鄭玲峰
摘 要:電力系統正處于發展階段,智能電網將計算機技術同信息技術等結合而成,基于電子技術和通信網絡技術的智能變電站使得變電站在信息的傳遞方式上發生了巨大的改變,智能變電站通過信息應用使得信息的自動采集加強了,對繼電保護系統進行可靠性的評估可以發現繼電保護系統的薄弱環節,然后提出整改方案。
關鍵詞:智能變電站;繼電保護;系統分析
引言
智能變電站的繼電保護系統逐漸引起技術人員的關注,繼電保護系統能夠安全運行對智能變電站的運行意義重大,對繼電保護系統的研究主要依據可靠性評估模型和對系統的可靠性分析,利用框架圖和矩陣法建立可靠性的模型,通過對智能變電站的保護系統進行分析可以發現系統的結構特點,通過模型進行分析可以優化系統的設計。
1 繼電保護系統的結構
智能變電站的繼電保護系統包含八個功能各模塊,具體有傳輸介質、互感器、合并單元、交換機、保護單元、智能終端、斷路器和同步時鐘源。信息數字化和通信網絡化是智能變電站的兩大特點,以往的變電站的連接方式是通過點對點對互感器和斷路器等保護元件進行連接,現今的連接加入了更多的保護元件,通過合并單元將互感器采集到的數據進行匯集,對格式進行處理,然后將數據幀傳給交換機。智能終端主要應用于一次設備的功能體現,智能終端可以將斷路器的動作進行控制,將斷路器采集到的信息傳遞給保護單元[1]。
交換機成為二次設備與合并單元的信息傳遞平臺,棄用了傳統的二次電纜,系統設備之間就此形成了信息共享模式,為了準確的了解斷路器記錄時間發僧的時間序列,為變電站配備同步時鐘源,使全站的設備統一對時。繼電保護系統中必不可少的是通信介質和接口,通信介質對保護系統能否正常運行具有直接的影響,一般情況下通信介質會采用光纖。通過對比發現接口故障和通信故障產生的效果是相同的,由此通信介質的組成部分就包括了接口。
2 系統的可靠性分析
2.1 分析方法
信息流能夠使智能變電站繼電保護系統的功能得以實現,在信息流通路順暢時就能夠將信息從始端發往終端,繼電器的保護功能才能夠實現,其中會影響繼電保護系統可靠性的因素包含同步對時功能、SV報文和GOOSE報文信息回路的連通效果。
2.1.1 參數的選擇。電網的一二次設備均在固定的時間進行檢查,在維護過程中,系統的可靠性評估來源于元件故障信息的準確性,可修復的元件在檢修維護的過程中將故障率和修復率視為常數即可。例如合并單元的故障率就為0.0067,交換機故障率為0.02。利用馬爾科夫鏈模式進行分析,由于元件所處的環節不同,因此其故障的狀態也是有所不同的,例如合并元件和交換機元件在信息傳輸過程中出現丟失現象就會使保護系統產生拒動。分析時應該將元件的失效狀態進行細分,大致可以分為兩種,分別是誤動和拒動,之后根據二者的概率進行計算即可[2]。
2.1.2 框圖法。在智能變電站繼電保護系統的分析過程中,框圖法較為直觀清晰,這種方法對于元件比較少的系統用較為合適,可以根據系統的結構進行框圖的繪制,通過框圖及元件的狀態和系統的狀態進行描述,框圖可以計算出系統中不同元件的不同狀態的概率。對于含有多個獨立分散的原件的保護系統,其中元件之間的維修狀態也是具有獨立性的,例如,可以將元件1的正確動作的概率記為P1,將元件2的正確動作的概率記為P2,根據改路的運算規則進行運算即可。
2.2 分析應用
2.2.1 主變保護的可靠性分析。在主變保護的組網方案之中,主變保護和智能終端的合并單元就是依靠組網的方式進行連接,通過保護GOOSE的網絡信息采集對傳輸跳閘發出指令,通過采用SV網絡傳輸的采值樣信息對變電站的主變壓器進行保護。通過采用保護控測一體裝置可以充分發揮智能變電站的智能化系統,保護裝置一般包含保護CPU和測控CPU兩種,保護啟動判斷的輔助依據就是測控采樣,還可以從整體上保護可靠性。
通過最小路集法可以得出主電保護的不可用度為1-A=8.8812×10-9[3]。
2.2.2 線路保護的可靠性分析。數字化線路的保護裝置的開關量和模擬量是以光纖通過太網獲取的,采樣值的光纖接口和開關輸入量的光纖接口是獨立的設置,跳閘輸出和開關量的接口通常是一個,數字化線路的保護可以通過線路兩端和傳統的線路保護進行配合,完成縱差保護。
通過最小路集法和不交化算法可以得出線路保護的不可用度為1-A=4.9492×10-9。
2.2.3 母線保護的可靠性分析。母線保護的組網模式中,智能終端可以將刀閘位置的信息傳遞到母差保護裝置上,利用采樣值組網和GOOSE網絡將間隔合并單元的數據傳遞給母差保護裝置上,通過相關的協議就可以實現SV網絡采樣信息。
通過最小路集法和不交化算法可以得出線路保護的不可用度為1-A=9.9720×10-8。
3 提升可靠性的措施
3.1 太網冗余法
3.1.1 太網的控制要求。在IEEE802.3x全雙工模式下,通過交換機發出指令使數據源暫停發送,再利用控制數據的輸入端和輸出端進行數據流量的傳遞可以避免數據丟失。IEEE802.1p優先排隊技術可以使網絡在擁堵的情況下,數據進行優先傳輸。IEEE802.1Q虛擬局域網技術,可以將IED劃分到虛擬局域網之中。IEEE802.1w快速生成樹協議不像從前的IEEE802.1D生成樹協議需要大約一分鐘的時間才能重新將發生故障的網絡構架定義,這種快速生成樹協議可以將時間大大縮減。最后的要求是診聽過濾技術,它允許對GOOSE信息幀進行過濾,然后將信息傳遞給IED。
3.1.2 網絡的構架。(1)總線結構。總線結構中的交換機通過端口與其它的交換機相連,上端口的速度一般比IED端口的速度快,系統的最大延時決定了交換機的最大數量,這種結構的接線較少但是冗余度差。(2)環形結構。環形結構的交換機可以形成閉環,對于連接點的故障可以提供足夠的冗余度,信息在傳遞過程中會消耗寬代,應用的內部具有管理交換機,生成樹可以發出指令,交換機便檢測環路,信息在環路中就不會流動。(3)星型結構。星型結構具有等待的時長較短的特點,主交換機在連接其他交換機的時候系統的等待時間會減少,但是星型結構沒有冗余度,在發生故障時就會產生遺失所有的IED信息,從而降低可靠性。
3.2 環形網絡結構法
在環形網絡結構法之中,刀鬧位置信信息經由各間隔智能終端提供,然后通過網絡將信息傳遞到母差保護裝置。根據采樣值組網方式,各間隔合并單元的數據同樣傳輸到母差保護的裝置上。母差保護動作的出口信息,發送給各間隔智能終端之后,母差保護裝置的容量會受到限制,主要原因是網絡報文流量的大小不定。有的時候,過程層的交換機會承擔較大量的報文,單臺的交換機接入的單元信息數量嚴重超出就會導致其可靠性較低。為了解決這個問題,可以將裝置或者交換機的光纖口進行設置。單口同時接入的合并單元數量不應該過度,使用多交換機分擔帶寬的方法可以接收更多的間隔采樣,采用千兆的交換機這種方法也可以。
4 結束語
通過研究可以發現,與常規站的繼電保護系統有所不同的是,智能變電站的繼電保護系統的可靠性有下降趨勢,智能變電站的線路保護和主變保護問題,可以采用直采直跳的模式,在采用對時源時,不可采用外部對時源,通過詳細的分析得出智能變電站繼電保護系統的可靠性極其重要。
參考文獻
[1]王同文,謝民,孫月琴,等.智能變電站繼電保護系統可靠性分析[J].電力系統保護與控制,2015,06:58-66.
[2]谷磊.智能變電站繼電保護可靠性研究[D].廣東工業大學,2014.
[3]付洪偉.智能變電站繼電保護系統可靠性分析[J].中小企業管理與科技(中旬刊),2016,02:232-233.