吳瑩瑩,張 遲,陳高峰,孫靳儉,朱咪咪,張 敏
(浙江農(nóng)林大學 省部共建亞熱帶森林培育國家重點實驗室,浙江 臨安 311300)
‘無籽甌柑’CsRAD51基因的克隆及在花粉發(fā)育過程中的表達分析
吳瑩瑩,張 遲,陳高峰,孫靳儉,朱咪咪,張 敏
(浙江農(nóng)林大學 省部共建亞熱帶森林培育國家重點實驗室,浙江 臨安 311300)
‘無籽甌柑’的雄性不育主要表現(xiàn)為花粉敗育,起始于小孢子母細胞減數(shù)分裂時期。本研究克隆了‘無籽甌柑’減數(shù)分裂相關基因CsRAD51,并采用熒光定量PCR檢測其在甌柑及‘無籽甌柑’中的表達差異。結果顯示,CsRAD51基因的cDNA全長1210 bp,含有一個1029 bp的ORF區(qū);其編碼的蛋白質(zhì)屬于疏水性蛋白,分子量45740.1D,氨基酸數(shù)388,原子總數(shù)6 555,等電點10.20。同源性比對發(fā)現(xiàn),‘無籽甌柑’CsRAD51的氨基酸序列與甜橙、麻瘋樹、油棕、黃瓜、黑楊等的RAD51蛋白高度同源,分別達99%,98%,98%,98%,98%。RT-PCR結果顯示‘無籽甌柑’CsRAD51在小孢子母細胞、四分體以及單核花粉粒時期的相對表達量顯著高于甌柑。CsRAD51的過量表達可能影響了DSBs的同源重組修復,致使‘無籽甌柑’小孢子母細胞時期減數(shù)分裂異常。
柑橘;雄性不育;減數(shù)分裂;CsRAD51;實時熒光定量PCR.
‘無籽甌柑’Citrus suavissima‘Wuzi Ougan’ 是甌柑C. suavissima的無核突變體,2004年2月通過浙江省林木良種審定委員會的良種認定并命名[1-2]。‘無籽甌柑’的雄性不育主要表現(xiàn)為花粉敗育,敗育起始于小孢子母細胞減數(shù)分裂至四分體時期[3]。
RAD51基因在減數(shù)分裂過程中起著十分重要的作用,能夠編碼一種重組酶,在DNA單鏈入侵完整雙鏈過程中起作用[4]。RAD51基因家族是真核生物中廣泛存在的一個高度保守的基因家族,它編碼的蛋白與原核生物中的RecA蛋白高度同源。在植物中,RAD51基因家族由于基因重復和基因水平轉移而形成RAD51,DMC1,RAD51B,RAD51C,RAD51D,XRCC2,XRCC3,RecA等多個成員,它們大都在減數(shù)分裂過程中起重要作用[5]。Kou等[6]研究了RAD51基因對水稻雌雄配子體發(fā)育的作用,敲除RAD51C基因后得到的不育植株伴隨有大孢子母細胞和花粉母細胞早期減數(shù)分裂過程異常,花粉母細胞粗線期染色體異常,最終產(chǎn)生不育花粉和異常胚囊,但花藥壁發(fā)育正常,對基因敲除后的不育植株重新轉入RAD51C基因,以轉入空載體為對照,結果發(fā)現(xiàn)前者育性恢復,說明該基因主要是調(diào)節(jié)減數(shù)分裂。Li和Wang等[7-8]研究發(fā)現(xiàn),擬南芥突變基因AHP2和AtRAD51C的功能分別是參與同源染色體的聯(lián)會和著絲點結構的形成,在擬南芥中利用RNA干擾技術分別沉默該兩基因,產(chǎn)生的轉基因植物中,50%以上的花粉無育性。在高等真核生物中,RAD51是DNA雙鏈斷裂(Double-strand breaks簡稱DSB)與同源重組修復過程中的重要蛋白,在這些過程中,RAD51催化單鏈DNA和雙鏈DNA之間的同源配對。RAD51參與有絲分裂和減數(shù)分裂的同源重組[9],在同源重組期間,RAD51促進ATP依賴的同源配對,通過該單鏈DNA(ssDNA)與同源雙鏈DNA(dsDNA)的互補鏈形成新的Watson-Crick堿基對(異源)[10-14]。
研究‘無籽甌柑’CsRAD51基因的功能與特性,根據(jù)已完成的甌柑花藥轉錄組測序所得基因序列,克隆并獲得‘無籽甌柑’CsRAD51基因的全長cDNA序列并對其進行生物信息學分析,通過實時熒光定量PCR技術對目標基因mRNA在花粉發(fā)育不同時期的表達量進行實時定量分析。
1.1 試驗材料及試劑儀器
‘無籽甌柑’和甌柑的花藥均采自浙江省瑞安市金潮港農(nóng)場,根據(jù)不同直徑的花蕾切片和顯微觀察結果[15],分別采集小孢子母細胞時期(2.0 ~ 2.4 mm)I、四分體時期(2.8 ~ 3.1 mm)II、單核花粉粒時期(3.5 ~ 4.5 mm)III、雙核花粉粒時期(4.5 ~ 6.5 mm)IV、成熟花粉粒時期V(6.5 ~ 7.1 mm)的花藥,保存于-70℃超低溫冰箱備用。
試驗試劑包括:Trizol總RNA提取試劑盒、5'RACE試劑盒等(Invitrogen公司),膠回收試劑盒(TaKaRa公司)、Taq酶、LA Taq酶、Ribonuclease Inhibitor、DNaseⅠ(RNase Free)、X-gal(TaKaRa公司)等,SMART MMLV 反轉錄酶(Clontech公司),Amp、IPTG(上海申能博彩生物科技有限公司),普通生化試劑(生工生物工程(上海)有限公司)。
克隆用菌種為大腸桿菌DH 5α,由本實驗室保存;克隆載體為Pmd18-T載體,購自TaKaRa公司。
主要儀器設備:熒光定量PCR儀(CFX96TM Real-Time PCR Detection System/Bio-Rad)、微量分光光度計(NanoDrop? ND-1000 UV Spectrophotometer)、凝膠成像分析系統(tǒng)(AlphaImager? HP)、梯度PCR儀( Eppendorf Mastercycler pro)、紫外分析儀(WD-9403C型)、DNA濃縮儀(DNA120 SpeedVac?)、超凈工作臺、通風柜、電子天平等。
1.2 試驗方法
1.2.1 總RNA提取 以‘無籽甌柑’和甌柑花藥為試材,參照改良的Trizol法,用Trizol總RNA提取試劑盒(Invitrogen)分別提取5個時期花藥的RNA,并對各樣品的RNA進行電泳檢測,再測其OD值,檢測樣品RNA的質(zhì)量。
1.2.2 熒光定量PCR cDNA的合成參照反轉錄試劑盒PrimeScript RT reagent Kit with gDNA Eraser (Perfect Real Time)的指導說明。根據(jù)前期轉錄組測序所得序列,利用Primer 5.0設計CsRAD51基因克隆和熒光定量的特異性引物(表1),引物序列交由生工生物工程(上海)股份有限公司合成。以反轉錄后的cDNA為模板,對所


圖2 CsRAD51基因的核苷酸序列及所編碼的氨基酸序列Figure 2 Nucleotide sequence of CsRAD51 and the corresponding amino acid sequence
使用在線工具ProtParam分析蛋白質(zhì)的理化性質(zhì),CsRAD51基因編碼蛋白質(zhì)分子量為45 740.1,氨基酸數(shù)為388,原子總數(shù)為6 555,等電點為10.20;所有氨基酸組成中亮氨酸(Leu)所占比例最高,為18.8%,其次為絲氨酸(Ser),所占比例為10.1%;總的帶負電荷殘基Asp和Glu為27個,總的帶正電荷殘基Arg和Lys為60個;蛋白質(zhì)不穩(wěn)定指數(shù)為 51.45%,這種分類的蛋白質(zhì)是不穩(wěn)定的。用ProtScale工具分析蛋白的疏水性和親水性,總平均親水性(Grand average of hydropathicity)為-0.150,第247位異亮氨酸(Ile)親水性最強(Score:3.400),第42位和第43位天冬酰胺(Asn)疏水性最強(Score:-3.267),蛋白的疏水區(qū)明顯多于親水區(qū),表明‘無籽甌柑’CsRAD51基因編碼的蛋白質(zhì)是一種疏水性蛋白(圖3)。用SOPMA方法對CsRAD51基因編碼的蛋白質(zhì)的二級結構進行預測,其結構主要以α螺旋(50.26%)和無規(guī)則卷曲(22.94%)為主,此外還有β片層(17.01%)和未知區(qū)域(9.79%)(圖 4)。

圖3 CsRAD51基因編碼蛋白疏水性和親水性分析Figure 3 Analysis of hydrophobicity and hydrophilicity of protein encoded by CsRAD51

圖 4 CsRAD51基因編碼蛋白二級結構預測Figure 4 The secondary structure prediction of CsRAD51

圖5 ‘無籽甌柑’與其它植物RAD51氨基酸序列比對Figure 5 Amino acid sequence alignment of RAD51 ofC. suavissima ‘Wuzi Ougan’ with that of other plants
Blastx分析‘無籽甌柑’CsRAD51基因編碼的氨基酸序列與CsRAD51(甜橙C. sinensis),JcRAD51(麻瘋樹Jatropha curcas),EgRAD51(油棕Elaeis guineensis),CsRAD51(黃瓜Cucumis sativus),PnRAD51(黑楊Populus nigra),SiRAD51(芝麻Sesamum indicum),ZjRAD51(棗Ziziphus jujuba),VvRAD51(葡萄Vitis vinifera),NnRAD51(蓮Nelumbo nucifera),PeRAD51(胡楊Populus euphratica)和PdRAD51(海棗Phoenix dactylifera)的同源性,分別達到99%,98%,98%,98%,98%,97%,97%,97%,97%,97%,97%(圖5)。使用MEGA5構建同源基因的系統(tǒng)進化樹,采用Neighbor-joining法,設置Bootstrap value數(shù)值為1 000,分析物種間的親緣關系[16]。結果顯示,‘無籽甌柑’CsRAD51基因與甜橙、黑楊、胡楊的距離最近(見圖6)。


實驗結果表明,‘無籽甌柑’的CsRAD51基因編碼的蛋白質(zhì)屬于疏水性蛋白且該蛋白質(zhì)不穩(wěn)定,同時該基因與甜橙、麻瘋樹、油棕、黃瓜、黑楊、芝麻、棗、葡萄、蓮、胡楊和海棗等具有很高的同源性,由此可知RAD51基因在遺傳上較穩(wěn)定。小孢子母細胞時期、四分體時期和單核花粉粒時期‘無籽甌柑’CsRAD51基因在花藥中的相對表達量極顯著高于甌柑,說明CsRAD51的過量表達可能影響了‘無籽甌柑’DSBs的同源重組修復,使細胞內(nèi)積累了未被修復的DSBs,造成減數(shù)分裂異常。
[1] 張 敏,劉志輝,宋雪恩,等.‘無籽’甌柑CsLTP和CsLOX基因的克隆與表達分析[J]. 浙江農(nóng)林大學學報,2014,31(6):823-830.
[2] 徐象華,顏福花,葉榮華,等. 甌柑研究進展[J]. 浙江林業(yè)科技,2008,03:75-77.
[3] 張遲,張敏,朱銓,等. ‘甌柑’及其無子突變體花粉發(fā)育的細胞學觀察[J]. 果樹學報,2014,31(2):265-269,345.
[4] 張峰. 擬南芥減數(shù)分裂重組相關基因RAD51、PTD功能分析[D]. 上海:上海師范大學,2013.
[5] Lin Z G,Kong H Z,Nei M,et al. Origins and evolution of the recA/RAD51 gene family: evidence for ancient gene duplication and endosymbiotic gene transfer[J]. PNAS,2006,103(27):10328-10333.
[6] Kou Y J,Chang Y X,Li X H,et al. The rice RAD51C gene is required for the meiosis of both female and male gametocytes and the DNA repair of somatic cells[J]. J Exp Bot,2012,63(14):5323-5335.
[7] Li W,Yang X,Lin Z,et al. The AtRAD51C gene is required for normal meiotic chromosome syapsis and double-stranded break repair in Arabidopsis[J]. Plant Physiol,2005,138(2):965-976.
[8] Wang X,Singer S D,Liu Z. Silencing of meiosis-critical genes for engineering male sterility in plants[J]. Plant cell Rep,2012,31(4):747-756.
[9] Shinohara A,Ogawa H,Ogawa A T. Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein[J]. Cell,1992,69(3):457.
[10] Sung P. Catalysis of ATP-dependent homologous DNA pairing and strand exchange by yeast RAD51 protein[J]. Science,1994,265(5176):1241.
[11] Sung P,Robberson D L. DNA strand exchange mediated by a RAD51-ssDNA nucleoprotein filament with polarity opposite to that of RecA[J]. Cell,1995,82(3):453-461.
[12] Baumann P,Benson F E,West S C. Human Rad51 protein promotes ATP-dependent homologous pairing and strand transfer reactions in vitro[J]. Cell,87(4):757.
[13] Maeshima K,Morimatsu K,Horii T. Purification and characterization of XRad51.1 protein, Xenopus RAD51 homologue: recombinant XRad51.1 promotes strand exchange reaction[J]. Gene Cells,1997,1(12):1057-1068.
[14] Gupta R C,Bazemore L R,Golub E I,et al. Activities of human recombination protein Rad51[J]. PNAS,1997,94(2):463-468.
[15] 朱咪咪. ‘無籽甌柑’小孢子母細胞減數(shù)分裂異常的分子機理研究[D]. 臨安:浙江農(nóng)林大學,2016.
[16] Clough S J,Bent A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana[J]. Plant J,1998,16(6):735-743.
[17] Sheridan S D,Yu X,Roth R,et al. A comparative analysis of Dmc1 and RAD51 nucleoprotein filaments[J]. Nucl Acid Res,2008,36(12):4057-4066.
[18] Masson J Y,West S C. The Rad51 and Dmc1 recombinases: a non-identical twin relationship[J]. Trend Biochem Sci,2001,26(2):131.
[19] Hong E L,Shinohara A, Bishop D K. Saccharomyces cerevisiae Dmc1 protein promotes renaturation of single-strand DNA(ssDNA) and assimilation of ssDNA into homologous super-coiled duplex DNA[J]. J Biol Chem,2001,276(45):41906.
[20] Li Z,Golub E I,Gupta R,et al. Recombination activities of HsDmc1 protein, the meiotic human homolog of RecA protein[J]. PNAS,1997,94(21):11221-11226.
[21] Sung P. Catalysis of ATP-dependent homologous DNA pairing and strand exchange by yeast RAD51 protein[J]. Science,1994,265(5176):1241.
[22] Bishop D K,Park D,Xu L Z,et al. DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression[J]. Cell,1992,69(3):439-456.
[23] Neale M J,Keeney S. Clarifying the mechanics of DNA strand exchange in meiotic recombination[J]. Nature,2006,442(7099):153–158.
[24] Shinohara A,Ogawa H,Ogawa A T. Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein[J]. Cell,1992,69(3):457.
[25] Aboussekhra A,Chanet R,Adjiri A,et al. Semidominant suppressors of Srs2 helicase mutations of Saccharomyces cerevisiae map in the RAD51 gene, whose sequence predicts a protein with similarities to prokaryotic RecA proteins[J]. Mol Cell Biol,1992,12(7):3224-3234.
[26] 李亞非,程祝寬. 植物減數(shù)分裂同源染色體重組的分子機理[J]. 中國科學:生命科學,2015,06:537-543.
[27] Li W,Chen C,Markmann-Mulisch U,et al. The Arabidopsis AtRAD51 gene is dispensable for vegetative development but required for meiosis[J]. PNAS,2004,101(29):10596-10600.
[28] 周錦. 油菜雄性不育相關基因的表達差異及克隆與序列分析[D]. 武漢:中南民族大學,2008.
[29] Li J,Harper L C,Golubovskaya I,et al. Functional Analysis of Maize RAD51 in Meiosis and Double-Strand Break Repair[J]. Genetics,2007,176(3):1469-1482.
[30] Ding T,Miao C,Li Y,et al. OsRAD51C is essential for double-strand break repair in rice meiosis[J]. Front Plant Sci,2014,5(2):167.
[31] Vispé S,Cazaux C,Lesca C,et al. Over expression of Rad51 protein stimulates homologous recombination and increases resistance of mammalian cells to ionizing radiation[J].Nucl Acid Res,1998,26(12):2859.
[32] Richardson C,Stark J M,Ommundsen M,et al. Rad51 over-expression promotes alternative double-strand break repair pathways and genome instability[J].Oncogene,2004,23(2):546.
[33] Paffett K S,Clikeman J A,Palmer S,et al. Over expression of Rad51 inhibits double-strand break-induced homologous recombination but does not affect gene conversion tract lengths[J]. DNA Repair(Amst),2005,4(6):687-698.
Cloning and Expression of CsRAD51 Gene of Citrus suavissima 'Wuzi Ougan'
WU Ying-ying,ZHANG Chi,CHEN Gao-feng,SUN Jin-jian,ZHU Mi-mi,ZHANG Min
(State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an 311300, China)
Citrus suavissima‘Wuzi Ougan’ is a seedless bud variation ofC. suavissimawith male sterility and pollen abortion from the tetrad stage. RNA ofC. suavissimaandC. suavissima‘Wuzi Ougan’ was extracted and the full-length cDNA was cloned and bioinformatics analysis of amino acid sequences was conducted. The results showed that the sequence length of CsRAD51 was 1210bp, containing an ORF of 1029bp. The deduced protein was hydrophobic one, encoded 388 amino acids. Its molecular weight was 45740.1D, with atom number of 6555 and isoelectric point of 10.20. Homologous alignment demonstrated the homology coefficient ofC. suavissima‘Wuzi Ougan’ withC. sinensis,Jatropha curcas,Elaeis guineensis,Cucumis sativusandPopulus nigrawas 99%,98%,98%,98%,98% respectively. The Real-time PCR results showed that the relative expression of CsRAD51 inC. suavissima‘Wuzi Ougan’ was significantly higher thanC. suavissimaat microsporocyte stage, tetrad stage and uninucleus microspore stage, indicating that overexpression of CsRAD51 inhibited double-strand break-induced homologous recombination and led to DNA damage and abnormal meiosis.
Citrus; male sterility; meiosis; CsRAD51; Real-time PCR.
S666.1
A
1001-3776(2017)02-0001-09
10.3969/j.issn.1001-3776.2017.02.001
2016-11-21 ;
2017-02-28
浙江省大學生科技創(chuàng)新活動計劃項目(2016R412003),國家自然科學基金資助項目(31000897),浙江省團隊科技特派員服務計劃項目(浙科發(fā)農(nóng)[2013]215-122)
吳瑩瑩,本科生,從事經(jīng)濟林栽培與利用研究;E-mail:1009069852@qq.com。通信作者:張敏,副教授,博士,從事經(jīng)濟林遺傳育種研究;E-mail:mzhang@zafu.edu.cn。