張珮儀溫 騰,2,3,4?張金波,2,3,4蔡祖聰,2,3,4
(1 南京師范大學地理科學學院,南京 210023)
(2 江蘇省地理環境演化國家重點實驗室培育建設點,南京 210023)
(3 江蘇省地理信息資源開發與利用協同創新中心,南京 210023)
(4 虛擬地理環境教育部重點實驗室(南京師范大學),南京 210023)
擴散法測定土壤無機氮15N豐度方法優化研究*
張珮儀1溫 騰1,2,3,4?張金波1,2,3,4蔡祖聰1,2,3,4
(1 南京師范大學地理科學學院,南京 210023)
(2 江蘇省地理環境演化國家重點實驗室培育建設點,南京 210023)
(3 江蘇省地理信息資源開發與利用協同創新中心,南京 210023)
(4 虛擬地理環境教育部重點實驗室(南京師范大學),南京 210023)
擴散法與質譜測定技術相結合,被廣泛應用于環境、生態和農業領域中土壤、水等樣品中無機氮15N同位素豐度的測定。為建立一套可快速、準確測定土壤無機氮15N同位素豐度的擴散培養體系,針對土壤樣品無機氮量的變化特點,從培養溫度、培養時間、試劑選擇和用量等方面對擴散條件進行優化。結果發現,對于大部分無機氮濃度大于2 mg L-1的土壤樣品,20 ml土壤提取液,在不小于250 ml的藍蓋瓶中,懸掛兩張各滴加了10 μl 1 mol L-1草酸的濾紙,加入0.1 g的MgO,25 ℃下以140 r min-1的轉速振蕩培養24 h即可完成對樣品中NH4+-N的擴散與回收;換入2張加酸濾紙繼續搖培48 h可基本去除殘余的NH4+-N;再換入2張加酸濾紙并加入0.1 g的戴氏合金振蕩培養24 h即可。對于無機氮濃度低于2 mg L-1的土壤提取液,需用50 ml提取液按以上條件進行擴散培養即可保證測定結果的準確性。本方法大大縮短了擴散法所需的實驗周期,實現在一份樣品內同時完成NH4+-N和NO3--N的擴散與回收,減少了樣品的需要量,并通過優化MgO、戴氏合金(Devarda’s alloy)的用量減少雜質氮可能帶來的污染。
擴散;土壤;銨態氮;硝態氮;15N
15N穩定同位素示蹤技術,已廣泛應用于氮轉化研究,無機態氮作為氮轉化過程的重要形態,其15N豐度的測定(尤其是-N和-N)對陸地生態系統的氮循環研究尤其重要,如何有效、快速、定量地從樣品中提取出-N和-N是關鍵步驟[1-3]。早期提取、分離土壤樣品中的無機態氮一般采用蒸餾法,近年來擴散法已逐漸取代蒸餾法[4-8]。擴散法是在一密閉容器內,加入MgO等堿性試劑使樣品中的-N轉化為NH3,并被加有酸吸收劑(如H2SO4、KHSO4等)的濾紙所吸收,濾紙干燥后送至元素分析儀-同位素質譜聯用儀上測定其15N豐度[3];對于樣品中的-N,需去除-N后,利用戴氏合金(Devarda’s alloy)將-N還原為-N,再擴散培養。與蒸餾法相比,擴散法不但適用于15N示蹤樣品,也適合自然豐度樣品,測定的準確度和精確度較高,而且操作簡便、交叉污染少,減少了高溫蒸餾引起的有機氮分解[4,9-11]。
土壤中的無機氮濃度不高,因土壤異質性,濃度差異較大,對于土壤標記試驗,無機氮變化范圍可為2 mg L-1~8 mg L-1。擴散法通常采用常溫靜置培養,培養周期需≥6 d,土壤樣品中DON會緩慢降解為無機氮,干擾測定結果,因此極有必要縮短擴散培養時間,這可通過改變培養溫度、樣品體積、擴散容器大小形狀、pH等實現[3-4,9-12]。土壤無機氮濃度變化較大這一特點,使得低濃度樣品體積需適當高于高濃度樣品,以避免同位素分餾影響測定結果[13]。由于-N的測定需先去除樣品中的-N,在二者15N豐度差異較大的情況下,少量的-N殘留均會顯著影響-N[4,14]。Stark和Hart[15]建議土壤樣品開蓋敞口靜置5 d以上,能基本去除-N,但長時間敞口培養,不但易污染樣品,還降低-N的回收率,因此如何快速有效去除-N是關鍵。此外,擴散培養使用的MgO、戴氏合金等試劑均含不同程度雜質氮,對于土壤樣品MgO和戴氏合金的使用量往往偏大,雜質氮干擾明顯,優化試劑用量有助于提高測定結果的準確度[15-16]。
綜上,本研究針對土壤標記試驗中土壤樣品的無機氮濃度變化特點,從培養溫度、培養時間、試劑選擇和用量等方面對擴散培養條件進行優化,旨在建立一套可快速、準確測定土壤標記試驗中無機氮15N同位素豐度的擴散培養體系。
1.1 擴散法的操作步驟
實驗盡量使用同一廠家同一批次的試劑,MgO(國藥分析純)450~600 ℃下高溫灼燒以消除雜質氮的污染,戴氏合金研磨過300目篩。在干凈鋁箔紙上用一次性手套進行操作,打孔器、針頭和鑷子均用酒精擦拭干凈[17]。如圖1所示,首先將回形針制成鉤狀固定到穿孔硅膠片上,并安放在培養瓶的蓋子上,再用打孔器制作直徑7 mm的小圓濾紙片(Whatman No.42 Cat No. 1442-055),用鑷子將其穿在掛鉤下部。移取適量樣品溶液于培養瓶中,瓶內放入3顆玻璃珠。吸取一定量的酸吸收劑均勻潤濕濾紙后,向瓶中加入0.3 g MgO,立即蓋上瓶蓋并旋緊,適當搖勻。將培養瓶放于恒溫搖床(常州普天儀器制造有限公司,HZQ X160,HZQ F160),140 r min-1搖培一定時間后,取出濾紙片,放入96孔板內,在干燥器內至少干燥24 h[9]后,錫杯包樣,通過同位素比值質譜儀(Thermo Fisher Scientific Delta V Plus)測定15N豐度,即樣品中的-N的15N豐度。樣品中-N的測定則是在完成-N的擴散培養并去除殘留-N后,加入0.3 g戴氏合金,搖培、干燥、包樣和測定方法同-N。
1.2 培養溫度和培養時間的優化

圖1 擴散法培養體系示意圖Fig. 1 Diagram of the diffusion method
土壤樣品的無機氮濃度一般為2~8 mg L-1,試驗選用購自上海化工研究院的15NH4NO3標準樣,配置成2、6、8 mg L-1的15NH4NO3標記液(-15N豐度5 atom%;-15N豐度 0.3663 atom%),分成兩組,其中一組直接使用標記液作為樣品溶液,其對照組為同體積高純水;另一組標記液中加入2 mol L-1KCl以模擬土壤提取液,對照組為同體積2 mol L-1KCl溶液。設置25、35和45 ℃ 3個擴散培養溫度水平,每個溫度水平分別設置12、24、36和48 h 4個擴散培養時間,酸吸收劑為20 μl 1 mol L-1H2C2O4,MgO和戴氏合金用量均為0.3 g。
1.3 低氮濃度樣品擴散體系的優化
在1.2試驗結果的基礎上,對濃度為2 mg L-1低濃度樣品擴散體系做進一步的優化,以提高測定精度。設置3個樣品體積處理,分別為20 ml、50 ml和100 ml的15NH4NO3溶液(濃度2 mg L-1,-15N豐度5 atom%;NO3-15N豐度 0.3663 atom%),在25 ℃下按1.1擴散培養24 h和48 h,其中100 ml溶液改用500 ml藍蓋瓶中擴散培養,酸吸收劑為H2C2O4,MgO和戴氏合金用量均為0.3 g,每組處理均設對照組,為同體積高純水。
1.5 試劑選擇和用量優化
在1.2和1.4試驗結果的基礎上,對試劑選擇和用量進行優化。使用8 mg L-1的15NH4NO3溶液(-15N豐度5 atom%;NO3-15N豐度 0.3663 atom%),按1.1在25 ℃下擴散培養,MgO和戴氏合金的用量均為0.1 g、0.2 g和0.3 g,酸吸收劑選用2 mol L-1H2SO4、2.5 mol L-1KHSO4和1 mol L-1H2C2O4,每組處理以同體積高純水為對照組。
1.6 數據處理
以上試驗每個處理均設有3個重復,試驗數據處理采用Origin 9、SPSS 19.0統計分析,并采用t檢驗法及Duncan法檢驗差異顯著性。
2.1 不同氮濃度樣品培養溫度和培養時間的優化
氮回收量是影響擴散法測定15N豐度精度的重要因素,質譜儀上m/z 28和m/z 29的信號值一定程度上可近似表征回收的氮量。以在25 ℃下8 mg L-1NH4NO3溶液中NH4+-N的擴散培養結果為例(圖2),培養12 h時m/z 28和m/z 29的信號值均最低,但培養24 h后二者信號值與36 h、48 h無顯著差異,可見培養24 h時已完成大部分氮量的回收;與12、36、48 h相比,培養24 h的組內誤差最小。同時,流動分析儀檢測擴散后的剩余溶液顯示-N濃度已降至0.2 mg L-1以下。因此,培養24 h即可較好完成大部分-N或-N的擴散與回收。
本試驗設置了3個不同的溫度(25、35、45 ℃)來篩選適合土壤樣品的最佳擴散培養溫度。對比3個溫度的結果可以發現(圖3A~圖3C),3個溫度下測得的-N的15N豐度值均接近其理論豐度(5 atom%),但升高擴散培養溫度,且隨著擴散時間的延長,空白氮量進一步上升(圖3D)。此外,與高濃度的測定結果相比,在3個溫度條件下,低濃度樣品(2 mg L-1)的15N豐度值與理論豐度偏差較大。
試驗還發現,滴加20 μl草酸的濾紙片m/z 28信號值約為35 mV,僅含高純水的對照組中m/z 28信號值約為50 mV,而同等條件下加有2 mol L-1KCl溶液的對照組的信號值可達270~400 mV,同時測定發現2 mol L-1的KCl中含有約0.46 mg L-1的-N和0.52 mg L-1的-N。

圖2 25 ℃下8 mg L-1NH4NO3溶液中-N在不同擴散培養時間下的氮量回收變化Fig. 2- N recovery in extracts 8 mg L-1in NH4NO3concentration incubated at 25 ℃ relative to incubation time
2.2 低氮濃度樣品擴散體系的優化
對于無機氮濃度(< 2 mg L-1)較低的土壤樣品,提高樣品量可增加氮回收量并提高測定的準確性。對比不同體積的2 mg L-1NH4NO3溶液(20、50、100 ml)的-N測定結果可發現,在同一培養條件下,20 ml體系樣品的15N豐度明顯低于理論值,而50和100 ml體系均基本接近理論值(圖4B)。在氮回收量上,20 ml體系的氮回收量最低,延長培養時間至48 h,氮回收量無明顯提高,而50和100 ml體系的氮回收量均顯著高于20 ml體系,且隨著培養時間的延長而增加(圖4A)。雖然延長培養時間可提高50 ml和100 ml體系的氮回收量,但在15N豐度的測定上無明顯差異(p >0.05),也就是說,對于低氮濃度的土壤樣品,將其體積增大至50 ml擴散培養24 h即可保證測定結果的準確性。

圖3 不同溫度下(25、35、45 ℃)2 mg L-1和6 mg L-1NH4NO3溶液(-N:5 atom%;-N:0.3663 atom%)擴散培養12、24、36和48 h后-N的15N變化Fig. 3 Variation of δ15N of-N in NH4NO3solutions,2 mg L-1and 6 mg L-1in volume(-N:5 atom%;-N:0.3663 atom%)relative to incubation temperatures(25,35 and 45 ℃)and time(12,24,36 and 48 h)
2.3 殘留NH4+-N去除的優化
2.4 試劑選擇和用量優化
優化MgO和戴氏合金的用量,可有效減少雜質氮的干擾,保證測定結果的準確性。在溶液中加入不同量的MgO(0.1~0.3 g)后發現,0.1 g的MgO即可使樣品溶液pH > 11;添加 0.1 g或0.3 g的MgO,在8 mg L-120 ml15NH4NO3溶液中-N的氮回收量和15N豐度均無明顯差異(p > 0.05)。對照的結果顯示,高溫灼燒過的MgO,用量的增加并未引起信號值的升高(表2)。從加入0.1~0.3 g戴氏合金的結果可發現(表3),合金用量與氮回收量呈正比,雖然0.1 g戴氏合金還原的-N氮量顯著低于0.3 g,二者在-N的15N豐度測定結果上無明顯差異(p > 0.05),且0.1 g的合金用量得到的豐度最接近理論豐度(0.3663 atom%)。從對照組的結果可看出,隨著戴氏合金用量增加,擴散體系中的雜質氮量隨之升高。因此對于2~8 mg L-1的土壤樣品,0.1 g的MgO和0.1 g戴氏合金用量已足以實現對樣品中無機氮的15N值的準確測定。

圖4 25 ℃下不同體積(20、50和 100 ml)的2 mg L-1NH4NO3溶液(-N:5 atom%;-N:0.3663 atom%)擴散培養24和 48 h后-N的氮回收量變化和15N測定結果Fig. 4 Recoveries of-N and δ15N NH4NO3solutions,2 mg L-1in concentration(-N:5 atom%;-N:0.3663 atom%)relative to volume of the solution(20,50 and 100 ml)and incubation time(24 and 48 h)at 25 ℃
表1 加酸濾紙對20 ml 8 mg L-115NH4NO3溶液(-N:5 atom%;-N:0.3663 atom%)中殘留-N去除效果的影響Table 1 Effects of acid-spiked filter paper removing residue-N in15NH4NO3(-N:5 atom%;-N:0.3663 atom%)solution 20 ml in volume and 8 mg L-1in concentration

表1 加酸濾紙對20 ml 8 mg L-115NH4NO3溶液(-N:5 atom%;-N:0.3663 atom%)中殘留-N去除效果的影響Table 1 Effects of acid-spiked filter paper removing residue-N in15NH4NO3(-N:5 atom%;-N:0.3663 atom%)solution 20 ml in volume and 8 mg L-1in concentration
注:搖培24 h完成對樣品中NH4+-N的擴散后,敞口搖培(無加酸濾紙)或換入兩張新的滴加酸吸收劑的濾紙(有加酸濾紙)去除殘留-N,12、24、36 h后再換入新的濾紙并加戴氏合金完成-N的擴散培養。標準數據為平均值±標準差(n=3),同一列中不同小寫字母表示差異顯著(p < 0.05)。下同 Note:Incubate the sample for 24 h on a rotator for-N diffusion,incubate again the sample on a rotator with the flask lid removed(no filter paper)or with 2 pieces of new acid-spiked filter paper hung inside,for 12,24 and 36 h to remove residue-N and then replace the filter paper with new ones and add Devarda’s alloy for diffusion of-N. Values are means ± standard deviation(n=3). Values with different lowercase letters within the same column are significantly different at p < 0.05. The same below
不加酸濾紙No acidified filters加酸濾紙Acidified filters搖培時間Incubation time(h)NO3--N豐度Abundance(atom%)搖培時間Incubation time(h)NO3--N豐度Abundance(atom%)121.0305±0.0969a120.4632±0.0637a 240.9575±0.3091a240.3931±0.0020ab 360.7174±0.4166a360.3760±0.0017b
3種酸吸收劑對NH3均有較強的吸收能力,不產生同位素分餾。如表4所示,同等體積的3種酸吸收劑(1 mol L-1H2C2O4、2.5 mol L-1KHSO4和2 mol L-1H2SO4)的氮回收量均較高,且在8 mg L-120 ml15NH4NO3溶液中-N的15N豐度測定結果上
無明顯差異(p > 0.05)。雖然2 mol L-1H2SO4的擴散培養回收的氮量低于其他兩種酸吸收劑,但其15N值最接近理論豐度(5 atom%)。可見,3種酸吸收劑均可用于擴散法。
表2 不同MgO用量對8 mg L-120 ml15NH4NO3溶液(-N:5 atom%;-N:0.3663 atom%)中-N15N豐度測定的影響Table 2 Effects of MgO on determination of δ15N of-N in the15NH4NO3(-N:5 atom%;-N:0.3663 atom%)solution 8 mg L-1in concentration and 20 ml in volume relative to rate of MgO

表2 不同MgO用量對8 mg L-120 ml15NH4NO3溶液(-N:5 atom%;-N:0.3663 atom%)中-N15N豐度測定的影響Table 2 Effects of MgO on determination of δ15N of-N in the15NH4NO3(-N:5 atom%;-N:0.3663 atom%)solution 8 mg L-1in concentration and 20 ml in volume relative to rate of MgO
注:m/z 28信號值表示濾紙上的氮量,對照為不含15NH4NO3的高純水,其m/z 28值為擴散培養體系中的雜質氮量。下同 Note:m/z 28 is the signal value of the amount of N in the filter paper. CK is15NH4NO3-free ultrapure water,of which m/z 28 value represents the amount of nitrogen impurities. The same below
MgO用量Amount of MgO(g)樣品Sample對照CK m/z 28(mV)NH4+-N豐度Abundance(atom%)m/z 28(mV)0.153864.9125±0.0399a54 0.253434.9246±0.0185a46 0.352314.9446±0.0137a48
表3 不同戴氏合金用量對8 mg L-120 ml15NH4NO3溶液(-N:5 atom%;-N:0.3663 atom%)中-N15N豐度測定的影響Table 3 Effects of Devarda’s alloy on determination of δ15N of-N in the15NH4NO3(-N:5 atom%;-N:0.3663 atom%)solution 8 mg L-1in concentration and 20 ml in volume relative to rate of the alloy used

表3 不同戴氏合金用量對8 mg L-120 ml15NH4NO3溶液(-N:5 atom%;-N:0.3663 atom%)中-N15N豐度測定的影響Table 3 Effects of Devarda’s alloy on determination of δ15N of-N in the15NH4NO3(-N:5 atom%;-N:0.3663 atom%)solution 8 mg L-1in concentration and 20 ml in volume relative to rate of the alloy used
樣品Sample對照CK戴氏合金用量Amount of Devarda’s alloy(g)m/z 28(mV)NO3--N豐度Abundance(atom%)m/z 28(mV)0.117970.3742±0.0023a99 0.227650.3857±0.0112a114 0.340350.3724±0.0064a122
表4 不同酸吸收劑對8 mg L-120 ml15NH4NO3溶液(-N:5 atom%;-N:0.3663 atom%)中-N15N測定結果的影響Table 4 Effects of acid absorbent on determination of-N in the15NH4NO3(-N:5 atom%;-N:0.3663 atom%)solution 8 mg L-1in concentration and 20 ml in volume relative to type of the absorbent

表4 不同酸吸收劑對8 mg L-120 ml15NH4NO3溶液(-N:5 atom%;-N:0.3663 atom%)中-N15N測定結果的影響Table 4 Effects of acid absorbent on determination of-N in the15NH4NO3(-N:5 atom%;-N:0.3663 atom%)solution 8 mg L-1in concentration and 20 ml in volume relative to type of the absorbent
樣品Sample對照CK m/z 28(mV)1 mol L-1H2C2O453814.9237±0.3556a44 2.5 mol L-1KHSO454614.9233±0.0470a62 2 mol L-1H2SO444924.9540±0.0351a48酸吸收劑Acid absorbent m/z 28(mV)NH4+-N豐度Abundance(atom%)
以往學者們大多采用常溫靜置的方法進行擴散培養,周期較長,還可能導致體系中雜質氮分解,影響測定結果的準確性(≥6 d )[4,14-15,18]。后來Lachouani等[19]發現在37 ℃下搖培(100 r min-1)可加快擴散速度,減少器壁上產生的冷凝水珠,減少其競爭吸收NH3的能力。本研究發現對于含2~8 mg L-1無機氮的土壤樣品,在25 ℃下搖床振蕩(140 r min-1)培養24 h,即可完成樣品中大部分氮量的擴散與回收。甚至20 mg L-1的15NH4NO3溶液在24 h擴散培養后,也不發生分餾,完成大部分氮量回收。
對于無機氮含量為2~8 mg L-1的樣品,提高培養溫度不會明顯加快擴散進程,但可能增加雜質氮量,試驗中35、45、55 ℃下對照組的空白氮量明顯偏高,并隨著擴散時間延長進一步上升。這些雜質氮主要來源于土壤中的DON和擴散使用的試劑及用品(高純水、濾紙片、酸吸收劑、MgO和戴氏合金),部分也受環境中微量NH3的影響。此外,用來提取土壤無機氮的KCl溶液中也含有主要以-N和-N形式存在的雜質氮,試驗中2 mol L-1KCl含0.46 mg L-1的-N和0.52 mg L-1的-N,事先將KCl 450 ℃煅燒24 h以上,并設僅加有KCl的對照進行空白校正,可減少雜質氮對測定結果的干擾[15,18,20-21]。濾紙片一旦滴加酸吸收劑后,會馬上吸收環境中的NH3,應盡量避免濾紙片長時間暴露在空氣中。隨著溫度的提高,容器內還可能產生大量的冷凝水珠競爭吸收NH3,反而減少氮回收率[9]。Khan等[11]雖在45~50 ℃下僅用1.5~5 h就完成含4 mg N 土壤提取液的擴散回收,但同樣發現這一問題。Mulvaney等[22]還發現高溫會升高擴散瓶內的氣壓,可能引起NH3泄露。
要準確測定低氮濃度土壤樣品,需要回收足夠的氮量,否則易導致同位素分餾,因此要適當地增加樣品體積[13,23]。本次試驗發現含2 mg L-1N的土壤樣品,培養體積從20 ml增加至50 ml,擴散培養24 h后基本無分餾現象發生。Holmes等[13]發現,將低氮濃度的海水樣品的培養體積擴大至200 ml,同位素分餾就可降低至0.2‰。除增加氮量外,擴大樣品體積還可減少擴散過程中瓶壁上的冷凝水珠,從而提高氮的回收率。需要注意的是,本文探討的擴散方法體系是針對15N土壤標記試驗的樣品,并不適用于自然豐度土壤樣品的測定;而且對于氮濃度低(如0.4~0.8 mg L-1)的樣品,本文的方法并不適合,可考慮直接化學轉化或擴散后轉化為N2O氣體,以測定其N、O同位素豐度[2,20]。
優化MgO、戴氏合金的用量,可減少試劑所含雜質氮的干擾。過去人們對MgO和戴氏合金的用量并未統一,通常采用與蒸餾法相同的用量(0.2~0.4 g),但擴散無需使用MgO去除水中的CO32-,過量添加反而干擾測定[4,11,16-17,25]。本研究發現,對于含2~8 mg L-1無機氮的土壤樣品,0.1 g的MgO足以擴散出足量的NH3。Mulvaney和Khan[25]也在對含2 mg N的(NH4)2SO4標準溶液擴散時發現0.05 g和1.0 g的MgO效果相同,雖然MgO已實現高溫灼燒去除雜質氮,提高MgO的用量不會明顯增加雜質氮量,但過量MgO可能增加固相阻礙NH3的釋放。戴氏合金用量則與雜質氮量呈正比,而合金中的鋁由于強還原性可與水反應生成H2,阻礙NH3的釋放[26]。Sigman等[9]曾建議高溫灼燒戴氏合金減少合金中的雜質氮,但這會降低其對-N的還原能力。雖然現在缺少合金用量與溶液含氮量的定量關系,但對大部分土壤提取液來說,0.1 g的戴氏合金就足夠完成擴散,而如何減少戴氏合金中的雜質氮仍是需要解決的一大問題。
本文使用的3種酸吸收劑(H2C2O4、KHSO4和H2SO4)對NH3吸收能力均較強。過去多采用H2SO4和KHSO4,10 μl的5 mol L-1H2SO4可吸收1 400 μg的N,10 μl的2.5 mol L-1KHSO4可吸收350 μg的N,但試驗發現,2 mol L-1的H2SO4就因在濾紙上吸附過多水分,水珠回滴損失部分氮,KHSO4雖吸水性較弱,但也會有水珠回滴,而1 mol L-1H2C2O4則未發生此現象,且濾紙干燥最快。盡管Liu和Mulvaney[14]通過降低H2SO4濃度,使用1 mol L-1H2SO4作酸吸收劑,可避免濾紙水分完全飽和的現象,但含H2SO4和KHSO4的濾紙不易干燥,且H2SO4具有較強的腐蝕性,易腐蝕錫杯和同位素質譜儀的管路,會對同位素質譜儀造成不可修復的損害[4,15,26]。對于一般的土壤樣品,20 μl 1 mol L-1H2C2O4即可完成氮量的回收。
擴散法早已取代蒸餾法在國外得到廣泛應用,是用于測定土壤提取液中無機氮15N豐度的重要方法。本研究針對土壤樣品的無機氮濃度變化特點,在培養溫度和培養時間、低無機氮濃度樣品擴散條件、殘留銨態氮的去除、試劑的選擇和用量這四方面進行了優化,發現對于大部分樣品,僅需20 ml土壤提取液,選用0.1 g的MgO和20 μl 1 mol L-1H2C2O4,在25 ℃下以140 r min-1的轉速擴散24 h即可完成對-N的擴散,然后換入2張加酸濾紙擴散培養48 h可有效去除殘余的-N,再換入2張加酸濾紙并加入0.1 g的戴氏合金擴散培養24 h即完成-N的擴散。對于低氮濃度的土壤提取液(2 mg L-1)來說,需用50 ml提取液按以上條件進行擴散24 h即可保證測定結果的準確性。這一結果可為研究陸地生態系統的氮循環提供一個可靠的方法和技術,下一步還需對排除土壤提取液中雜質氮的干擾、銨硝同測時盡快完全去除殘余-N等問題進行研究。
[1] 張文,周廣威,閔偉,等. 應用15N示蹤法研究咸水滴灌棉田氮肥去向. 土壤學報,2015,52(2):372—380
Zhang W,Zhou G W,Min W,et al. Fate of fertilizer N in saline water drip-irrigated cotton field using15N tracing method(In Chinese). Acta Pedologica Sinica,2015,52(2):372—380
[2] 曹亞澄,鐘明,龔華,等. N2O產生法測定土壤無機態氮15N豐度. 土壤學報,2013,50(1):113—119
Cao Y C,Zhong M,Gong H,et al. Determining15N abundance in ammonium,nitrate and nitirite in soil by measuring nitrous oxide produced(In Chinese). Acta Pedologica Sinica,2013,50(1):113—119
[3] 溫騰,曹亞澄,張珮儀,等. 擴散法測定銨態氮、硝態氮的15N穩定同位素研究綜述. 土壤,2016,48(4):634—640
Wen T,Cao Y C,Zhang P Y,et al. On progress in use of micro-diffusion method for δ15N-and15N-measurements(In Chinese). Soils,2016,48(4):634—640
[4] Brooks P D,Stark J M,McInteer B B,et al. Diffusion method to prepare soil extracts for automated nitrogen-15 analysis. Soil Science Society of America Journal,1989,53(6):1707—1711
[5] Premi P R,Cornfield A H. The use of iron(II)sulphate for the reduction of nitrate to ammonia in the microdiffusion method for determining nitrate in soil extracts. Analyst,1967,92:196—197
[6] Keeney D R,Nelson D W. Nitrogen-inorganic forms// Page A L. Methods of soil analysis. Part 2:Chemical and microbiological properties. Madison,USA:American Society of Agronomy,Inc.,1982:643—698
[7] Bremner J M,Shaw K. Determination of ammonia and nitrate in soil. Journal of Agricultural Science,1955,46(3):320—328
[8] Adamsen F J,Reeder J D. A comparison of diffusion and distillation methods for preparing samples for15N analyses. Soil Science Society of America Journal,1983,47(3):612—613
[9] Sigman D M,Altabet M A,Michener R,et al. Natural abundance-level measurement of the nitrogen isotopic composition of oceanic nitrate:An adaptation of the ammonia diffusion method. Marine Chemistry,1997,57(3/4):227—242
[10] Lory J A,Russelle M P. Evaluation of a diffusion method for preparing low-nitrogen samples for nitrogen-15 analysis. Soil Science Society of America Journal,1994,58(5):1400—1404
[11] Khan S A,Mulvaney R L,Mulvaney C S. Accelerated diffusion methods for inorganic-nitrogen analysis of soil extracts and water. Soil Science Society of America Journal,1997,61(3):936—942
[12] Conway E J. Microdiffusion analysis and volumetric error. 4th ed. London:Crosby Lockwood and Son,1957:449—458
[13] Holmes R M,McClelland J W,Sigman D M,et al.Measuring15N-in marine,estuarine and fresh waters:An adaptation of the ammonia diffusion method for samples with low ammonium concentrations. Marine Chemistry,1998,60(3):235—243
[14] Liu Y P,Mulvaney R L. Diffusion of kjeldahl digests for automated nitrogen-15 analysis by the rittenberg technique. Soil Science Society of America Journal,1992,56(4):1151—1154
[15] Stark J M,Hart S C. Diffusion technique for preparing salt solutions,kjeldahl digests and persulfate digests for nitrogen-15 analysis. Soil Science Society of America Journal,1996,60(6):1846—1855
[16] Jensen E S. Evaluation of automated analysis of15N and total N in plant material and soil. Plant and Soil,1991,133(1):83—92
[17] Sebilo M,Mayer B,Grably M,et al. The use of the 'ammonium diffusion' method for δ15N-and δ15N-measurements:Comparison with other techniques. Environmental Chemistry,2004,1(2):99—103
[18] Kelley K R,Ditsch D C,Alley M M. Diffusion and automated nitrogen-15 analysis of low-mass ammonium samples. Soil Science Society of America Journal,1991,55(4):1016—1020
[19] Lachouani P L,Frank A H,Wanek W. A suite of sensitive chemical methods to determine the δ15N of ammonium,nitrate and total dissolved N in soil extracts. Rapid Communications in Mass Spectrometry,2010,24(24):3615—3623
[20] Zhang S S,Fang Y T,Xi D. Adaptation of microdiffusion method for the analysis of15N natural abundance of ammonium in samples with small volume. Rapid Communications in Mass Spectrometry,2015,29(14):1297—1306
[21] Bell M D,Sickman J O. Correcting for background nitrate contamination in KCl-extracted samples during isotopic analysis of oxygen and nitrogen by the denitrifier method. Rapid Communications in Mass Spectrometry,2014,28(5):520—526
[22] Mulvaney R L,Khan S A,Stevens W B,et al. Improved diffusion methods for determination of inorganic nitrogen in soil extracts and water. Biology and Fertility of Soils,1997,24(4):413—420
[23] Burke I C,O'Deen L A,Mosier A R,et al. Diffusion of soil extracts for nitrogen and nitrogen-15 analyses by automated combustion/mass spectrometry. Soil Science Society of America Journal,1990,54(4):1190—1192
[24] Saghir N S,Mungwari F P,Mulvaney R L,et al. Determination of nitrogen by microdiffusion in mason jars:II. Inorganic nitrogen-15 in soil extracts. Communications in Soil Science and Plant Analysis,1993,24(19/20):2747—2763
[25] Mulvaney R L,Khan S A. Diffusion methods to determine different forms of nitrogen in soil hydrolysates. Soil Science Society of America Journal,2001,65(4):1284—1292
[26] 孫建飛,白娥,戴崴巍,等.15N標記土壤連續培養過程中擴散法測定無機氮同位素方法改進. 生態學雜志,2014,33(9):2574—2580
Sun J F,Bai E,Dai W W,et al. Improvements of the diffusion method to measure inorganic nitrogen isotope of15N labeled(In Chinese). Chinese Journal of Ecology,2014,33(9):2574—2580
On Improving the Diffusion Method for Determination of δ15N-and δ15N-in Soil Extracts
ZHANG Peiyi1WEN Teng1,2,3,4?ZHANG Jinbo1,2,3,4CAI Zucong1,2,3,4
(1 School of Geography Science,Nanjing Normal University,Nanjing 210023,China)
(2 State Key Laboratory Cultivation Base of Geographical Environment Evolution(Jiangsu Province),Nanjing Normal University,Nanjing 210023,China)
(3 Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application,Nanjing 210023,China)
(4 Key Laboratory of Virtual Geographic Environment(Nanjing Normal University),Ministry of Education,Nanjing 210023,China)
【Objective】 The use of the diffusion method coupled with mass spectrometry to determine δ15N of inorganic nitrogen in soil and water samples in researches in the environmental,ecological andagricultural fields. Compared with the distillation method,the diffusion method consumes less labor and material resources,and can be used in massive operation. The diffusion method not only works when the sample is low in nitrogen content,but also avoids the risk of cross contamination and the need for fractionation. However,for application of the diffusion method,it is essential for the researchers in China to have a sound diffusion-incubation system which is able to perform rapid and accurate determination of δ15N of inorganic N in the soil. 【Methods】The diffusion method proceeds as follows:put a set amount of soil extract in a small airtight grass container;add some alkaline reagent to convert-N into NH3,which is adsorbed by acid-spiked filter paper;for determination of-N,titrate some alkaline reagent to remove-N in the sample;and add some Devarda’s alloy to reduce-N into-N. In the light of characteristics of the variation of inorganic nitrogen in soil extracts,diffusion conditions,such as incubation temperature,incubation time,type and rate of reagents were tested and optimized. 【Results】Results show that for soil extracts,>2 mg L-1in inorganic N concentration,only 20 ml soil extract is needed. put it into a 250 ml flask;hang 2 pieces of filter paper spiked with 10 μl 1 mol L-1H2C2O4each in the flask;add 0.1 g MgO,and then incubate the sample for 24 h at 25 ℃ on a rotator running at 140 r min-1to complete the processes of diffusion and recovery of-N;and then replace the used filter paper with two new ones also spiked with H2C2O4;incubate it on a rotator running at 140 r min-1for 48 h to remove remaining-N;and again replace the used filter paper with two new acid-spiked ones,add 0.1 g Devarda’s alloy,and incubate it for 24 h to complete the processes of diffusion and recovery of-N. For soil extracts < 2 mg L-1in inorganic nitrogen concentration,50 ml is needed to ensure accuracy of the determination once the same incubation procedure is followed. The experiment also reveals that nitrogen impurities that may affect accuracy of the determination,come mainly from highly purified water,filter paper,acid absorbent,MgO and Devarda’s alloy. To avoid the effects of the nitrogen impurities,samples should be incubated at 25 ℃ for 24 h,and filter paper dried as far as possible in NH3-free environment. In addition,results of the determination should be calibrated against that of the control.【Conclusions】 It can be concluded that this method greatly shortens the incubation cycle of the general incubation method and is capable of accomplishing diffusion and recovery of both-N and-N simultaneously,decreasing the amount required of a sample and reducing the risk of contamination by nitrogen impurities by optimizing the rate of MgO and Devarda’s alloy. However,the diffusion method discussed here is oriented towards determination of15N-labeled soil extracts,2~8 mg L-1in inorganic N concentration,but not applicable to determination of soils samples natural in15N abundance or low in nitrogen concentration. Consequently,in future studies,efforts should be devoted to such issues as how to remove nitrogen impurities and quickly,how to rule out the interference of soluble organic nitrogen in the soil.
Diffusion;Soil;Ammonium;Nitrate;15N
S153.1
A
(責任編輯:盧 萍)
10.11766/trxb201611250485
* 國家自然科學基金項目(41501254)和江蘇高校優勢學科建設工程資助項目資助 Supported by the National Natural Science
Foundation of China(No. 41501254)and the Priority Academic Program Development of Jiangsu Higher Education Institution? 通訊作者 Corresponding author,E-mail:wenteng@njnu.edu.cn
張珮儀(1993—),女,江蘇人,碩士研究生,主要從事土壤氮轉化研究。E-mail:zhangpeiyi2016@163.com
2016-11-25;
2017-01-25;優先數字出版日期(www.cnki.net):2017-05-02