與銨交換
純相銨型BEA,MOR,MFI高硅沸石由南開大學催化劑公司提供,NH4-β,NH4-MOR,NH4-ZSM-5的硅鋁比分別為16.3,15.9,20.5。采用程序升溫焙燒法將銨型沸石轉化成質子型,分別記作BEA(p),MOR(p),MFI(p)。
用晶種誘導法制備BEA-MOR和MFI-MOR共生沸石。合成BEA-MOR膠的摩爾組成為n(Na2O)∶n(SiO2)∶n(Al2O3)∶n((C2H5)4NOH)∶n(H2O)∶n(NaCl)=1.3∶30.0∶1.0∶11.6∶730∶4.4。BEA-MOR混合晶種質量分數為0.3%。用常規銨交換法將BEA-MOR共生沸石轉化成質子型,記為BEA-MOR(p)。合成MFI-MOR膠的摩爾組成為n(Na2O)∶n(SiO2)∶n(Al2O3)∶n((C3H7)4NBr)∶n(H2O)=10∶(20~60)∶1.0∶10.5∶1 500。MFI-MOR混合晶種質量分數0.3%。由MFI-MOR轉化的質子型共生沸石記作MFI-MOR(p)。
1.2 H-型沸石堿酸聯合處理
按文獻[23]報道的方法,對系列質子化的微孔沸石進行脫硅、脫鋁處理。經堿酸聯合處理后得到改性沸石BEA(t),MOR(t),MFI(t),BEA-MOR(t),MFI-MOR(t)。
1.3 材料的表征
D/max-2400型X-射線衍射儀:日本理學公司,輻射源CuKα(λ=0.154 18 nm),石墨單色器,掃描范圍5°~50°,掃描步長0.02°。Optima 3100RL型電感耦合等離子體原子發射光譜儀:Perkine Elmer 公司。ASAP 2420型物理吸附儀:Micromeritics公司,待測試樣在623 K、真空度10-4Pa下脫氣16 h,液氮冷阱溫度77 K。用BET模型計算總比表面積,按t-plot法計算微孔體積和微孔比表面積,BJH模型計算介孔體積、介孔比表面積和介孔孔徑。JSM-7500F型冷場發射掃描電子顯微鏡:日本電子公司,加速電壓20 kV。JEM-2100型透射電子顯微鏡:日本電子公司,操作電壓100 kV。通過SEM選區實驗采集試樣的能量彌散X射線譜和分析結晶組成。
2.1 晶體和孔結構性質
2.1.1 XRD表征結果
不同骨架結構沸石堿酸處理前后的XRD譜圖見圖1。由圖1可見,H-型沸石BEA(p),MOR(p),MFI(p)為結晶性好、相純度較高的單相沸石。BEA-MOR(p)和MFI-MOR(p)由相應的沸石相構成,無定形相含量較低。XRD相組成分析結果表明,MFI-MOR(p)(w(MOR)= 58%)和BEA-MOR(p)(w(MOR)= 50%)的兩相質量比相近。經堿酸處理后的改性沸石保留了起始沸石晶體的長程有序性且未觀察到其他晶相衍射峰,相對于各自前體的結晶度保留率因結構和相組成而異。MFI-MOR(t)(w(MOR)= 66%)具有較高的結晶度保留率,但在BEA-MOR(t)(w(MOR)= 59%)共生相中穩定性較低的BEA相的結晶度保留率顯著降低,且比純BEA(t)的結晶度保留率低8%。這可能是因共生相中BEA穩定性較MOR低,所以BEA相優先被堿液溶蝕。

圖1 不同骨架結構沸石堿酸處理前(a)后(b)的XRD譜圖Fig.1 XRD patterns of initial(a) and alkaline-acid treated(b) zeolites with various structures.
2.1.2 N2吸附和孔結構性質
改性沸石的N2吸附-脫附等溫曲線(a)和BJH孔分布曲線(b)見圖2。由圖2a可見,在相對壓力小于0.45的范圍內,N2吸附量呈不同上升趨勢的等溫線可視為近似的Ⅰ型等溫線,表明改性沸石材料具有沸石固有的微孔和不同尺度的織構性微孔(孔徑小于2 nm)。隨相對壓力的進一步升高,等溫線發生不同程度的階躍且伴有近于H1型或H3型滯后環,吸附等溫線接近Ⅳ型[24],表明改性沸石材料具有連通性較好的介孔系統。趨于飽和壓力的N2吸附量增加應與堿酸處理形成的較大織構孔和顆粒堆積孔有關[25]。因此,不同骨架結構的改性沸石均屬含微孔、介孔結構的沸石基多級孔材料。由圖2b可見,受不同骨架穩定性的影響[26],BEA(t)介孔孔尺度分布具有顯著均一性,MFI(t)和MFI-MOR(t)含寬分布次級介孔結構,MOR(t)呈現出較差的BJH介孔可幾分布率。

圖2 改性沸石的N2吸附-脫附等溫線(a)和BJH孔分布曲線(b)Fig.2 N2adsorption-desorption isotherms(a) and BJH pore size distributions(b) of the modified zeolites.
系列沸石處理前后的孔結構數據見表1。由表1可見,與各自的起始沸石相比,改性沸石的微孔比表面積和微孔體積下降,介孔比表面積和介孔體積增加。其中,BEA(t)對應的介孔比表面積和介孔體積增幅最大,但微孔比表面積和微孔體積有明顯損失。改性沸石的介孔比表面積及介孔體積由大至小依次為BEA(t),BEA-MOR(t),MFI-MOR(t),MFI(t),MOR(t)。基于BEA-MOR(t)(w(MOR)= 59%)共生相組成和純相BEA(t)和MOR(t)介孔結構數據估算的介孔比表面積(278.6 m2/g)和介孔體積(0.278 cm3/g)均小于實際檢測值。同理可得到MFIMOR(t)(w(MOR)= 66%)的介孔比表面積及介孔體積的估算值。顯然,兩類二元共生結構的存在對改性沸石介孔結構的形成均具有明顯的促進作用。

表1 不同骨架結構沸石堿酸處理前后的孔結構性質Table 1 Porous structure properties of the initial and modified zeolites with various structures
2.1.3 SEM/TEM表征結果
BEA(t),MOR(t),MFI(t)試樣的SEM(a,c,e)和TEM(b,d,f)照片見圖3。由圖3a可見,改性試樣BEA(t)仍保持多晶聚集態,同時聚集體表面及微晶顆粒間出現大量因堿溶濾產生的刻痕。由圖3b可見,BEA(t)晶體內存在大量分布均勻的結構缺陷。BEA(t)的吸附行為和均一介孔尺度分布應主要取決于這些缺陷位的大小和分布密度。由于構成硅鋁BEA沸石的A(手性)、B(非手性)多形體在結構對稱性上存在顯著差異,在同一晶格內兩種多形體沿(001)方向形成的堆垛和層錯對沸石脫硅形成介孔具有誘導作用[27],因此導致BEA(t)吸附量大、介孔分布相對均一。
由圖3c和圖3d可見,MOR(t)晶體更加離散,表面具有以槽形孔為主的刻痕;MOR(t)晶體邊緣明顯被堿蝕,在相對苛刻的堿溶濾(358 K,2 h)條件下,晶體內部受損程度仍然較低,晶內結構缺陷的分布具有取向排列傾向,但缺陷密度缺乏均勻性。因此,MOR(t)的介孔率和BJH孔徑的可幾分布率較低。

圖3 BEA(t),MOR(t),MFI(t)試樣的SEM( a,c,e)和TEM(b,d,f)照片Fig.3 SEM and TEM images of BEA(t),MOR(t) and MFI(t)(a,c,e:SEM,and b,d,f:TEM).
由圖3e可見,MFI(t)晶體棱線依然清晰,晶面出現尺度不均的堿蝕裂痕。由圖3f可見,MFI(t)晶體內存在由堿蝕缺陷衍生的織構孔,由于MFI型沸石結構穩定、十元環微孔尺度小,發生局域過度脫硅現象可能是形成較大次級介孔的根源。
BEA-MOR和MFI-MOR堿酸處理前后的SEM照片見圖4。由圖4可見,起始試樣BEAMOR(p)是由BEA、MOR兩相附晶生長形成的聚集體,在SEM下較難觀察到BEA或MOR的單相晶體。因受MOR晶體慣態影響,仔晶呈稍有序排列。堿酸處理使聚集態BEA-MOR(t)的顆粒間隙增大,條形仔晶斷裂且部分削弱了仔晶排列的有序性,這可能導致了BEA相更易被堿液溶蝕。在MFI-MOR(p)中只有部分MOR相以較大晶體形式存在,其余皆為聚集顆粒。由于聚集體所含仔晶形貌與純MFI、MOR常規晶貌有較大差異[11],推測這些聚集顆粒可能是MFI、MOR兩相共生的產物。對MFI-MOR(t)而言,在相對溫和的堿溶濾條件下(338 K,0.5 h),聚集顆粒被刻蝕的程度明顯比MOR大晶體被刻蝕的程度高。

圖4 BEA-MOR和MFI-MOR堿酸處理前后的SEM照片Fig.4 SEM images of BEA-MOR and MFI-MOR intergrowths before and after combined alkaline-acid treatments.
2.2 骨架脫硅選擇性和介孔生成效率
2.2.1 產率、硅鋁比和脫硅選擇性
改性沸石的質量收率、不同相的硅鋁比和脫硅、脫鋁選擇性見表2。由表2可見,單相沸石產率按BEA(t),MFI(t),MOR(t)次序遞增,MFI-MOR(t)二元共生沸石的收率大于BEAMOR(t)。晶粒尺度大、結構穩定性高的MOR相的質量損失較低,含BEA相的沸石質量損失較高。BEA(t)和BEA-MOR(t)的硅鋁比分別增至起始沸石的1.99倍和1.44倍,而MOR(t),MFI(t),MFI-MOR(t)的硅鋁比僅為對應前體的1.06倍、1.09倍和1.11倍。即使經歷堿溶濾和酸洗處理,不同骨架結構的沸石均表現出極高的脫硅選擇性,脫鋁選擇性普遍較低。與其他沸石相比,含BEA相的沸石脫硅選擇性偏低。由此可見,BEA相的存在導致改性試樣硅鋁比顯著提高,相對產率和脫硅選擇性降低,含MOR相的沸石恰好相反。

表2 改性沸石的質量產率、不同相的硅鋁比和脫硅、脫鋁選擇性Table 2 Yields,Si/Al ratios in different phases,desilication selectivity(Sdesi) and dealumination selectivity(Sdeal) of the modified zeolites
2.2.2 骨架中心原子脫除效率
骨架中心原子脫除效率[27]反映了相對于沸石質量損失所獲得的凈介孔面積增量,可視為評價介孔生成效率的綜合指標。骨架中心原子脫除效率與沸石結構的關聯結果見圖5。由圖5可見,與凈介孔面積相關的效率因子介孔面積效率(f(Smeso))按BEA(t),BEA-MOR(t),MFI-MOR(t),MOR(t),MFI(t)次序降低;與凈介孔體積相關的效率因子介孔體積效率(f(Vmeso))按BEA(t),MFI-MOR(t),BEA-MOR(t),MFI(t),MOR(t)次序降低。f(Smeso)的降低順序基本滿足低結構穩定性和小晶體尺度的雙重效應,BEA(t) 結構穩定性最低,且仔晶聚集體內含粒間介孔。由折合孔徑表達式[28]可知,通常介孔體積相同或相近時,可幾孔徑越小,比表面積越大,反之亦然。SEM 和N2吸附一脫附表征結果也表明,由于MOR(t)和MFI-MOR(t)含MOR大晶體,它們的介孔體積和一級介孔尺度較小且一級介孔分布強度低。由圖5還可見,二元共生結構的存在導致改性共生沸石的介孔生成效率至少高于其中一個純相的介孔生成效率。

圖5 不同結構沸石的中心原子脫除效率Fig.5 Removal efficiencies of framework T-atoms in the zeolites with different structures.
2.3 孔道拓撲和結構穩定性的影響
不同純硅沸石的骨架密度、孔道拓撲結構和熱力學數據見表3。高骨架密度有利于維持沸石的結構穩定性。從前體氧化物至沸石的生成焓(ΔHoxzeol<0)絕對值越大,則沸石的熱力學穩定性越高;純硅沸石轉化成石英的相變焓(ΔHtransqtz>0)越小,則沸石骨架的熱力學穩定性越高。

表3 不同純硅沸石的骨架密度、孔道拓撲結構和熱力學數據Table 3 Framework density,microporous structure properties and thermodynamics data of the pure silicon zeolites
f(Smeso)和脫硅選擇性與沸石結構穩定性的關系見圖6。由圖6a,c,e可見,隨純硅沸石骨架密度的增加,f(Smeso)線性下降(R2= 0.999 7);隨沸石熱力學穩定性提高,f(Smeso)單調下降。由圖6b,d,f可見,脫硅選擇性與f(Smeso)的變化規律相反。由此可見,骨架密度和熱力學穩定性的降低導致沸石的脫硅選擇性降低、f(Smeso)提高。

圖6 f(Smeso)和脫硅選擇性與沸石結構穩定性的關系Fig.6 Relationships of bothf(Smeso) andSdesiwith the structural stability of the initial zeolites.
1)采用晶種誘導法合成BEA-MOR(w(MOR)= 50%)和MFI-MOR(w(MOR)= 58%)二元共生沸石。用堿酸處理法對商業BEA、MOR、MFI及共生沸石進行介孔改性,制備出系列單相和共生沸石基多級孔材料。改性沸石材料具有較高的介孔率和結晶度保留率。改性沸石的介孔面積及介孔體積由大至小依次為BEA(t),BEA-MOR(t),MFIMOR(t),MFI(t),MOR(t)。質量收率按照BEA(t),BEA-MOR(t),MFI(t),MFIMOR(t),MOR(t)依次遞增。
2)沸石骨架密度、孔道拓撲結構、熱力學穩定性及晶體尺寸是影響沸石骨架脫硅和織構介孔率的顯著因素。f(Smeso)按BEA(t),BEA-MOR(t),MFI-MOR(t),MOR(t),MFI(t)次序降低;f(Vmeso)按BEA(t),MFI-MOR(t),BEA-MOR(t),MFI(t),MOR(t)次序降低。
3)對組成相近的單相沸石BEA,MOR,MFI,隨骨架密度增加f(Smeso)線性下降(R2= 0.999 7);隨沸石熱力學穩定性提高,f(Smeso)單調下降。二元共生結構的存在對改性沸石介孔結構的形成均具有促進作用,其介孔生成效率至少高于其中一個純相的介孔生成效率。
[1] Dawson C J,Kapko V,Thorpe M F,et al. Flexibility as an indicator of feasibility of zeolite frameworks[J].J Phys Chem C,2012,116(30):16175-16181.
[2] Cundy C S,Cox P A. The hydrothermal synthesis of zeolites:Precursors,intermediates and reaction mechanism[J].Microporous Mesoporous Mater,2005,82(1/2):1-78.
[3] Valtchev V,Tosheva L. Porous nanosized particles:Preparation,properties,and applications[J].Chem Rev,2013,113(8):6734-6760.
[4] Kim J,Choi M,Ryoo R. Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol-tohydrocarbon conversion process[J].J Catal,2010,269 (1):219-228.
[5] Mochizuki H,Yokoi T,Imai H,et al. Effect of desilication of H-ZSM-5 by alkali treatment on catalytic performance in hexane cracking[J].Appl Catal,A,2012,449:188-197.
[6] Silaghi M C,Chizallet C,Raybaud P. Challenges on molecular aspects of dealumination and desilication of zeolites[J].Microporous Mesoporous Mater,2014,191:82-96.
[7] Tao Haixiang,Yang Hong,Liu Xiaohui,et al. Highly stable hierarchical ZSM-5 zeolite with intra- and inter-crystalline porous structures[J].Chem Eng J,2013,225:686-694.
[8] Verboekend D,Milina M,Mitchell S,et al. Hierarchical zeolites by desilication:Occurrence and catalytic impact of recrystallization and restructuring[J].Cryst Growth Des,2013,13(11):5025-5035.
[9] Groen J C,Moulijn J A,Pérez-Ramírez J. Desilication:On the controlled generation of mesoporosity in MFI zeolites[J]. Mater Chem,2006,16(22):2121-2131.
[10] Groen J C,Bach T,Ziese U,et al. Creation of hollow zeolite architectures by controlled desilication of Al-zoned ZSM-5 crystals[J].J Am Chem Soc,2005,127(31):10792-10793.
[11] Huang Shengjun,Liu Xiaohan,Yu Lili,et al. Preparation of hierarchical mordenite zeolites by sequential steaming-acid leaching-alkaline treatment[J].Microporous Mesoporous Mater,2014,191(1):18-26.
[12] Holm M S,Hansen M K,Christensen C H. “One-pot” ionexchange and mesopore formation during desilication[J].Eur J Inorg Chem,2009(9):1194-1198.
[13] Qin Zhengxing,Shen Baojian,Gao Xionghou,et al. Mesoporous Y zeolite with homogeneous aluminum distribution obtained by sequential desilication-dealumination and its performance in the catalytic cracking of cumene and 1,3,5-triisopropylbenzene[J].J Catal,2011,278 (2):266-275.
[14] Verboekend D,Mitchell S,Milina M,et al. Full compositional flexibility in the preparation of mesoporous MFI zeolites by desilication[J].J Phys Chem C,2011,115 (29):14193-14203.
[15] Groen J C,Peffer L A A,Moulijn J A,et al. Mechanism of hierarchical porosity development in MFI zeolites by desilication:The role of aluminium as a pore-directing agent[J]. Chem Eur J,2005,11(17):4983-4994.
[16] Milina M,Mitchell S,Michels N L,et al. Interdependence between porosity,acidity,and catalytic performance in hierarchical ZSM-5 zeolites prepared by post-synthetic modification[J].J Catal,2013,308(8):398-407.
[17] Fath S,Sohrabi M,Falamaki C. Improvement of HZSM-5 performance by alkaline treatments:Comparative catalytic study in the MTG reactions[J].Fuel,2014,116 (1):529-537.
[18] Paix?o V,Monteiro R,Andrade M,et al. Desilication of MOR zeolite:Conventional versus microwave assisted heating[J].Appl Catal,A,2011,402 (1/2):59-68.
[19] Paix?o V,Carvalho A P,Rocha J,et al. Modification of MOR by desilication treatments:Structural,textural and acidic characterization[J].Microporous Mesoporous Mater,2010,131 (1/3):350-357.
[20] Groen J C,Caicedo-Realpe R,Abelló S,et al. Mesoporous metallosilicate zeolites by desilication:On the generic poreinducing role of framework trivalent heteroatoms[J].Mater Lett,2009,63 (12):1037-1040.
[21] 李洋洋,王穎敏,徐麗穎,等. ZSM-22、β和絲光沸石介孔改性對比研究[J].人工晶體學報,2014,43(6):1576-1582.
[22] Groen J C,Peffer L A A,Moulijn J A,et al. On the introduction of intracrystalline mesoporosity in zeolites upon desilication in alkaline medium[J].Microporous Mesoporous Mater,2004,69 (1/2):29-34.
[23] Jin Yingjie,Xiao Changchun,Liu Jinhuan,et al. Mesopore modification of beta zeolites by sequential alkali and acid treatments:Narrowing mesopore size distribution featuring unimodality and mesoporous texture properties estimated upon a mesoporous volumetric model[J].Microporous Mesoporous Mater,2015,218 (7):180-191.
[24] Thommes M. Physical adsorption characterization of nanoporous materials[J].Chem Ing Tech,2010,82(7):1059-1073.
[25] van laak A N C,Zhang Lei,Parvulescu A N,et al. Alkalinetreatment of template containing zeolites:Introducing mesoporosity while preserving acidity[J].Catal Today,2011,168(1):48-56.
[26] Mathieu R,Vieillard P. A predictive model for the enthalpies of formation of zeolites[J].Microporous Mesoporous Mater,2010,132 (3):335-351.
[27] Verboekend D,Chabaneix A M,Thomas K,et al. Mesoporous ZSM-22 zeolite obtained by desilication:Peculiarities associated with crystal morphology and aluminium distribution[J].Cryst Eng Comm,2011,13(10):3408-3416.
[28] Liebau F. Ordered microporous and mesoporous materials with inorganic hosts:Definitions of terms,formula notation,and systematic classification[J].Microporous Mesoporous Mater,2003,58 (1):15-72.
[29] Piccione P M,Laberty C,Yang Sanyuan,et al. Thermochemistry of pure-silica zeolites[J].J Phys Chem B,2000,104(43):10001-10011.
[30] Zhou Wei,Sun Pingping,Navrotsky A,et al. Formation and dehydration enthalpies of gallosilicate materials with different framework topologies and Ga contents[J].Microporous Mesoporous Mater,2009,121 (1/3):200-207.
(編輯 王 馨)
Mesopore modification of zeolites BEA,MOR,MFI and relevant binary intergrowths
Wang Hongtao,Han Jingyu,Zhang Li,Jin Yingjie,Li Ping,Zhao Shanlin
(Faculty of Chemistry and Chemical-Environmental Engineering,Liaoning Shihua University,Fushun Liaoning 113001,China)
Binary zeolite intergrowths,namely β-zeolite(BEA)-mordenite(MOR)(w(MOR) 50%) and ZSM-5 zeolite(MFI)-MOR(w(MOR) 58%),were synthesized by the seed-induced growth method. The two intergrowths and commercial zeolites with the BEA,MOR and MFI structures were modified through combined alkaline-acid treatments to form mesopores. The crystal structure an d mesoporosity of the modified zeolites were investigated by means of XRD,N2adsorptiondesorption,SEM,TEM and ICP-AES. Both of the desilication selectivity and the mesoporosity were correlated with the framework structures and the thermodynamic stability of the initial zeolites based on the framework density,pore channel topology and formation enthalpy of the pure silica zeolites. The results showed that,the modified zeolites were provided with significant mesoporosity and crystallinity preservation,and both the mesoporous specific surface area and the mesoporous volume were in order of BEA(t)>BEA-MOR(t)>MFI-MOR(t)>MFI(t)>MOR(t). The decrease in the framework density and the thermodynamic stability led to the decrease of the desilication selectivity but the increase of the efficiency of the mesoporous specific surface area.
zeolite structure;mesopore modification;desilication;β-zeolite;mordenite;ZSM-5 z eolite;zeolite intergrowths
1000-8144(2017)05-0543-09
TQ 424.25
A
10.3969/j.issn.1000-8144.2017.05.005
2016-12-29;[修改稿日期]2017-02-13。
王洪濤(1988—),男,遼寧省遼陽縣人,碩士生,電話 18341310518,電郵 wanghongtao140217@163.com。聯系人:趙杉林,電話 13842300614,電郵 jinyingjie512@163.com。
國家自然科學基金項目(21171083)。