999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Existence of Positive Solutions and Multiple Results for Nonlinear Eigenvalue Problems on Time Scales

2017-06-05 15:09:36LUHaixia

LU Haixia

(School of Arts and Science, Suqian College, Suqian 223800, Jiangsu)

Existence of Positive Solutions and Multiple Results for Nonlinear Eigenvalue Problems on Time Scales

LU Haixia

(SchoolofArtsandScience,SuqianCollege,Suqian223800,Jiangsu)

In this paper, we discuss the nonlinear eigenvalue problem on time scalesT

eigenvalue problems; time scales; global bifurcation; positive solutions

1 Introduction

In this paper, we study the following nonlinear eigenvalue problem on time scales

(1)

where λ is a positive parameter, andTis a closed subset of the interval [0,1] with 0,1∈T.

The concept of time scales was created by Hilger[1]in order to unify continuous and discrete calculus. Some other early papers in this area include Agarwal and Bohner[2], Aulbach and Hilger[3]and Erbe and Hilger[4]. In recent years, much research has been done for the existence of solutions of boundary value problems on time scales by Krasnoselskii fixed point theorems, Leggett-williams theorem, upper and lower solution method and so on(see [5-14]). By using the global bifurcation theory and the results in [16], Luo and Ma[15]obtained the existence of solutions of the nonlinear eigenvalue problem (1) in the case that the nonlinear term f(u(t)) satisfied

sf(s)>0, ?s≠0.

(2)

Inthispaper,wediscussnonlineardifferentialequation(1)byusingRabinowitz’sbifurcationtheoremsfromboththetrivialsolutionandinfinity.Theexistenceofpositivesolutionsandmultiplicityofsolutionsof(1)areprovedinthecasethat(2)isnotsatisfied.Themethodandresultsinthispaperimprovethosegivenin[13-15].

2 Preliminaries

LetTbe a closed subset of the interval [0,1] with 0,1∈T. For completeness and convenience, we recall the following concepts related to the notation of the time scales.

Definition 2.1 Define the forward jump operator and backward jump operatorσ,ρ:T→Tby

σ(t)=inf{s∈T:s>t}, ρ(t)=sup{s∈T:s

for anyt∈T. The pointt∈Tis said to be left-dense, left-scattered, right-dense, right-scattered ifρ(t)=t,ρ(t)t, respectively.

We assume throughout that,σ(0)=0 andρ(1)=1.

Definition 2.2 Letu:T→R andt∈T.uis said to be differentiable attif there exists a number, denoted byuΔ(t), with the property that for eachε>0 there is a neighborhoodU∈Toftsuch that

|u(σ(t))-u(s)-uΔ(t)(σ(t)-s)|≤ε|σ(t)-s|

foralls∈U.

Ifuis differentiable at everyt∈Tthenuis said to be differentiable onT. The second derivative ofuattis defined to beuΔΔ(t):=(uΔ)Δ(t). We also define the functionuσ:=u°σ.

Definition 2.3 A functionu:T→R is said to be rd-continuous onTif it is continuous at all right-dense points and has finite left-sided limit at each left-dense point inT.

‖u‖1=‖u‖+‖uΔ‖,

LetX=C0(T),

E={u∈C1(T)∶u(0)=u(1)=0},

Letφ(t), ψ(t)betheuniquesolutionoftheequationLu(t)=0onTsatisfyingtheboundaryconditions

FromLemma3.3in[16],thereexistsaconstantω≠ 0suchthatω=ψ(t)φΔ(t)-φ(t)ψΔ(t)forallt∈T.For(s, t)∈T×T,let

Theboundaryvalueproblem(1)isequivalenttothefollowingintegralequation

(3)

for some t0∈T.Thenu0≡0.

Forconvenience,welistthefollowingconditionswhichwillbeusedinthispaper.

(H4) There existsr>0 such thatf(r)<0 andf(-r)>0.

Letζ,ξ∈C(R, R) satisfy

f(s)=f0s+ζ(s), f(s)=f∞s+ξ(s).

By the conditions (H2) and (H3), we have

(4)

Now (1) can be rewritten in the form either

Lu=λ f0uσ+λζ(uσ),

(5)

or

Lu=λ f∞uσ+λξ(uσ).

(6)

Definition 2.4 Suppose thatu∈C1(T) andt∈T. Ifu(t)=0, thentis a zero ofu. Ifu(t)=0 anduΔ(t)≠ 0, thentis a simple zero ofu. Ifu(t)uΔ(t)<0 (and henceσ(t)>t), then we say thatuhas a generalized zero at the point

Simple zeross∈Tand generalized zeross?T, as defined above, are often referred to as simple generalized zeros.

(i) the only zeros ofuinTare simple;

(ii)uhas exactlyk-1 simple generalized zeros in (0, 1);

(iii) ±uΔ(0)>0.

Letλkbe thekth eigenvalue of the linear eigenvalue problem

It is known from [16, Lemma 5.1] and [17, Lemma 2.6] that

0<λ1<λ2<λ3<…, uk∈Sk, k=1, 2, 3,…,

and eachλkhas algebraic multiplicity one.

LetΓdenote the closure of the set of nontrivial solutions of (3) in R×E. A continuum ofΓis a maximal closed connected subset.

Hσ=GEζσ:R×E→E.

We see from (3) and (5) that finding a solution (λ,u)∈Γis equivalent to finding a solution (λ,u)∈R×Eof the equation

It follows from the definition ofHσthatHσis compact and continuous. In addition, it follows from (4) thatHσ(λ,u)=°(|u|) forunear zero, uniformly on boundedλintervals. Therefore, following the arguments in the proof of Theorem 7.1 in [16] Lemma 2.2 holds.

Fσ=GEξσ: R×E→E.

We see from (6) that (3) is equivalent to the following equation

(7)

ItfollowsfromthedefinitionofFσthatFσiscompactandcontinuous.Andby(4)wehavethatFσ(λ,u)=°(|u|)forunear∞,uniformlyonboundedλintervals.Hence(7)isoftheformdiscussedin[18].

Let Г1denotetheclosureofthesetofnontrivialsolutionsof(3)inR×X. Obviously, from the point of the set, Г=Г1. Hence, in the sense of the set, we denoteΓandΓ1byΓ.

Lemma 2.4[14, 19]LetMbe a subset ofΓ. Then

(i)Mis a closed set in R×XiffMis a closed set in R×E;

(ii)Mis a connected component set in R×XiffMis a connected component set in R×E;

(iii)Mis a unbounded set in R×XiffMis a unbounded set in R×E.

3 Main results

In this section we give our main results.

Theorem 3.1 Let (H1)-(H3) hold. Assume for some integerk≥1, one of the following conditions is satisfied:

Then (1) has two solutionsu+kandu-ksuch thatu+khas exactlyk-1 simple generalized zeros inTwith (u+k)Δ(0)>0,u-khas exactlyk-1 simple generalized zeros inTwith (u-k)Δ(0)<0.

Theorem 3.2 Let (H1)-(H3) hold. Suppose that there exist two integersk≥ 1 andj≥0 such that one of the following conditions is satisfied:

λAu≠u, ?λ>0,u∈?Br,

(8)whereAisdenotedby(3), Br={u∈X| ‖u‖

Otherwise,thereexistλ0>0andu0∈?Brsuchthatu0=λ0Au0.Since‖u0‖=r,thenthereexistst0∈Tsuchthatu0(σ(t0))=r (theproofforu0(σ(t0))=-rissimilar).

Butitfollowsfrom(H4)that

Lu0(t0)=λ0f(u0(σ(t0)))=λ0f(r)<0,

whichisacontradiction.

Then

[1] HILGER S. Analysis on measure chains-a unified approach to continuous and disrete calculus[J]. Results Math,1990,18(1):18-56.

[2] AGARWAL R P, BOHNER M. Basic calculus on time scales and some of its applications[J]. Results Math,1999,35(1):3-22.

[3] AULBACH B, HILGER S. Linear Dynamic Processes with in Homogeneous Time Scale, Nonlinear Dynamics and Quantum Dynamical System[M]. Berlin:Akademic Verlag,1990.

[4] ERBE L H, HILGER S. Sturmian theory on measure chains[J]. Differential Equations Dynam System,1993,1(3):223-246.

[5] AGARWAL R P, O'REGAN D. Nonlinear boundary value problem on a measure chain[J]. Nonlinear Anal,2001,44(4):527-535.

[6] ANDERSON D R. Eigenvalue intervals for a two-point boundary value problem on a measure chain[J]. J Comput Appl Math,2002,141(1/2):57-64.

[7] CHEN H H, CHEN C. Positive solutions for eigenvalue problems on a measure chain[J]. Nonlinear Anal,2002,51(3):499-507.

[8] CHYAN C J, HENDERSON J. Eigenvalue problems for differential equations on a measure chain[J]. J Math Anal Appl,2000,245(2):547-559.

[9] CHYAN C J, HENDERSON J. Twin solutions of boundary value problems for differential equations on a measure chain[J]. J Comput Appl Math,2002,141(1/2):123-131.

[10] ERBE L H, PETERSON A. Positive solutions for a nonlinear differential equation on a measure chain[J]. Math Comput Modelling,2000,32(5/6):571-585.

[11] ERBE L H, PETERSON A, MATHSEN R. Existence, multiplicity and nonexistence of positive solutions to a differential equation on a measure chain[J]. J Comput Appl Math,2000,113(1/2):365-380.

[12] LI W T, SUN H R. Multiple Positive solutions for nonlinear dynamic systems on a measure chain[J]. J Comput Appl Math,2004,162(2):421-430.

[13] SONG C X. Positive solutions for first-order PBVPs on time scales[J]. Chin Quart J Math,2012,27(3):337-343.

[14] LI H Y, DAI L M. Positive solutions for nonlinear differential equations with sign changing nonlinearity on a measure chain[J]. J Math,2012,32(1):9-16.

[15] LUO H, MA R Y. Nodal solutions to nonlinear eigenvalue problems on time scales[J]. Nonlinear Anal,2006,65(4):773-784.

[16] DAVIDSON F A, RYNNE B P. Global bifurcation on time scales[J]. J Math Anal Appl,2002,267(1):345-360.

[17] DAVIDSON F A, RYNNE B P. Curves of positive solution of boundary value problems on time scales[J]. J Math Anal Appl,2004,300(2):491-504.

[18] RABINOWITZ P H. On bifurcation from infinity[J]. J Differential Equations,1973,14(3):462-475.

[19] CUI Y J, SUN J X, ZOU Yumei. Global bifurcation and multiple results for Sturm-Liouville problems[J]. J Comput Appl Math,2011,235(8):2185-2192.

(編輯 陶志寧)

時標上非線性特征值問題正解的存在性和多解性

陸海霞

(宿遷學院 文理學院, 江蘇 宿遷 223800)

討論時標T上非線性特征值問題其中λ是正參數.運用全局分歧理論,研究在一定條件下上述特征值問題發自u=0和(或)u=∞非零解的連通分支,得到此特征值問題正解的存在性和多解性結果,推廣和改進了一些已有結果.

特征值問題; 時標; 全局分歧; 正解.

O175.8

A

1001-8395(2017)03-0289-06

Foundation Items:This work is supported by the National Science Foundation of China (No. 11501260) and Natural Science Foundation of Suqian city(No. Z201444)

10.3969/j.issn.1001-8395.2017.03.002

Received date: 2016-05-25.

whereλis a positive parameter. Using the global bifurcation theory, we study the continua of its nontrivial solutions bifurcating fromu=0 and/oru=∞ under some conditions. In addition, the existence of positive solutions and the multiplicity of solutions of this nonlinear eigenvalue problem are obtained. Our results generalize and improve some known results.

2010 MSC:34B15

主站蜘蛛池模板: 久久久国产精品无码专区| 国产色爱av资源综合区| 亚洲va欧美va国产综合下载| 国产精品九九视频| 自拍偷拍欧美日韩| 国内精品久久九九国产精品 | 人妻91无码色偷偷色噜噜噜| 国产福利一区在线| 国产欧美视频综合二区| 久久精品一品道久久精品| 最新国产成人剧情在线播放| 青青草原国产| 久久午夜夜伦鲁鲁片无码免费| 欧美综合区自拍亚洲综合绿色| 欧美亚洲欧美区| 国产一级在线播放| 22sihu国产精品视频影视资讯| 欧美日韩资源| 国产亚洲精品97AA片在线播放| 香蕉伊思人视频| 午夜福利网址| 亚国产欧美在线人成| 人妻丰满熟妇av五码区| 日韩av在线直播| 狠狠v日韩v欧美v| 成人毛片免费在线观看| 欧美日本在线一区二区三区| 一级毛片网| 97色婷婷成人综合在线观看| 国产一区二区三区日韩精品| 亚洲91精品视频| 任我操在线视频| 国产91九色在线播放| 欧美一区二区自偷自拍视频| 乱色熟女综合一区二区| 国产精品人人做人人爽人人添| 在线免费a视频| 伊人激情久久综合中文字幕| 国产午夜无码专区喷水| 谁有在线观看日韩亚洲最新视频 | 久久a级片| 亚洲欧美综合另类图片小说区| 亚洲一区网站| 毛片网站观看| 99青青青精品视频在线| 欧美一级黄片一区2区| 97se亚洲综合在线韩国专区福利| 国产视频一二三区| 国产精品午夜福利麻豆| 国产农村精品一级毛片视频| 国产精品hd在线播放| 欧美国产菊爆免费观看| 色天天综合| 亚洲精品国产综合99久久夜夜嗨| 国产精品吹潮在线观看中文| 中文字幕乱码二三区免费| 人妻丰满熟妇av五码区| 国产日本欧美亚洲精品视| 国产精品香蕉在线| 亚洲国产天堂久久综合| 成人字幕网视频在线观看| 国产aaaaa一级毛片| 国产日韩欧美黄色片免费观看| 久久综合九色综合97婷婷| 亚洲精品自产拍在线观看APP| 波多野结衣视频一区二区 | 免费高清a毛片| 经典三级久久| 亚洲乱码在线视频| 在线精品亚洲一区二区古装| 亚洲日本韩在线观看| 亚洲中文在线视频| 欧美黑人欧美精品刺激| 欧美高清国产| 成人福利在线观看| 日韩天堂网| 国产精品欧美日本韩免费一区二区三区不卡| 国产剧情国内精品原创| 日本手机在线视频| 九九视频免费在线观看| 手机成人午夜在线视频| 中文字幕天无码久久精品视频免费|