宋明水,向奎,張宇,蔡攀,劉建磊,楊仁超
1.中國石化勝利油田勘探管理中心,山東東營 257017 2.山東科技大學地球科學與工程學院,山東青島 266590
泥質重力流沉積研究進展及其頁巖油氣地質意義
——以東營凹陷古近系沙河街組三段為例
宋明水1,向奎1,張宇1,蔡攀1,劉建磊1,楊仁超2
1.中國石化勝利油田勘探管理中心,山東東營 257017 2.山東科技大學地球科學與工程學院,山東青島 266590
頁巖油氣的勘探開發推動了泥頁巖沉積機理研究的快速發展,使得細粒物質的搬運和沉積成為當今沉積學界和油氣工業界共同關注的焦點。盡管海洋環境下的泥質重力流沉積研究成果頻見報道,但有關我國新生代湖泊環境中的泥質重力流沉積尚未引起沉積學界的關注。故本文在國內外相關文獻調研基礎上,以巖芯觀察和薄片鑒定為重點,分析了渤海灣盆地東營凹陷古近系沙河街組三段湖相泥質重力流沉積特征;探討了湖相泥質重力流沉積的形成機制;以期為湖泊沉積學研究和陸相頁巖油氣開發提供參考。研究發現,東營凹陷古近系沙河街組三段發育泥質塊體流、泥質碎屑流、泥質濁流及泥質異重流等多種重力流沉積類型;泥質滑塌巖、泥質碎屑巖、泥質濁積巖和泥質異重巖在時空上可以共生共存。認為泥質沉積物可以在動蕩水體和較強水動力條件下沉淀;泥質重力流沉積在深水沉積區占有重要地位;泥質重力流對于泥頁巖中的粗粒碎屑物質、有機質的搬運和沉積以及有機質的埋藏起到重要作用,因而具有重要的非常規油氣地質意義。
重力流沉積細粒物質;泥質碎屑巖;泥質濁積巖;泥質異重巖;非常規油氣;東營凹陷;古近系
隨著頁巖油氣開發的熱忱不斷高漲[1-2],細粒物質沉積學逐漸成為當今沉積學研究的前沿領域和非常規油氣工業界的關注焦點[3-7]。大型沉積盆地中的泥巖、頁巖、油頁巖等細粒沉積巖規模巨大,不僅可作為常規油氣的烴源巖,而且細粒沉積巖具有巨大的頁巖油氣、油頁巖等非常規油氣資源潛力[8-9]。細粒沉積巖中發育多種重力流沉積,但長期以來的研究多聚焦于致密砂巖儲層[10-12];有關細粒沉積巖的研究剛剛起步,泥、頁巖中的重力流事件沉積研究尤為薄弱,針對我國中、新生代陸相湖盆細粒沉積巖中的重力流沉積事件研究,必將隨著非常規油氣開發和細粒物質沉積學研究的深入受到更多的關注。本文在國內外文獻調研的基礎上,以渤海灣盆地東營凹陷古近系沙河街組三段湖相細粒沉積體系為例,探索了湖相泥質重力流沉積的形成機制,以期為湖相泥頁巖沉積學研究和非常規油氣勘探提供理論參考。
1.1 細粒沉積物搬運—沉積機理
細粒沉積物是指粒徑小于62 μm的黏土級和粉砂級物質,其成分主要包含黏土礦物、粉砂、碳酸鹽、有機質等[3,13-14]。細粒沉積巖分布廣泛,約占沉積巖的三分之二[3,15]。然而,細粒物質的沉積、成巖過程極其復雜,是當今沉積學界研究相對薄弱的領域[13]。
1.1.1 泥質沉積物可在動蕩水體環境中搬運和沉積
傳統觀點認為泥質只能在靜水環境中垂向沉降,但這種認識早已被突破[3,16-20]。現代研究表明,大多數直徑小于10 μm的黏土顆粒以絮凝物形式沉積,絮凝過程有助于大量泥質沉積物在海洋環境中的長距離搬運[21-22];而直徑大于10 μm的黏土顆粒則主要以單顆粒形式沉降[23]。貌似單調的紋層或塊狀泥巖實際上是以集合顆粒的形式在動蕩環境中被搬運和沉積而成[4,17,19]。現代河口的測量表明,大量的大直徑絮凝物(一般0.2~0.7 mm,或>1 mm)迅速出現在最大流速之后,且能穩定存在于高速流體之中[24];一些泥巖含有大量黏土礦物集合顆粒,其粒徑變化從黏土級、粉砂級至粗砂級[4,25-26];水槽實驗也表明,弱固結的泥(含水約85%)可以被侵蝕成為扁平的泥礫[26];在相當于搬運細砂的流速條件下,泥質集合顆粒可以形成交錯層理[27]。
上述研究均表明泥質沉積物可在動蕩環境下以集合顆粒的形式被搬運和沉積,這一新認識對于細粒沉積研究有重要的推動作用。但細粒物質沉積動力學過程復雜,目前還沒有較為理想的沉積模式[1]。隨著研究的不斷深入,更多的沉積環境因素將被引入到相關研究領域;研究范疇將拓展為海洋與陸相環境兼顧、現代沉積與地史記錄并重的格局。
1.1.2 搬運—沉積細粒物質的流體類型
泥質濁流觀點早在1978年被Piper提出[28],他將鮑馬序列的E段劃分為遞變紋層段、無紋層遞變段及塊狀段,并建立了泥質濁積巖模式;其主要特征為粒度遞變、底部突變或與濁積砂巖漸變。其后的學者開展了廣泛的研究,例如:南盤江印支期前陸盆地中發現的泥質濁積巖[29]、東營凹陷古近紀湖泊沉積中交錯層理泥巖及塊狀濁積泥巖[13]、南海珠江口盆地細粒物質組成的低密度濁流沉積[30]以及北亞平寧前陸盆地晚漸新世源自遠端細粒濁流沉積泥巖[31]。可見濁流在海洋、湖泊環境中均可作為搬運—沉積細粒物質的主要營力。
Kirbyetal.[32]將細粒沉積物質濃度大于10 g/L的水下底流定義為泥質流(fluid mud),其內部含有黏土粒級、粉砂粒級的顆粒及一定量的有機質;文獻[18,33]提出了近濱、潮汐和浪控背景下的泥質流沉積的鑒定標志。而在許多陸架環境中受重力驅動的薄層坡移泥漿流(slurry flow)中,泥質被風暴浪產生的紊流支撐,而非自懸浮[34-37];這里的泥漿流是指濁流和碎屑流之間的過渡流體,其沉積物含有10%~35%的泥質雜基,且為顆粒支撐[38]。
現已知的將泥質搬運至盆地的流體還有異輕流(hypopycnal flow)、異重流(hyperpycnal flow)、風暴激發的弛緩流(storm-setup relaxation flows)以及重力驅動液化泥流(gravity-driven fluidized muds),但風或潮汐誘發的底流循環可能是更大范圍陸表海泥質的搬運營力[39]。盡管針對泥質沉積流體的研究取得諸多進展,但理解泥質沉積物的搬運仍存在較大難度[4]。
上述流體的定義和內涵之間存在劃分標準不一、交叉重疊等不足。國外的研究主要針對現代海洋沉積,而目前我國陸相湖盆細粒沉積體系的研究仍較薄弱,但也不乏針對這一問題的深入思考和有益探索[13,40-41]。針對我國廣泛發育的中、新生代陸相沉積盆地,急需剖析典型細粒沉積巖組構特征,揭示陸相湖盆細粒物質的沉積機理、分布規律與主控因素,建立湖盆細粒沉積體系成因模式,從而推動湖泊沉積學研究和陸相致密油、頁巖油氣的發展。
1.2 水下沉積物重力流研究新進展
1.2.1 泥質重力流沉積
細粒沉積物是深水重力流的重要組分,暨重力是細粒物質遠距離搬運的主要營力。滑坡壩的破裂、三角洲前緣斜坡失穩以及源自三角洲的沉積物重力流在水下分流河道和侵蝕溝谷充填方面扮演著重要角色[42]。細粒沉積物波可在受限的峽谷—水道環境中形成[6],而且在水道維持方面起重要作用[43]。富泥的沉積層特征主要取決于滑坡的規模和位置、分流河口的位置、盆地地形以及沉積速率[42]。因此,富泥的重力流將影響湖相濁積水道和朵葉體的建造和改造。
近年來,在陸架泥巖中識別了波浪增強沉積物重力流(wave-enhanced sediment gravity flow)沉積及其明顯的“波狀—紋層—均質層”三層結構[4,22],表明泥巖也可發育波狀層理。由于粒度小、觀察難度大以及受實驗條件的限制,細粒物質的沉積作用仍是沉積學研究的薄弱領域[13],鑒別泥巖微構造(microstructure)仍存在較大難度[4],對深海盆地—平原的水道—朵葉體詳細的內部結構仍知之甚少[7]。
盡管現代陸棚上廣泛發育的泥質重力流沉積已有諸多報道[4,25-26,44-45],但地史中泥質重力流沉積的研究范例并不多,中、新生代湖相三角洲至深湖背景下的泥質重力流沉積研究尤為薄弱。對于泥質巖、粉砂巖等細粒沉積巖的微構造研究,需要開展毫米級、亞毫米級等細小尺度的觀測和精細描述;并在此基礎上,應用當代細粒沉積學新理論、新技術對其加以合理解釋、分類及成因研究。
1.2.2 異重流沉積研究新進展
異重流作為一種將大量細粒沉積物搬運至深水盆地的作用機制,近年來引起了廣泛關注[37,46-52]。異重流是洪水期河流注入較小密度的水體底部而形成的沿盆地底部流動的濁流[53-56]。異重流的發生主要受控于構造和氣候[57-58],因無需大量沉積物的積累和觸發機制,異重流的發生頻率比碎屑流和濁流更高[59-62],故地史中的異重巖將比此前預測的多得多[4,63]。
異重巖的主要特征是逆粒序段—正粒序段成對出現,逆粒序—正粒序段的轉換常表現為層內微侵蝕面,其頂、底接觸關系以突變為主[53-55]。由于其巨大的懸浮載荷及其下潛、流動過程中存在著侵蝕作用,異重流可以保持懸浮載荷濃度并做長距離流動[64-65],因而,異重巖的分布可直達盆地中心深水區。例如,松遼盆地中心嫩江組具前積結構的富泥沉積被認為是高懸浮載荷河流入湖形成的泥質三角洲沉積[66],其作用機制應與異重流密切相關。
古近紀渤海灣斷陷盆地構造極其活躍,斷裂系統發育,坡降較大,氣候濕潤,物源區近,臨近物源區洪水河口,半咸水湖盆湖水密度較低,這些地質背景特征均有利于異重流的發生,但異重流形成的細粒沉積并未引起足夠的重視。隨著細粒物質沉積學認知的進步和研究的深入,泥質異重巖必將受到沉積學家的密切關注。
1.2.3 水下沉積物重力流類型及其轉化
盡管水下沉積物重力流研究已有許多經典之作,但對于重力流與其沉積特征之間的關系仍然知之甚少[56,58,67-69],在細粒沉積流體性質方面的認識尤其薄弱。當受地震、火山、風暴或河流洪水等激發,斜坡失穩并產生重力流,將形成滑塌巖、濁積巖和碎屑巖[61,69-70]。水下重力流之間的轉化是普遍存在的[65],碎屑流與濁流可相互轉化;異重流也可轉化為碎屑流,或誘發斜坡失穩而產生碎屑流和濁流[71];非黏性的濁流能夠影響黏性的軟泥沉積底質,侵蝕產生泥質碎屑,進而形成泥質碎屑流[72]。因此,異重巖可與濁積巖、碎屑巖共存[12]。
重力流沉積類型多樣,如何鑒別其類型,如何根據其類型及組合分析流體性質的轉化成為重力流沉積學研究的關鍵。本文以渤海灣盆地東營凹陷沙三段為例,分別從地質背景、沉積物特征、成因機制及其非常規油氣地質意義等方面展開討論,力圖為相關領域的研究提供參考。
渤海灣盆地東營凹陷古近系沙河街組自下而上可分為沙四段、沙三段、沙二段、沙一段;其中沙三段是烴源巖和巖性圈閉最發育的層段。古近紀東營凹陷是一個大型的寬緩箕狀凹陷[73],其東西長90 km,南北寬65 km ,面積約5 700 km2。研究區主要位于東營凹陷中—東部(圖1)。在古近紀區域拉張的地質背景下,研究區內發育一系列NEE向正斷層,斷面整體向北傾斜,造就了北陡南緩的盆地地形特點,而這種古地貌特征控制了東營凹陷的沉積格局[74]。沙河街組主要發育湖泊、三角洲沉積體系,來自盆地東部的東營三角洲和永安三角洲分別自東部、北東部向湖盆中心進積[75];重力流沉積自三角洲前緣至湖盆中心均有發育[76]。
3.1 泥質滑塌變形構造(泥質滑塌巖)
泥質沉積物滑塌變形構造在東營凹陷沙三段三角洲前緣—湖泊沉積中較為常見(圖2)。包卷變形構造的物質成分以泥質沉積物為主,混有一定量的粉砂或細砂。不同成分、顏色的條帶凸顯了變形構造特征。深灰色泥巖與淺灰色的粉砂質泥巖呈現彎曲變形一致的條帶狀,變形層段厚度約12 cm(圖2A);深灰色泥巖中包含淺灰色扭曲狀粉砂質泥巖條帶和團塊,變形層段厚度約18 cm,而變形構造底部可見深灰色頁巖水平層理,且未變形(圖2B);或深灰色泥巖中局部發生變形,淺灰色條帶寬度不一,部分為后期方解石充填,變形層段厚度約9 cm(圖2C);深灰色泥巖發生彎曲變形,淺灰色細砂巖脈呈不規則狀貫穿其中(圖2D);灰色泥質粉砂巖夾彎曲狀深灰色泥巖條帶,厚度約6 cm,頂部紋層未變形(圖2E);灰色粉砂質泥巖中部夾一層褐紅色泥巖,呈現緊閉的平臥褶皺,厚度約3 cm(圖2F)。
渤海灣盆地東營凹陷古近系沙河街組沙三段泥質巖變形構造特征是其成因分析的重要基礎。滑塌變形構造系泥質沉積物在斜坡失穩的情況下[21,71],沿斜坡向下滑動,由于底部的摩擦大于中上部,滑塌體中上部在慣性作用下持續向前運動。由于在運動過程中,沉積物富含水、呈塑性狀態,且層內連續性一般未被破壞。沉積體在發生滑動、滾動或變形過程中,砂質、粉砂質沉積物會被卷入、混合并發生變形。或者,塊體在運動過程中,軟沉積物受到擾動,孔隙水產生液化,形成砂巖脈等液化變形構造。在三角洲前緣地帶,沉積速率一般較快,來自物源區的大量碎屑物質堆積于前三角洲和湖泊相泥巖之上,孔隙流體壓力逐漸增大;使得三角洲前緣地帶極易發生變形。其一,當富含孔隙水的泥巖難以承受上部沉積載荷時,超高孔隙壓力會自發釋放[60],引起三角洲前緣斜坡上的松散沉積物發生滑塌變形;其二,當受到地震、火山、洪水、風浪等外部作用疊加,也可誘發三角洲前緣斜坡失穩,產生滑塌變形。

圖1 渤海灣盆地東營凹陷構造地質簡圖(據文獻[76])Fig.1 Structural sketch map of Dongying sag in the Bohai Bay Basin (after reference[76])

圖2 東營凹陷沙三段滑塌變形構造泥質巖A. 史122井,3 346.18 m;B. 史126井,3 387.76 m;C. 營691井,3 008.92 m;D.史134井,3 058.60 m;E. 營691井,2 856.7 m;F. 王541井,3 053.40 mFig.2 Slump deformations of mudstones in the Shahejie Formation Sha 3 member in the Dongying sag
3.2 泥質碎屑構造(泥質碎屑巖)
泥質碎屑構造是指泥質沉積物中含有大量先期沉積并經過再改造的沉積構造,巖石基質為泥質(或粉砂質泥),同時含大量泥質巖碎屑,巖石中的總泥質含量體積比≥50%。泥質碎屑結構與砂質碎屑巖的區別在于:前者泥質含量高(體積比≥50%),基質以泥質為主;后者泥質含量多低于巖石體積比30%,最多不超過巖石體積比50%,基質為砂質顆粒。它們的相同之處是都含有泥質碎屑。具有泥質碎屑構造的泥質沉積巖,稱之泥質碎屑巖(狹義)。此處僅限于具有泥質碎屑結構的泥質沉積巖;含有一定泥質、以陸源礫石—砂級顆粒為主的粗碎屑巖不在此范疇。
深灰色泥質碎屑5~60 mm不等,呈現不規則碎片狀雜亂分布于淺灰色粉砂質泥組成的基質之中,泥質碎屑可呈點或線狀接觸;泥質碎屑向上礫徑變大,單層厚度大于20 cm(圖3A)。或大量深灰色泥質碎屑以不規則狀、撕裂狀散布于淺灰色泥質粉砂基質之中,泥質粉砂沉積物可見液化變形特征,單層厚度大于10 cm(圖3B)。此外,泥質沉積物液化變形構造常見。灰色泥巖中,貫穿不規則彎曲狀砂巖和粉砂巖細脈(圖3C);或灰色泥巖中分布大量的扭曲狀粉砂巖條帶,可見球枕構造(圖3D),淺灰色粉砂質沉積物將泥質分割為不規則條帶或碎片。
泥質碎屑構造的成因可以有兩種解釋:其一,泥質沉積物經滑塌、崩解和變形而形成泥質碎屑流,泥質碎屑流在盆地斜坡腳至盆地平原之間發生快速堆積而成;其二,由重力流侵蝕堤岸系統的泥巖(或具有較強黏結性的泥質沉積物)產生的泥質碎屑混入重力流沉積體系,形成泥質碎屑結構。在未固結成巖的泥質沉積物被繼續搬運的過程中,變形構造常見。由于密度、含水飽和度和黏度的不同,不同成分的沉積物之間發生復雜的調整,導致巖石變形、崩解、混合,造成巖性的強非均質性[67]。泥質巖的液化變形構造可以發生于原地,也可以發生于塊體搬運過程之中。砂質、粉砂質沉積物的液化變形與貫穿侵入可加劇泥質沉積物的碎片化過程和沉積物的混雜作用[77]。
3.3 泥質正粒序構造(泥質濁積巖)
東營凹陷沙三段泥質巖常見正粒序結構(圖4),泥質巖下部顏色淺、與泥質粉砂巖呈漸變過渡;上部泥質較純,泥巖顏色較深,反映粒度、泥質含量、有機質含量和沉積速率的逐漸變化。這種粒度的變化和沉積物組分的變化在顯微鏡下具有清晰的反映(圖5A,B),下部粉砂質石英顆粒含量高,向上粒度變細,泥質、有機質含量逐漸增加。厚層的濁積泥巖的上部,可見火焰狀構造;濁積泥巖厚度變化較大,從1 mm~3 cm不等(圖4A)。正粒序泥巖多呈薄層狀與濁積砂巖、粉砂巖共生,形成韻律互層結構,厚度介于1~5 mm之間(圖4B)。或3 mm~ 1 cm厚的薄層濁積泥巖覆蓋于明顯的正粒序砂巖之上(圖4C)。
濁積泥巖的快速堆積與欠壓實脫水,在后期的砂質沉積物覆蓋之后,由于二者的反密度梯度,極易發生軟沉積物變形構造[69]。細粒沉積物在濁流中以懸浮方式被搬運,當流體紊流度降低時,懸浮沉積物依次沉降,故正粒序是濁積巖最顯著的特征[61]。正粒序泥巖與濁積砂巖頻繁共生,每一個細砂巖—粉砂巖—泥質巖的正粒序組合系同一次濁流事件的沉積產物,故與濁積砂巖伴生的泥質巖應歸于濁積泥巖的范疇。

圖3 東營凹陷沙三段泥質碎屑巖與液化變形構造A.史122井,3 402.8 m;B.史126井,3 323.16 m;C.營691井,2 684.12 m;D.史115井,3 036.61 m。Fig.3 Mudstone debrites and liquified deformation structures in the Shahejie Formation Sha 3 member in the Dongying sag

圖4 東營凹陷沙三段泥質濁積巖A.史122井,3 422.08 m;B.王541井,3 051.10 m;C.王541井,3 057.50 m;DB.碎屑流砂巖;FS.火焰狀構造;SSDS.軟沉積物變形構造;TM.濁積泥巖;TS.濁積砂巖Fig.4 Mudstone turbidites in the Shahejie Formation Sha 3 member in the Dongying sag

圖5 東營凹陷沙三段泥質濁積巖(A、B)、顯微交錯層理(C)與異重巖(D)A,B,C.牛頁1井,3 409.05 m,A和C(單偏光),B(正交偏光);D.樊頁1井,3 443.95 m(單偏光);OM.有機質;CL.黏土紋層;QZ.石英;CB.碳酸鹽;CS.交錯層理Fig.5 Mudstone turbidites, micro-cross beddings and hyperpycnites in the Shahejie Formation Sha 3 member in the Dongying sag
3.4 泥質韻律粒序構造(泥質異重巖)
渤海灣盆地東營凹陷沙三段泥質巖韻律紋層的常見,厚度多介于1~5 mm。顯微鏡下,泥質巖粒度的變化易于識別,在泥頁巖中,可見泥質—有機質紋層與泥晶方解石紋層組成的顯微交錯層理(圖5C)。粉砂質泥巖可見逆粒序—正粒序的成對出現,粒序紋層之間夾顏色較深的泥質—有機質紋層(圖5D)。在每一個韻律層組合之間,泥質、有機質含量較高;在韻律層由逆粒序向正粒序轉換之際,細粉砂等含量較高,且單顆粒直徑達到該層粒徑的最大。
泥頁巖中微型交錯層理的出現表明泥質等細粒沉積物不僅可以在低能環境下通過懸浮沉淀,也可以在較強的水動力條件下發生沉積。濁積巖常見正粒序,對于逆粒序的成因難以解釋,尤其是逆粒序—正粒序的成對出現,可以用洪水異重流沉積機理來解釋[51-55,78]。異重流是一種洪水河流輸入型的穩定濁流,由于兩種水體的密度差和沿斜坡向下的重力分量的作用,密度較大的洪水河流潛入匯水盆地水體底部,并沿盆地底部做長距離搬運懸浮沉積物的一種流體[51-52]。異重流的搬運機制主要依靠紊流的揚舉力,從流體本質上講,它與濁流是相同的,屬于廣義的濁流范疇[51-55]。泥質巖中的顯微交錯層理表明其沉積過程受動蕩水體的控制;這種水體的動蕩可能由濁流事件引起,也可能由季風引起的湖流產生。但作為事件沉積層,常被夾于正常泥頁巖沉積層之中。
上述研究表明,東營凹陷沙三段泥質巖成因類型復雜,滑塌變形泥質巖、泥質碎屑巖、泥質濁積巖和泥質異重巖均有發育。在東營三角洲快速向湖盆進積的過程中,三角洲前緣砂質沉積物常常覆蓋于前三角洲泥質沉積物之上,在同沉積作用階段,泥質巖未經壓實脫水;隨著上覆沉積物厚度的不斷增加,松軟沉積物中的孔隙流體壓力不斷增加;加之上覆砂質沉積物密度大于下伏泥質沉積物密度,這種反密度梯度在重力作用下呈非均衡、非穩定狀態;當孔隙壓力積累到一定程度,超過沉積物的黏性阻力時,變形構造隨之發生;或一旦有外部因素激發時,三角洲前緣的斜坡快速失穩[6,60],變形、滑塌、液化、崩解接踵而至。因此,變形構造泥巖、泥質碎屑巖、泥質濁積巖等重力流沉積可以呈現連續、漸變的空間接觸關系。
泥質異重流、碎屑流與濁流存在復雜的共生共存關系。其一,碎屑流向濁流轉化[24,65]:砂質碎屑流可以與水體混合、稀釋,向濁流轉化,這種轉化一般發生于流體的中上部和尾部。其二,濁流向碎屑流轉化[67]:隨著懸浮沉積物的沉降,濁流底部懸浮沉積物濃度不斷增加;且流體侵蝕底床或水下天然堤,堤岸物質可以重新進入水道系統,當濃度增大到一定程度,并含有一定泥質碎屑時,濁流轉化為碎屑流。其三,異重流也可向砂質碎屑流轉化,或誘發砂質碎屑流的產生[71]。前者的轉化機制與上述濁流向碎屑流的轉化機制相同。而洪水期的河流強烈的沖刷作用以及流體對底部沉積物施加的切應力,都是誘發三角洲前緣斜坡失穩滑塌的可能因素。因而,異重流也可誘發碎屑流及濁流的發生。在平水期或河流洪水中的懸浮沉積物濃度不足以產生異重流時,河流攜帶的沉積物在分流河口以河口壩或水下分流河道的形式就近沉積;當這種積累達到一定程度,并有外部因素激發時,滑塌—液化變形—碎屑流—濁流等依次產生。因此,碎屑巖、濁積巖與異重巖可以在一定時空范圍內共生共存。
需要說明的是,作為重力流事件沉積細粒巖層,只是夾于正常(非事件沉積)泥頁巖沉積層中的一部分,不能代表全部的泥頁巖沉積,正常的泥頁巖沉積層仍然占據相當的比重。實際工作中,根據沉積物結構、沉積構造特征,可加以區分(表1)。重力流沉積細粒巖與正常泥巖的區分也主要依據沉積物結構、沉積構造特征。正常沉積泥頁巖一般具有均勻塊狀構造或水平紋層發育,且紋層內難以識別粒序、顏色變化。
但事件沉積與正常沉積泥頁巖的區分目前只能在野外、巖芯、或在鏡下識別;由于多數細粒沉積層薄、夾層多,許多薄層的厚度遠低于測井數據采樣間隔0.125 m,暨測井分辨率難以識別極薄層的泥質沉積;地震反射方面,更是無法達到極薄層的識別。

表1 泥質重力流沉積類型對比
湖相泥、頁巖類型多樣,沉積機理復雜。其中,陸源碎屑物質的輸入占據重要地位,尤其是對泥、頁巖儲集性能和壓裂密切相關的較粗粒脆性礦物的輸入機制,重力流作為一種將沉積物向盆地中心深水區搬運的主要流體,對其重要性的認識有待于提高。在東營凹陷沙三段頁巖油氣儲層中,重力流沉積層較為常見(圖5A~D)。對于頁巖油氣而言,重力流沉積的地質意義主要集中于以下幾個方面:
第一,重力流沉積泥質巖影響烴源巖的物質積累和保存。重力流將泥質、有機質等遠距離搬運至盆地深水沉積區,促進有機質的富集和保存[20]。尤其是洪水輸入型濁流——異重流常含有大量陸源有機物質,這些物質一方面為微生物提供了大量營養,或直接增加源巖的有機碳含量[59];另一方面,大量有機質及碎屑物質的輸入會在一定程度上影響盆地的生態環境,進而影響微生物的繁衍和有機質的積累;此外,重力流事件向沉積盆地輸入大量陸源物質,是一種重要的搬運—沉積機制;這種事件沉積會在較短的時間內加快深水區的沉積速率,從而有利于有機質的埋藏和保存。
第二,重力流沉積細粒巖是重要的頁巖油氣儲層。對于非常規油氣而言,重力流搬運—沉積的砂巖已成為深水致密砂巖油氣藏的主要儲集層;而重力流搬運—沉積而成的粉砂巖、泥頁巖等是頁巖油氣的主要儲集體。例如,在陸相湖泊背景下沉積的細粒沉積巖具有巨大的頁巖氣資源量[8-9]。東營凹陷沙河街組頁巖油氣儲層中亦發現大量重力流成因的細粒沉積層(圖5A~D)。碎屑顆粒之間的粒間孔、有機質粒內孔以及微裂縫等往往是頁巖油氣的主要儲集空間,其中的較粗碎屑顆粒、有機質的搬運與重力流沉積作用密切相關。
第三,重力流搬運—沉積的碎屑顆粒影響水平井壓裂工藝參數。在討論泥頁巖壓裂力學性質之時,石英、長石、方解石等脆性礦物的含量是其中重要的評價指標。盡管泥質巖中存在成巖成因的粉砂級石英[79],但具有較好磨圓和分選的石英、長石等碎屑顆粒多數是由物源區經搬運—沉積而成。傳統的認為泥質巖形成于靜水低能環境絮凝沉淀的觀點,難以解釋泥質巖中存在的砂質、粉砂質沉積物;但對于重力流而言,可將大量較粗顆粒沉積物搬運至盆地中心深水沉積區。許多紋層狀的泥頁巖,其中相當一部分極有可能由重力流沉積而成。由于此前的常規油氣儲層研究主要關注砂、礫巖等粗碎屑沉積巖;對于非常規油氣儲集性能和壓裂工藝參數評價至關重要的碎屑礦物來源及成因分析,需要加強沉積作用機理的研究。
(1) 通過廣泛的文獻調研,認為泥、粉砂等細粒沉積物可以在動蕩的高能水體環境中發生搬運—沉積;相關的實驗、現代沉積觀測和地史中的沉積記錄研究均證明了這一點,并逐漸被國外的地質同行普遍接受;有關泥質沉積物只能在水動力條件極弱的靜水環境中沉積的傳統觀點需要與時俱進。
(2) 泥、粉砂等細粒物質可以被重力流搬運至盆地中心深水沉積區,但由于沉積紋層一般較細,在以往的研究中往往不被重視。研究表明,深水沉積細粒巖中有相當一部分是重力流事件沉積層,需要沉積學家根據細粒沉積巖的結構、組分、微沉積構造等仔細加以甄別。
(3) 陸相湖盆中,來自三角洲前緣的細粒沉積物在重力作用下,發生滑動、滑塌、變形、崩解、稀釋等作用,產生泥質滑塌巖、泥質碎屑巖、泥質濁積巖、泥質異重巖等重力流沉積細粒巖;多種重力流沉積細粒巖在時空上可以共生共存,垂向上反復疊置,橫向上呈連續、漸變關系過渡。
(4) 重力流沉積細粒巖對于頁巖油氣在生烴物質聚集、儲集空間形成和壓裂工藝參數評價方面均可能產生重要影響,重力流沉積細粒巖具有重要的頁巖油氣地質意義。
致謝 勝利油田物探研究院陳杰、河口采油廠劉奎元、孫波和朱曉平等高級工程師在巖芯觀察期間提供了大力幫助,審稿專家和編輯仔細審閱本文并提出寶貴建議,作者在此向他們致以崇高的敬意和衷心的感謝!
References)
[1] Law B E, Curtis J B. Introduction to unconventional petroleum systems[J]. AAPG Bulletin, 2002, 86(11): 1851-1852.
[2] Pollastro R M. Total petroleum system assessment of undiscovered resources in the giant Barnett Shale continuous (unconventional) gas accumulation, Fort Worth Basin, Texas[J]. AAPG Bulletin, 2007, 91(4): 551-578.
[3] Aplin A C, Macquaker J H S. Mudstone diversity: origin and implications for source, seal, and reservoir properties in petroleum systems[J]. AAPG Bulletin, 2011, 95(12): 2031-2059.
[4] Plint A G. Mud dispersal across a Cretaceous prodelta: storm-generated, wave-enhanced sediment gravity flows inferred from mudstone microtexture and microfacies[J]. Sedimentology, 2014, 61(3): 609-647.
[5] Hovikoski J, Lemiski R, Gingras M, et al. Ichnology and sedimentology of a mud-dominated deltaic coast: upper Cretaceous Alderson Member (Lea Park Fm), Western Canada[J]. Journal of Sedimentary Research, 2008, 78(12): 803-824.
[6] Kostic S. Upper flow regime bedforms on levees and continental slopes: turbidity current flow dynamics in response to fine-grained sediment waves[J]. Geosphere, 2014, 10(6): 1094-1103.
[7] Terlaky V, Rocheleau J, Arnott A W C. Stratal composition and stratigraphic organization of stratal elements in an ancient deep-marine basin-floor succession, Neoproterozoic Windermere Supergroup, British Columbia, Canada[J]. Sedimentology, 2016, 63(1): 136-175.
[8] 劉巖,周文,鄧虎成,等. 鄂爾多斯盆地上三疊統延長組含氣頁巖地質特征及資源評價[J]. 天然氣工業,2013,33(3):19-23. [Liu Yan, Zhou Wen, Deng Hucheng, et al. Geological characteristics of gas-bearing shales in the Yanchang Formation and its resource assessment in the Ordos Basin[J]. Natural Gas Industry, 2013, 33(3): 19-23.]
[9] 王永煒,高勝利,高潮. 鄂爾多斯盆地延長探區陸相頁巖氣勘探[J]. 地質科技情報,2014,33(6):88-98. [Wang Yongwei, Gao Shengli, Gao Chao. Continental shale gas exploration and discussion on issues related to geological theory in Yanchang exploration area, Ordos Basin[J]. Geological Science and Technology Information, 2014, 33(6): 88-98.]
[10] Zou Caineng, Wang Lan, Li Ying, et al. Deep-lacustrine transformation of sandy debrites into turbidites, Upper Triassic, Central China[J]. Sedimentary Geology, 2012, 265-266: 143-155.
[11] Yang Hua, Deng Xiuqin. Deposition of Yanchang Formation deep-water sandstone under the control of tectonic events in the Ordos Basin[J]. Petroleum Exploration and Development, 2013, 40(5): 549-557.
[12] Yang Renchao, He Zhiliang, Qiu Guiqiang, et al. A Late Triassic gravity flow depositional system in the southern Ordos Basin[J]. Petroleum Exploration and Development, 2014, 41(6): 724-733.
[13] 姜在興,梁超,吳靖,等. 含油氣細粒沉積巖研究的幾個問題[J]. 石油學報,2013,34(6):1031-1039. [Jiang Zaixing, Liang Chao, Wu Jing, et al. Several issues in sedimentological studies on hydrocarbon-bearing fine-grained sedimentary rocks[J]. Acta Petrolei Sinica, 2013, 34(6): 1031-1039.]
[14] 柳波,呂延防,孟元林,等. 湖相紋層狀細粒巖特征、成因模式及其頁巖油意義——以三塘湖盆地馬朗凹陷二疊系蘆草溝組為例[J]. 石油勘探與開發,2015,42(5):598-607. [Liu Bo, Lv Yanfang, Meng Yuanlin, et al. Petrologic characteristics and genetic model of lacustrine lamellar fine-grained rock and its significance for shale oil exploration: a case study of Permian Lucaogou Formation in Malang sag, Santanghu Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(5): 598-607.]
[15] Macquaker J H S, Adams A E. Maximizing information from fine-grained sedimentary rocks: an inclusive nomenclature for mudstones[J]. Journal of Sedimentary Research, 2003, 73(5): 735-744.
[16] Schieber J. Evidence for episodic high-energy events and shallow-water deposition in the Chattanooga Shale, Devonian, central Tennessee, USA[J]. Sedimentary Geology, 1994, 93(3/4): 193-208.
[17] Macquaker J H S, Bohacs K M. On the accumulation of mud[J]. Science, 2007, 318(5857): 1734-1735.
[18] Ichaso A A, Dalrymple R W. Tide- and wave-generated fluid mud deposits in the Tilje Formation (Jurassic), offshore Norway[J]. Geology, 2009, 37(6): 539-542.
[19] Ghadeer S G, Macquaker J H S. Sediment transport processes in an ancient mud-dominated succession: a comparison of processes operating in marine offshore settings and anoxic basinal environments[J]. Journal of the Geological Society, 2011, 168(5): 1121-1132.
[20] Ghadeer S G, Macquaker J H S. The role of event beds in the preservation of organic carbon in fine-grained sediments: analyses of the sedimentological processes operating during deposition of the Whitby Mudstone Formation (Toarcian, Lower Jurassic) preserved in northeast England[J]. Marine and Petroleum Geology, 2012, 35(1): 309-320.
[21] Davies R J, Clark I R. Submarine slope failure primed and triggered by silica and its diagenesis[J]. Basin Research, 2006, 18(3): 339-350.
[22] Macquaker J H S, Bentley S J, Bohacs K M. Wave-enhanced sediment-gravity flows and mud dispersal across continental shelves: reappraising sediment transport processes operating in ancient mudstone successions[J]. Geology, 2010, 38(10): 947-950.
[23] Kranck K, Smith P C, Milligan T G. Grain-size characteristics of fine-grained unflocculated sediments II: ‘multi-round’ distributions[J]. Sedimentology, 1996, 43(3): 597-606.
[24] van Leussen W. Macroflocs, fine-grained sediment transports, and their longitudinal variations in the Ems Estuary[J]. Ocean Dynamics, 2011, 61(2/3): 387-401.
[25] Plint A G, Macquaker J H S, Varban B L. Bedload transport of mud across a wide, storm-influenced ramp: Cenomanian-Turonian Kaskapau Formation, Western Canada Foreland Basin[J]. Journal of Sedimentary Research, 2012, 82(11): 801-822.
[26] Schieber J, Southard J B, Schimmelmann A. Lenticular shale fabrics resulting from intermittent erosion of water-rich muds-interpreting the rock record in the light of recent flume experiments[J]. Journal of Sedimentary Research, 2010, 80(1): 119-128.
[27] Schieber J, Southard J B. Bedload transport of mud by floccule ripples-direct observation of ripple migration processes and their implications[J]. Geology, 2009, 37(6): 483-486.
[28] Piper D J W. Turbidite muds and silts on deep sea fans and abyssal plains[M]//Stanley D J, Kelling G. Sedimentation in submarine Canyons, Fans, and Trenches. Stroudsburg, PA: Dowden, Hutchinson & Ross, 1978: 163-176.
[29] 秦建華. 南盤江印支期前陸盆地泥質濁積巖沉積特征及其環境意義[J]. 巖相古地理,1991(5):11-18. [Qin Jianhua. Sedimentary characteristics and environmental significance of the muddy turbidites in the Indosinian Nanpanjiang Foreland Basin[J]. Lithofacies Palaeogeography, 1991(5): 11-18.]
[30] 龐雄,朱明,柳保軍,等. 南海北部珠江口盆地白云凹陷深水區重力流沉積機理[J]. 石油學報,2014,35(4):646-653. [Pang Xiong, Zhu Ming, Liu Baojun, et al. The mechanism of gravity flow deposition in Baiyun sag deepwater area of the northern South China Sea[J]. Acta Petrolei Sinica, 2014, 35(4): 646-653.]
[31] Amendola U, Perri F, Critelli S, et al. Composition and provenance of the Macigno Formation (Late Oligocene-Early Miocene) in the Trasimeno Lake area (northern Apennines)[J]. Marine and Petroleum Geology, 2016, 69: 146-167.
[32] Kirby R, Parker W R. Distribution and behavior of fine sediment in the Severn Estuary and inner Bristol Channel, U.K.[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1983, 40(S1): S83-S95.
[33] MacKay D A, Dalrymple R W. Dynamic mud deposition in a tidal environment: the record of fluid-mud deposition in the Cretaceous Bluesky Formation, Alberta, Canada[J]. Journal of Sedimentary Research, 2011, 81(12): 901-920.
[34] Ogston A S, Cacchione D A, Sternberg R W, et al. Observations of storm and river flood-driven sediment transport on the northern California continental shelf[J]. Continental Shelf Research, 2000, 20(16): 2141-2162.
[35] Traykovski P, Geyer W R, Irish J D, et al. The role of wave-induced density-driven fluid mud flows for cross-shelf transport on the Eel River continental shelf[J]. Continental Shelf Research, 2000, 20(16): 2113-2140.
[36] Traykovski P, Wiberg P L, Geyer W R. Observations and modeling of wave-supported sediment gravity flows on the Po prodelta and comparison to prior observations from the Eel shelf[J]. Continental Shelf Research, 2007, 27(3/4): 375-399.
[37] Bhattacharya J P, MacEachern J A. Hyperpycnal rivers and prodeltaic shelves in the Cretaceous Seaway of North America[J]. Journal of Sedimentary Research, 2009, 79(4): 184-209.
[38] Lowe D R, Guy M. Slurry-flow deposits in the Britannia Formation (Lower Cretaceous), North Sea: a new perspective on the turbidity current and debris flow problem[J]. Sedimentology, 2000, 47(1): 31-70.
[39] Schieber J. Mud re-distribution in epicontinental basins-Exploring likely processes[J]. Marine and Petroleum Geology, 2016, 71: 119-133.
[40] 袁選俊,林森虎,劉群,等. 湖盆細粒沉積特征與富有機質頁巖分布模式——以鄂爾多斯盆地延長組長7油層組為例[J]. 石油勘探與開發,2015,42(1):34-43. [Yuan Xuanjun, Lin Senhu, Liu Qun, et al. Lacustrine fine-grained sedimentary features and organic-rich shale distribution pattern: A case study of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(1): 34-43.]
[41] 蒲秀剛,周立宏,韓文中,等. 細粒相沉積地質特征與致密油勘探——以渤海灣盆地滄東凹陷孔店組二段為例[J]. 石油勘探與開發,2016,43(1):1-10. [Pu Xiugang, Zhou Lihong, Han Wenzhong, et al. Geologic features of fine-grained facies sedimentation and tight oil exploration: A case from the second Member of Paleogene Kongdian Formation of Cangdong sag, Bohai Bay Basin[J]. Petroleum Exploration and Development, 2016, 43(1): 1-10.]
[42] Hansen L, L’Heureux J S, Longva O. Turbiditic, clay-rich event beds in fjord-marine deposits caused by landslides in emerging clay deposits-palaeoenvironmental interpretation and role for submarine mass-wasting[J]. Sedimentology, 2011, 58(4): 890-915.
[43] Covault J A, Kostic S, Paull C K, et al. Submarine channel initiation, filling and maintenance from sea-floor geomorphology and morphodynamic modelling of cyclic steps[J]. Sedimentology, 2014, 61(4): 1031-1054.
[44] Talling P J, Wynn R B, Masson D G, et al. Onset of submarine debris flow deposition far from original giant landslide[J]. Nature, 2007, 450(7169): 541-544.
[45] Talling P J. On the triggers, resulting flow types and frequencies of subaqueous sediment density flows in different settings[J]. Marine Geology, 2014, 352: 155-182.
[46] Addington L D, Kuehl S A, McNinch J E. Contrasting modes of shelf sediment dispersal off a high-yield river: Waiapu River, New Zealand[J]. Marine Geology, 2007, 243(1/2/3/4): 18-30.
[47] Parsons J D, Bush J W M, Syvitski J P M. Hyperpycnal plume formation from riverine outflows with small sediment concentrations[J]. Sedimentology, 2001, 48(2): 465-478.
[48] Yoshida M, Yoshiuchi Y, Hoyanagi K. Occurrence conditions of hyperpycnal flows, and their significance for organic-matter sedimentation in a Holocene estuary, Niigata Plain, Central Japan[J]. Island Arc, 2009, 18(2): 320-332.
[49] Migeon S, Mulder T, Savoye B, et al. Hydrodynamic processes, velocity structure and stratification in natural turbidity currents: results inferred from field data in the Var Turbidite System[J]. Sedimentary Geology, 2012, 245-246: 48-62.
[50] Turowski J M, Hilton R G, Sparkes R. Decadal carbon discharge by a mountain stream is dominated by coarse organic matter[J]. Geology, 2016, 44(1): 27-30.
[51] 楊仁超,金之鈞,孫冬勝,等. 鄂爾多斯晚三疊世湖盆異重流沉積新發現[J]. 沉積學報,2015,33(1):10-20. [Yang Renchao, Jin Zhijun, Sun Dongsheng, et al. Discovery of hyperpycnal flow deposits in the Late Triassic lacustrine Ordos Basin[J]. Acta Sedimentologica Sinica, 2015, 33(1): 10-20.]
[52] 孫福寧,楊仁超,李冬月. 異重流沉積研究進展[J]. 沉積學報,2016,34(3):452-462. [Sun Funing, Yang Renchao, Li Dongyue. Research progresses on hyperpycnal flow deposits[J]. Acta Sedimentologica Sinica, 2016, 34(3): 452-462.]
[53] Mulder T, Syvitski J P M. Turbidity currents generated at river mouths during exceptional discharges to the world oceans[J]. The Journal of Geology, 1995, 103(3): 285-299.
[54] Mulder T, Migeon S, Savoye B, et al. Twentieth century floods recorded in the deep Mediterranean sediments[J]. Geology, 2001, 29(11): 1011-1014.
[55] Mulder T, Syvitski J P M, Migeon S, et al. Marine hyperpycnal flows: initiation, behavior and related deposits. A review[J]. Marine and Petroleum Geology, 2003, 20(6/7/8): 861-882.
[56] Lamb M P, Mohrig D. Do hyperpycnal-flow deposits record river-flood dynamics[J]. Geology, 2009, 37(12): 1067-1070.
[57] Bourget J, Zaragosi S, Mulder T, et al. Hyperpycnal-fed turbidite lobe architecture and recent sedimentary processes: a case study from the Al Batha turbidite system, Oman margin[J]. Sedimentary Geology, 2010, 229(3): 144-159.
[58] Pouderoux H, Proust J N, Lamarche G, et al. Postglacial (after 18 ka) deep-sea sedimentation along the Hikurangi subduction margin (New Zealand): characterisation, timing and origin of turbidites[J]. Marine Geology, 2012, 295-298: 51-76.
[59] Khripounoff A, Vangriesheim A, Crassous P, et al. High frequency of sediment gravity flow events in the Var submarine canyon (Mediterranean Sea)[J]. Marine Geology, 2009, 263(1/2/3/4): 1-6.
[60] Yao Y, Flemings P, Mohrig D. Dynamics of dilative slope failure[J]. Geology, 2012, 40(7): 663-666.
[61] Clare M A, Talling P J, Challenor P, et al. Distal turbidites reveal a common distribution for large (>0.1 km3) submarine landslide recurrence[J]. Geology, 2014, 42(3): 263-266.
[62] 何起祥. 沉積動力學若干問題的討論[J]. 海洋地質與第四紀地質,2010,30(4):1-10. [He Qixiang. A discussion on sediment dynamics[J]. Marine Geology & Quaternary Geology, 2010, 30(4): 1-10.]
[63] Soyinka O A, Slatt R M. Identification and micro-stratigraphy of hyperpycnites and turbidites in Cretaceous Lewis Shale, Wyoming[J]. Sedimentology, 2008, 55(5): 1117-1133.
[64] Brunner C A, Normark W R, Zuffa G G, et al. Deep-sea sedimentary record of the late Wisconsin cataclysmic floods from the Columbia River[J]. Geology, 1999, 27(5): 463-466.
[65] Kane I A, Pontén A S M. Submarine transitional flow deposits in the Paleogene Gulf of Mexico[J]. Geology, 2012, 40(12): 1119-1122.
[66] 王陸新,吳朝東,莫午零,等. 松遼盆地嫩江組泥質三角洲沉積特征及沉積機理[J]. 北京大學學報:自然科學版,2014,50(3):497-506. [Wang Luxin, Wu Chaodong, Mo Wuling, et al. Sedimentary characteristics and identification of muddy deltaic in Nenjiang Formation of Songliao Basin[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(3): 497-506.]
[67] Sumner E J, Talling P J, Amy L A. Deposits of flows transitional between turbidity current and debris flow[J]. Geology, 2009, 37(11): 991-994.
[68] Talling P J, Masson D G, Sumner E J, et al. Subaqueous sediment density flows: depositional processes and deposit types[J]. Sedimentology, 2012, 59(7): 1937-2003.
[69] Sumner E J, Talling P J, Amy L A, et al. Facies architecture of individual basin-plain turbidites: comparison with existing models and implications for flow processes[J]. Sedimentology, 2012, 59(6): 1850-1887.
[70] Sumner E J, Siti M I, McNeill L C, et al. Can turbidites be used to reconstruct a paleoearthquake record for the central Sumatran margin[J]. Geology, 2013, 41(7): 763-766.
[71] Sawyer D E, Flemings P B, Nikolinakou M. Continuous deep-seated slope failure recycles sediments and limits levee height in submarine channels[J]. Geology, 2014, 42(1): 15-18.
[72] Baas J H, Manica R, Puhl E, et al. Processes and products of turbidity currents entering soft muddy substrates[J]. Geology, 2014, 42(5): 371-374.
[73] 李丕龍,姜在興,馬在平. 東營凹陷儲集體與油氣分布[M]. 北京:石油工業出版社,2000:47-80. [Li Peilong, Jiang Zaixing, Ma Zaiping. Reservoir and distribution of oil and gas in Dongying sag[M]. Beijing: Petroleum Industry Press, 2000: 47-80.]
[74] 劉軍鍔,簡曉玲,康波,等. 東營凹陷東營三角洲沙三段中亞段古地貌特征及其對沉積的控制[J]. 油氣地質與采收率,2014,21(1):20-23. [Liu Jun’e, Jian Xiaoling, Kang Bo, et al. Paleogeomorphology of the middle part of 3rdmember of Shahejie Formation and their effects on depositional systems, Dongying delta, Dongying depression[J]. Petroleum Geology and Recovery Efficiency, 2014, 21(1): 20-23.]
[75] 孔凡仙. 東營凹陷北帶砂礫巖扇體勘探技術與實踐[J]. 石油學報,2000,21(5):27-31. [Kong Fanxian. Exploration technique and practice of sandy-conglomeratic fans in the northern part of Dongying depression[J]. Acta Petrolei Sinica, 2000, 21(5): 27-31.]
[76] 陳杰,劉傳虎,譚明友,等. 進積型三角洲交匯區沉積模式——以東營凹陷沙三中亞段為例[J]. 沉積學報,2016,34(6):1187-1197. [Chen Jie, Liu Chuanhu, Tan Mingyou, et al. Depositional model of prograding delta confluences: A case from Es3mmembers in the Paleogene Dongying sag[J]. Acta Sedimentologica Sinica, 2016, 34(6): 1187-1197.]
[77] Yang Renchao, van Loon A J, Yin Wei, et al. Soft-sediment deformation structures in cores from lacustrine slurry deposits of the Late Triassic Yanchang Fm. (central China)[J]. Geologos, 2016, 22(3): 201-211.
[78] Yang Renchao, Jin Zhijun, van Loon A J, et al. Climatic and tectonic controls of lacustrine hyperpycnite origination in the Late Triassic Ordos Basin, central China: implications for unconventional petroleum development[J]. AAPG Bulletin, 2017, 101(1): 95-117.
[79] Schieber J, Krinsley D, Riciputi L. Diagenetic origin of quartz silt in mudstones and implications for silica cycling[J]. Nature, 2000, 406(6799): 981-985.
Research Progresses on Muddy Gravity Flow Deposits and Their Significances on Shale Oil and Gas: A case study from the 3rdoil-member of the Paleogene Shahejie Formation in the Dongying Sag
SONG MingShui1, XIANG Kui1, ZHANG Yu1, CAI Pan1, LIU JianLei1, YANG RenChao2
1. Exploration Management Center, Shengli Oilfield Company, SINOPEC, Dongying, Shandong 257017, China 2. College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
With promotion of shale oil and gas development on intensive studies on depositional mechanisms of mudstone and shales, transportation and deposition of fine-grained sediment have currently become hot topics in both sedimentoligical studies and petroleum industries. However, muddy gravity flow deposits in the Cenozoic lacustrine environment have not yet arisen attentions of geologists, although literatures of gravity flow-generated muddy deposits in marine environments extensively existed. Based on extensive literature researches, detailed core examinations and thin section observations, this paper analyzes characteristics of gravity flow-generated fine-grained deposits in the 3rdoil-member of the Paleogene Shahejie Formation (E2s3), Dongying Sag, Bohai Bay Basin. Discussions on their forming mechanisms have theoretical significances on lacustrine sedimentary environment study and have practical meanings on developments of shale oil and gas. Results: 1) there are various gravity flow deposits, including muddy mass flows, muddy debris flows, muddy turbidity currents and muddy hyperpycnal flows exist in E2s3in the Dongying Sag; 2) muddy slumps, muddy debrites, muddy turbidites and muddy hyperpycnites co-generate and co-exist in spatio-temporal extents. Conclusions: 1) muddy sediments can deposit in turbulent waterbody and high hydrodynamic conditions; 2) muddy gravity flow deposits play an important role in deep water sedimentary regions; 3) muddy gravity flows are of great importance to transportation and deposition of coarse grains and organic matters, and so to preservation of organic matters; 4) muddy gravity flow deposits have important geological significances on unconventional oil and gas.
gravity flow-generated fine-grained deposits; muddy debrites; muddy turbidites; muddy hyperpycnites; unconventional oil and gas; Dongying Sag; Paleogene
1000-0550(2017)04-0740-12
10.14027/j.cnki.cjxb.2017.04.008
2016-11-07; 收修改稿日期: 2017-01-12
山東省重大科技創新工程項目(2017CXGC1608);國家自然科學基金項目(41372135,41672120);山東科技大學科研團隊計劃(2015TDJH101)[Foundation: Major Scientific and Technological Innovation Project of Shandong Province, No.2017CXGC1608; National Natural Science Foundation of China, No.41372135, 41672120; SDUST Research Fund, No. 2015TDJH101]
宋明水,男,1964年生,博士,教授級高工,油田勘探與管理,E-mail: songmingshui.slof@sinopec.com
楊仁超,男,副教授,E-mail: yang100808@126.com
P618.13 TE121.1
A