沈燕宇, 何桂金, 郭永勝, 方文軍
(浙江大學 化學系, 浙江 杭州 310058)
超支化聚合物作為金屬納米粒子穩定劑的研究進展
沈燕宇, 何桂金, 郭永勝, 方文軍
(浙江大學 化學系, 浙江 杭州 310058)
在本研究中,著重介紹了用作金屬納米粒子穩定劑的聚酰胺-胺、聚縮水甘油和聚乙烯亞胺等幾類超支化聚合物的研究進展。聚酰胺-胺類超支化聚合物可用于堵水劑和化學驅油劑,用于金屬納米粒子反應器時既作還原劑,又作分散劑,能穩定分散金屬納米粒子,還能提高納米復合材料的循環再生性能;聚縮水甘油類含有大量的端羥基,經修飾可得到兩親性的納米膠囊,具有良好的生物相容性,可用作優質的原油破乳劑,金屬納米粒子的粒徑可通過其相對分子質量來調控;聚乙烯亞胺-胺類具有眾多的胺官能團,為金屬離子的配位提供了豐富的位點,其包裹的金屬納米粒子可用于溫敏材料等。結合超支化聚合物的結構可控性以及納米金屬優秀的催化性能,這類物質在石油工程領域中會有較大的應用前景。
超支化聚合物; 金屬納米粒子; 穩定劑
超支化聚合物從一個中心核出發,由支化單體ABn逐級伸展形成具有高度支化的三維球狀立體結構,并具有豐富的末端基團(如圖1)。顯示出與相應線型分子截然不同的性質,如低黏度、良好的溶解性以及高流變性。同時,其合成相對簡單、成本較低。因此,超支化聚合物具有廣闊的應用前景,在石油工程領域中,已用于堵水劑[1]、化學驅油劑[2-3]、原油破乳劑[4-5]以及鉆井液處理劑[6]等。

圖1 超支化聚合物結構示意圖Fig.1 Schematic structure of hyperbranched polymers
1.1 超支化聚合物的合成
自20世紀中期首次成功合成超支化聚合物以來,其合成方法得到了極大豐富和完善。依據聚合機理,主要有以下幾類合成方法:(1)縮聚法。由具有兩個或兩個以上官能團的單體,通過縮聚反應生成超支化聚合物,同時產生簡單分子(如H2O、HX、醇等)。縮聚法可在本體或溶液中進行,反應簡單,所合成聚合物的相對分子質量具有多分散性。目前,通過一步縮聚法已經成功制備了聚苯類[7]、聚酯類[8]、聚酰胺類[9]和聚硅烷類[10]等多種類型的超支化聚合物。(2)加聚法。在引發基團上通過烯烴加成反應生成超支化聚合物,可賦予超支化聚合物以C—C骨架,從而使其具有比雜原子骨架更好的穩定性。參與該合成過程的單體數較多,可以制備相對分子質量較大的超支化聚合物。比如,Fréchet等[11]采用自縮合乙烯基聚合法制備超支化聚合物,乙烯基單體既是引發劑也是支化點,它在外激發作用下可被活化,產生多個活性自由基,形成新的反應中心,從而引發下一步的反應,生成相對分子質量很大的超支化聚合物。(3)開環聚合。將具有環狀結構的單體(如圖2)引發后,通過開環反應聚合成超支化聚合物。反應過程中不需要除去小分子化合物且能得到相對分子質量高的超支化聚合物。目前,采用開環聚合法制備了超支化的聚胺[9]、聚酯[12]和聚醚[13]等,但與其他結構超支化聚合物的報道相比仍較少。

圖2 常見開環聚合的單體Fig.2 Common monomers of ring opening polymerization
1.2 超支化聚合物的應用
超支化聚合物具有較低的黏度和良好的流變性能,通過結構改造或修飾,還具有兩親性和一定的反應活性,在石油化工、涂料、油墨等領域已有應用[14-16]。He等[17]發現,超支化聚縮水甘油改性物在碳氫燃料升溫過程中能發揮“自由基倉庫”的作用,從而促進碳氫燃料的裂解;Bruchmann等[18]通過調控超支化聚酯的親水性和親油性,得到了一種高效的油溶性破乳劑;Zhang等[19]用3-(丙烯酰氧乙基)磷酸酯(TAEP)和哌嗪通過邁克爾加成反應制備了超支化多聚磷酸鹽丙烯酸酯(HPPAs),可以用于紫外光固化涂料。超支化聚合物還可用于主-客體封裝,制備有機-無機雜化材料,甚至可以在反應中直接用作納米反應器。超支化聚合物也能用于形狀記憶材料[20-22]、自我修復材料[23]、CO2捕集材料[24]、多微孔材料[25]、彈性體[26]、黏合劑[27]和催化劑[28]等等。
納米粒子是尺寸為1~100 nm的超細粒子,由幾十到幾百個原子或分子構成。納米粒子具有獨特的物理、化學和生物學特性[29],目前已被廣泛用于石油化工、醫藥、電子工業及農業生產等領域[30]。尤其是金屬納米粒子具有良好的光學、電學、磁學以及催化特性,在石油開采、催化、光學器件、生物傳感等領域中呈現出廣闊的應用前景[31]。納米金屬粒子作為催化劑和助燃劑已成功地應用到碳氫燃料的催化裂解和燃燒中[32];還可以摻雜到高能密度材料(如炸藥)中,作為引爆劑使用。金屬納米粒子的特殊性質和潛在應用價值均與它的納米級尺寸和形貌密切相關。因此,建立一個可以對金屬納米粒子尺寸和形貌有效調控的制備方法尤為重要,也是納米材料領域的關鍵技術。迄今為止,人們已經深入研究和發展了多種可控合成納米金屬粒子的物理或化學方法,包括相轉移法、光照還原法、激光燒蝕法、綠色生物學法等[33-34]。
2.1 相轉移法
相轉移法主要用于制備貴金屬(如Au、Ag等)納米粒子。常用的方法是在相轉移劑的作用下,將金屬鹽從水溶液中萃取到含有穩定劑(如硫醇等)的非極性有機溶劑中,然后緩慢加入還原試劑(如NaBH4等),在有機相中還原制備具有一定納米尺度的金屬粒子。相轉移法的關鍵在于選擇恰當的相轉移劑或穩定劑,使納米金屬粒子能夠高效轉移并且穩定存在。常用的相轉移試劑有烷基銨類表面活性劑、氨基化合物、硫醇、油酸、檸檬酸和聚合物等。超支化聚合物作為相轉移劑時分為兩類:一類是需要外加還原劑(如NaBH4等);另一類是不需要外加還原劑,利用自身所帶官能團還原金屬離子,原位生成金屬納米粒子。
2.2 光照還原法
光照還原法是利用光照將金屬離子還原成零價金屬的方法,可以通過控制光照時間來控制金屬粒子的尺寸、形貌等[35]。Rodriguez等[36]在紫外光照射下,用肝素鈉還原HAuCl4合成了金納米粒子,通過改變肝素鈉的濃度和光照時間等可以得到粒徑為20~300 nm的各向異性的納米金,如橢圓形、三角形、六邊形以及棒狀納米粒子等。Prakash等[37]用絡氨酸為光還原劑,不需要添加額外的穩定劑,在水相中通過光照合成了粒徑分布窄的銀納米粒子。
2.3 激光燒蝕法
激光燒蝕法是利用脈沖激光束將靶材瞬間(<10 ms)加熱到氣化溫度以上,產生由靶材原子、離子和原子簇組成的蒸氣,在飛行過程中與環境氣體原子碰撞減速而形成納米顆粒。Smalley等[38]用激光照射銅靶,在超聲速氣體的作用下獲得了銅納米粒子,這是利用激光燒蝕法首次制得的納米材料。Mohamed等[39]報道了一種在聚乙烯醇(PVA)水溶液中用激光燒蝕法制備銀納米粒子的方法,其中PVA既作為還原劑,又能通過分子骨架保護金納米粒子。在質量分數為1%、3%和4% 的PVA水溶液中,所得到的納米金粒徑可分別控制為6.13 nm、6.86 nm和3.99 nm。
2.4 綠色生物學法
近年來,很多生物學模板被用于合成金屬納米粒子,比如植物[40]、藻類、真菌[41]、細菌以及病毒[42]等。Kuber等[43]通過培養真菌的方法來合成銀納米粒子。Richa等[44]用了18種碳酸鈣不動桿菌做研究,發現鮑曼-醋酸鈣不動桿菌LRVP54可以在70℃條件下還原AgNO3,生成粒徑為8~12 nm單分散的球形納米銀。
在金屬納米粒子的各種合成方法中,相轉移法是最為簡便、應用最多的方法。由于金屬納米粒子在相轉移過程中容易發生聚集[45],因此,在制備過程中需用穩定劑來輔助分散[46]。樹枝狀聚合物和超支化聚合物是典型的穩定劑,樹枝狀大分子可作為金屬納米粒子的反應器,金屬離子首先與聚合物配位富集,然后再在還原劑的作用下被原位還原成穩定的納米粒子[47]。然而,樹枝狀大分子由于結構完美,合成條件比較復雜,成本相對較高。相比之下,超支化聚合物合成方法簡單,成本低廉,且化學、物理性質與樹枝狀大分子非常接近。因此,近年來超支化聚合物作為金屬納米粒子穩定劑的研究受到重視[48-50],已有3類超支化聚合物較多用于金屬納米粒子的穩定劑,下面分別闡述。
3.1 聚酰胺-胺類超支化聚合物
聚酰胺-胺大分子主鏈重復單元中含有酰胺-胺基團,端基以胺基為多(如圖3)。胺基或酰胺的孤對電子能與金屬離子配位,起到捕集、固定金屬離子的作用;它還具有還原性,在一定條件下可將金屬離子還原成金屬,達到原位還原的目的,減少金屬離子在還原過程中聚集。這類超支化聚合物既作還原劑,又作分散劑,克服了納米金屬溶膠制備工藝復雜、適用性差的缺點[51]。因此,越來越多的聚酰胺-胺類聚合物用作金屬納米粒子反應器[52-54]。

圖3 聚酰胺-胺的結構Fig.3 Schematic structure of poly(amidoamine)
Nelly等[55]用具有超支化結構的聚酰胺-胺(HYPAM)(如圖4)及其葡萄糖胺衍生物(如圖5)合成了水溶性金納米粒子。納米粒子在水溶液中的穩定性主要受聚合物相對分子質量以及溶液pH值的影響。聚合物相對分子質量越大,納米粒子的穩定性越好,而聚合物相對分子質量可以通過改變聚合條件來調控。HYPAM的葡萄糖胺功能化可進一步阻止金納米粒子的聚集,對金納米粒子穩定性的影響要大于聚合物尺寸效應帶來的影響。

圖4 HYPAM超支化聚合物的結構Fig.4 Schematic structure of HYPAM

圖5 葡萄糖胺功能化的HYPAM超支化聚合物Fig.5 Functionalization of HYPAM with gluconolactone
Nitul等[56]用聚丙烯酰胺(PA)和超支化聚胺/聚丙烯酰胺混雜體(HB-PA)來合成銀納米粒子,用HB-PA合成的銀納米粒子比用PA合成的銀納米粒子要穩定。以HB-PA為母體時,銀納米粒子的粒徑為8.5 nm;以PA為母體時,銀納米粒子的粒徑為9.9 nm。HB-PA包裹的銀納米粒子對枯草芽孢桿菌的抗菌性要高于用PA合成的銀納米粒子。
Roozbe等[57]用超支化聚酰胺(PAMAM)在聚乙烯胺功能化的介孔氧化硅(PVAm/SBA-15)表面發生聚合,生成雜化材料。通過PAMAM和金屬離子的配位作用誘捕水溶性的金屬離子(如Ni2+等),然后再用NaBH4將金屬離子還原得到由這種雜化材料包裹的鎳納米粒子。所得到的納米復合材料可作為擬均相催化劑催化NaBH4還原芳硝基物的反應,且具有良好的循環再生性能,經循環10次后其催化活性仍未明顯下降。
3.2 聚縮水甘油改性物
超支化聚縮水甘油(HPG)是一種分子內部為醚鍵,分子周圍有大量羥基的超支化聚合物[58-59](如圖6)。自Frey等[60]合成出低分散性的HPG以來, 關于HPG合成與應用的研究越來越受到重視。HPG的合成方法主要有陽離子聚合與陰離子聚合兩種,Wang等[61]以丙三醇為核,以BF3O(C2H5)2為催化劑,對縮水甘油進行陽離子開環聚合,得到了相對分子質量為2000~3000、支化度為0.5~0.6的超支化聚縮水甘油醚。但是,陽離子聚合反應過程中容易出現環化副產物,反應產物相對分子質量較小且分布較寬。目前主要采用陰離子開環聚合結合單體緩慢滴加技術,以1,1,1-三羥甲基丙烷(TMP)為核,用甲醇鉀對其進行質子化,引發縮水甘油開環聚合,可避免成環副反應的發生,使產物的相對分子質量分布很窄,且能得到相對分子質量較大的聚合物。

圖6 超支化聚縮水甘油的結構Fig.6 Schematic structure of hyperbranched polyglycerol(HPG)
HPG含有大量的端羥基,是原子轉移自由基聚合(ATRP)或者點擊化學來修飾HPG的活性位點[62],比如用長鏈酰氯[63]與羥基反應可制得油溶性的HPG(如圖7)。Slagt等[64]將HPG經烷基酰氯部分酯化后,得到一種內部親水、外部疏水的核-殼結構型超支化聚合物,其親水的核能通過氫鍵作用與過渡金屬結合,從而實現過渡金屬催化劑的負載與富集。HPG改性物用作金屬納米粒子穩定劑主要有以下優勢[65]:HPG外圍是樹枝狀結構,中間含有空腔,有利于包裹金屬納米粒子;HPG的端羥基對金屬離子有一定的還原作用,所以HPG不僅可以作為穩定劑還可以作為還原劑;包裹納米金屬后,外圍的羥基能使金屬納米粒子進一步得到修飾,形成需要的納米復合物。

圖7 HPG的羥基功能化Fig.7 Hydroxyl functionalization of HPG
Martijn等[66]用兩親性的HPG包裹鉑螯合物,將帶有疏水烷基鏈的聚醚多元醇的羥基部分酯化,形成具有反膠束結構的兩親性納米膠囊,這種納米膠囊能在其親水內部包裹親水性的磺化鉑螯合物(如圖8)。這種包裹鉑螯合物的納米膠囊可作為均相催化劑用于邁克爾加成,通過透析的方式分離產物,催化劑的回收率高達97%。
在HPG骨架上引入巰基對納米粒子的合成十分有利。Sunny等[67]用3-巰基丙酸先與HPG發生酯化反應,再用1-溴代十二烷使外圍巰基烷基化,生成目標超支化聚合物(如圖9),這種超支化聚合物能溶于氯仿、二氯甲烷和二甲基甲酰胺而不溶于甲醇。然后再分別與CuCl2·2H2O、AgNO3、HAuCl4配位制備Cu、Ag、Au納米粒子。Decheng等[68]用HPG做為模板合成金納米顆粒,用1-溴-3-氯丙烷使HPG的羥基烷基化,31.6%的羥基轉化成烯丙基,22.4%的羥基轉化成3-氯丙基,3-氯丙基與十二硫醇硫烷基化,形成了1個兩親性的模板分子(如圖10):親水的PG為核心、疏水的硫醚構成外殼,合成了兩種相對分子質量的模板分子,其包裹的金納米粒子平均尺寸分別為(3.0±1.6) nm和(5.1±2.4) nm,分散到有機溶劑(如氯仿、四氫呋喃)中形成透明膠體,可穩定存放180 d。

圖8 兩親性HPG膠囊包裹鉑螯合物Fig.8 Encapsulation of platinum pincer complexes in the amphiphilic HPG

圖9 具有硫醚結構的HPG及其包裹金屬納米粒子的示意圖Fig.9 Preparation of HPG with thioether shells and its encapsulation on metal NPs

圖10 含硫HPG改性物合成示意圖Fig.10 Synthesis of sulfur-bearing HPG
3.3 聚乙烯亞胺類超支化聚合物
通過氮雜環丙烷(乙烯亞胺)的催化開環聚合可以獲得超支化聚乙烯亞胺(HPEI)(如圖11)。胺官能團的多功能性為金屬離子的配位提供了理想的配合位點。
Tang等[69]用棕櫚酰氯修飾的聚乙烯亞胺(HPEI),將檸檬酸鹽保護的金納米粒子從水相中轉移到氯仿中。研究表明,超支化聚合物作為金屬納米粒子穩定劑,其效果要優于線型聚合物,主要表現在:發生有效萃取需要的量更少;含有超支化聚合物的金納米粒子體系較少出現聚沉現象;超支化聚合物分散的金納米顆粒更均一、堆積更密集,可以干燥穩定存放長達210 d。
Liu等[70]用乙酸酐(ACAm)、丙酸酐(PRAm)、丁酸酐(BUAm)和異丁酸酐(IBAm)修飾HPEI,分別得到對應的酰胺化產物HPEI-ACAm、HPEI-PRAm、HPEI-BUAm以及HPEI-IBAm(如圖12),然后分別合成金納米粒子,通過聚合物和納米金的非共價鍵作用得到了納米金復合材料,該納米金復合材料可以催化NaBH4還原4-硝基苯酚的反應。Aymonier等[71]用帶長鏈烷基的酰胺與PEI反應,用來包裹銀納米粒子(如圖13),生成了平均粒徑為5nm的具有抗菌性能的納米銀。劉訓恿等[72]通過對不同相對分子質量的超支化聚乙烯亞胺的端基進行部分或完全異丁酰胺化,制備了一系列具有不同低臨界溶解溫度(LCST)的超支化溫敏聚合物。通過離子鍵或氫鍵之間的相互作用,所得超支化溫敏聚合物可以吸附于經檸檬酸鈉還原并穩定的金納米粒子的表面,從而得到具有溫敏性質的金納米粒子。

圖11 HPEI的合成Fig.11 Synthesis of HPEI

圖12 不同氨基化合物修飾的聚乙烯亞胺(HPEI)
Anja等[73]用麥芽糖修飾的超支化聚乙烯亞胺合成金納米粒子,在金納米粒子形成的過程中,超支化聚合物既作為還原劑又作為穩定劑。在PEI核的區域,Au3+被還原形成緊密堆積的金核,同時聚合物外圍的分子鏈發生塌陷,金納米粒子和聚合物的分子鏈結合形成新的殼-核結構。通過調控PEI的相對分子質量,合成出了粒徑為3.6 nm的金納米粒子。
3.4 其它超支化聚合物
除了以上3類超支化聚合物,還有超支化聚酯、超支化聚苯乙烯、超支化聚醚胺等也可以用作金屬納米粒子穩定劑。
超支化聚酯(HBPE)高度支化的結構和大量的端基官能團使它容易被接枝改性,HBPE 可有效地解決熱固性樹脂因其高度交聯結構而產生的韌性差的問題,還能改善納米粒子的團聚現象,促進納米粒子在樹脂中的分散。Zhu等[74]采用光照還原法,用端基含羥基和羧基的超支化聚酯合成了粒徑為3~19 nm的銀納米粒子。Joshua等[75]將水黃皮油(PO)羥基化形成POH,再與亞麻酸發生酯化反應,生成超支化聚酯,然后與苯乙烯共聚形成共聚物,用于合成銀納米粒子的穩定劑。

圖13 PEI酰胺化及包裹銀納米粒子Fig.13 Silver NPs encapsulated by amidated PEI
Gao等[76]用超支化聚苯乙烯的氨鹽(HPS-NR3+Cl-)穩定過渡金屬(M)納米粒子(如圖14)。研究表明,1~3 nm的釕、銠、銥、鉑和鈀納米粒子能穩定分散于聚合物基體中形成M@HPS-NR3+Cl-,其 分散性可以通過改變R基團來調控,M@HPS-NR3+Cl-對烯烴和芳香烴的加氫反應具有良好的催化作用。Keisuke等[77]用親-疏水性可調的超支化聚苯乙烯合成鉑納米粒子,用外圍帶—Cl的超支化聚苯乙烯(HPS-Cl)合成HPS-NR3+Cl-。HPS-NR3+Cl-的一部分覆蓋在鉑納米粒子上,其帶有C12H25或者(CH2CH2O)2Me鏈的氨基可以通過靜電作用穩定鉑納米粒子,形成多個HPS-NR3+Cl-分子包裹1個鉑納米粒子的結構(如圖15),并且能通過改變R基團來調節其溶解性能。
Yu等[78]用超支化聚醚胺(HPEA)自組裝合成了邊緣長度為1~2 μm、厚度為4~5 nm的超支化聚醚胺的納米片(HPEA-NSs),以籠狀倍半硅氧烷(POSS)和蒽(AN)為封端劑,合成了金納米粒子(如圖16)。金的前驅體通過金原子與氨基配位吸附在HPEA-NSs的親水表面上,通過氨基的還原作用,轉變成金納米粒子。

圖14 M@HPS-NR3+Cl-的形成示意圖Fig.14 Schematic diagram for the formation of M@HPS-NR3+Cl-
(1) 具有特殊表面界面效應、小尺寸效應的納米粒子與具有密度小、耐腐蝕、易加工等優良特性的超支化聚合物結合后,呈現出不同于常規聚合物復合材料的性能。

圖15 HPS-NR3+Cl-包裹鉑納米粒子示意圖Fig.15 Schematic diagram for stabilization of a Pt nanoparticle by HPS-N(C12H25)3+Cl-

圖16 以POSS/AN為封端劑的HPEA-NSs結構與HPEA-NSs負載金屬納米粒子的機理Fig.16 Structure of POSS/AN ended hyperbranched poly(ether amine) and the proposed mechanism of metal nanoparticle decoration on HPEA-NSs(a) HPEA-POSS/AN(HPA); (b) HPEA-NSs
(2) 超支化聚合物具有超支化分子拓撲和“核殼”結構,可作為納米材料的模板,產生精致的納米粒子復制品。
(3) 納米粒子一般通過配位鍵或者分子間相互作用被封裝在超支化聚合物中,通過調控聚合物分子表面的基團可控制納米復合材料的聚集-分散行為,超支化聚合物修飾的納米粒子可穩定地分散在介質中,不易聚沉。
(4) 通過對超支化聚合物結構的控制,調整其兩親性、溶解性和黏度等,有望在原油開采、破乳、降凝輸送、油田污水處理和燃油加工等方面發揮作用。
[1] LIU Q, SUN A, FAN Z, et al. Synthesis and performance evaluation of organic bentonite modifier dimethyldistearylammonium bromide (DODMAB)[J].Open Journal of Composite Materials, 2014, 4(4): 220-223.
[2] 徐駿祺, 黃通, 呂鑫, 等. 水溶性高抗剪切超支化聚丙烯酰胺的合成和表征[J].上海應用技術學院學報(自然科學版), 2014, 14(4): 277-282. (XU Junqi, HUANG Tong, Lü Xin, et al. Synthesis and characterization of water-soluble hyperbranched polyacrylamide with high shear-resistance[J].Journal of Shanghai Institute of Technology(Natural Science), 2014, 14(4): 277-282.)
[3] 張紅艷, 康萬利, 孟令偉, 等. 一種驅油用疏水締合聚丙烯酰胺的乳化性能[J].石油學報(石油加工), 2010, 26(4): 628-634. (ZHANG Hongyan, KANG Wanli, MENG Lingwei, et al. Emulson characteristics of the hydrophobically associating polyacrylamid used for oil flooding[J].Acta Petrolei Sinica(Petroleum Processing Section), 2010, 26(4): 628-634.)
[4] ZHANG Lifeng, HE Guijin, YE Dengfeng, et al. Methacrylated hyperbranched polyglycerol as a novel high-efficient demulsifier for oil-in-water emulsions[J].Energy Fuels, 2016, 30(11): 9939-9946.
[5] 嚴峰, 張建, 付天宇, 等. 疏水締合聚合物驅體系中原油乳狀液性質及破乳規律[J].石油學報(石油加工), 2016, 32(3): 546-555. (YAN Feng, ZHANG Jian, FU Tianyu, et al. Properties and demulsification laws of crude oil emulsions in hydrophobically associating polymer flooding system[J].Acta Petrolei Sinica(Petroleum Processing Section), 2016, 32(3): 546-555.)
[6] 王中華. 2011~2012年國內鉆井液處理劑進展評述[J].中外能源, 2013, 18(4): 28-35. (WANG Zhonghua. Review on development progress of the drilling fluid additives in China between 2011 and 2012[J].Sino-Global Energy, 2013, 18(4): 28-35.)
[7] KUSHAKOVA N S, SHAPOVALOV A V, RUD D A, et al. Synthesis of hyperbranched polyphenylenes by suzuki reaction and their spectral characteristics[J].Polymer Science Series B, 2009, 51(9): 409-415.
[8] FAN Z R, LEDERER A, VOIT B. Synthesis and characterization of A2+B3-type hyperbranched aromatic polyesters with phenolic end groups[J].Polymer, 2009, 50(15): 3431-3439.
[9] OHTA Y, FUJII S, YOKOYAMA A, et al. Synthesis of well-defined hyperbranched polyamides by condensation polymerization of AB(2) monomer through changed substituent effects[J].Angewandte Chemie-International Edition, 2009, 48(32): 5942-5945.
[10] ZHU X M, JAUMANN M, PETER K, et al. One-pot synthesis of hyperbranched polyethoxysiloxanes[J].Macromolecules, 2006, 39(5): 1701-1708.
[11] GU A. High performance bismaleimide/cyanate ester hybrid polymer networks with excellent dielectric properties[J].Composites Science & Technology, 2006, 66(11-12): 1749-1755.
[12] PARZUCHOWSKI P G, GRABOWSKA M, JAROCH M, et al. Synthesis and characterization of hyperbranched polyesters from glycerol-based AB(2) monomer[J].Journal of Polymer Science Part A-Polymer Chemistry, 2009, 47(15): 3860-3868.
[13] BEDNAREK M, PLUTA M. Oligomeric branched polyethers with multiple hydroxyl groups by cationic ring-opening polymerization for inorganic surface modification[J].Macromolecular Symposia, 2010, 287(1): 119-126.
[14] 陳澤華, 趙修太, 王增寶, 等. 乙二胺-HPAM與NaOH-HPAM體系提高稠油采收率的對比[J].石油學報(石油加工), 2015, 31(5): 1156-1163. (CHEN Zehua, ZHAO Xiutai, WANG Zengbao, et al. A comparison between the enhanced heavy oil recoveries of ethylenediamine-HPAM and NaOH-HPAM systems[J].Acta Petrolei Sinica(Petroleum Processing Section), 2015, 31(5): 1156-1163.)
[15] 楊敏, 汪健, 張宏明, 等. 納米聚(二乙烯苯-甲基丙烯酸十八酯)降黏劑的合成及其降黏效果[J].石油學報(石油加工), 2013, 29(5): 881-884. (YANG Min, WANG Jian, ZHANG Hongming, et al. Synthesis and viscosity reducing properties of poly (divinyl benzene-methyl octadecyl acrylate) nanoviscosity reducer[J].Acta Petrolei Sinica(Petroleum Processing Section), 2013, 29(5): 881-884.)
[16] 林梅欽, 辛見, 李明遠, 等. 交聯聚合物溶液的熱氧化及剪切安定性對其封堵性能的影響[J].石油學報(石油加工), 2009, 25(6): 807-811. (LIN Meiqin, XIN Jian, LI Mingyuan, et al. The effect of thermo-oxidizing and shear stabilities of linked polymer solution on its plugging efficiency[J].Acta Petrolei Sinica(Petroleum Processing Section), 2009, 25(6): 807-811.)
[17] HE G J, LI G Q, YING H, et al. Palmitoyl hyperbranched polyglycerol as a nanoscale initiator for endothermic hydrocarbon fuels[J].Fuel, 2015, 161: 295-303.
[18] BRUCHMANN B, EICHHOEN A, GUZMANN M.Hyperbranched polyesters and polycarbonates as demulsifiers for cracking crude oil emulsions: US, 8618180 B2[P]. 2013.
[19] ZHANG D H, LIANG E B, LI T C, et al. Environment-friendly synthesis and performance of a novel hyperbranched epoxy resin with a silicone skeleton[J].Rsc Advances, 2013, 3(9): 3095-3102.
[20] SIVAKUMAR C, NASAR A S. Poly(epsilon-caprolactone)-based hyperbranched polyurethanes prepared via A2+B3approach and its shape-memory behavior[J].European Polymer Journal, 2009, 45(8): 2329-2337.
[21] DEKA H, KARAK N,KALITA R D, et al. Biocompatible hyperbranched polyurethane/multi-walled carbon nanotube composites as shape memory materials[J].Carbon, 2010, 48(7): 2013-2022.
[22] THAKUR S, KARAK N. Bio-based tough hyperbranched polyurethane-graphene oxide nanocomposites as advanced shape memory materials[J].Rsc Advances, 2013, 3(24): 9476-9482.
[23] DOHLER D, ZARE P, BINDER W H. Hyperbranched polyisobutylenes for self-healing polymers[J].Polymer Chemistry, 2014, 5(3): 992-1000.
[24] HE H K, ZHONG M J, KONKOLEWICZ D, et al. Carbon black functionalized with hyperbranched polymers: synthesis, characterization, and application in reversible CO2capture[J].Journal of Materials Chemistry A, 2013, 1(23): 6810-6821.
[25] KOBAYASHI N, KIJIMA M. Microporous materials derived from two- and three-dimensional hyperbranched conjugated polymers by thermal elimination of substituents[J].Journal of Materials Chemistry, 2007, 17(40): 4289-4296.
[26] MAHAPATRA S S, YADAV S K, CHO J W. Nanostructured hyperbranched polyurethane elastomer hybrids that incorporate polyhedral oligosilsesquioxane[J].Reactive & Functional Polymers, 2012, 72(4): 227-232.
[27] ZHANG H, BRE L P, ZHAO T Y, et al. Mussel-inspired hyperbranched poly(amino ester) polymer as strong wet tissue adhesive[J].Biomaterials, 2014, 35(2): 711-719.
[28] HAUSSLER M, LAM J W Y, QIN A J, et al. Metallized hyperbranched polydiyne: A photonic material with a large refractive index tunability and a spin-coatable catalyst for facile fabrication of carbon nanotubes[J].Chemical Communications, 2007, (25): 2584-2586.
[29] LEE S H, SALUNKE B K, KIM B S. Sucrose density gradient centrifugation separation of gold and silver nanoparticles synthesized using magnolia kobus plant leaf extracts[J].Biotechnology and Bioprocess Engineering, 2014, 19(1): 169-174.
[30] BORASE H P, SALUNKE B K, SALUNKHE R B, et al. Plant extract:A promising biomatrix for ecofriendly, controlled synthesis of silver nanoparticles[J].Applied Biochemistry and Biotechnology, 2014, 173(1): 1-29.
[31] FERRANDO R, JELLINEK J, JOHNSTON R L. Nanoalloys: From theory to applications of alloy clusters and nanoparticles[J].Chemical Reviews, 2008, 108(3): 845-910.
[32] LI D, FANG W J, WANG H Q, et al.Gold/oil nanofluids stabilized by a gemini surfactant and their catalytic property[J].Industrial & Engineering Chemistry Research, 2013, 52(24): 8109-8113.
[33] 楊柯利, 劉全生, 宋銀敏, 等. 相轉移法制備金屬納米粒子研究進展[J].化學通報, 2012, 75(6): 514-518. (YANG Keli, LIU Quansheng, SONG Yinmin, et al. Development of phase transfer methods in the synthesis of metal nanoparticles[J].Chemistry, 2012, 75(6): 514-518.)
[34] SASTRY M. Phase transfer protocols in nanoparticle synthesis[J].Current Science, 2003, 85(12): 1735-1745.
[35] KROL-GRACZ A, MICHALAK E, NOWAK P M, et al. Photo-induced chemical reduction of silver bromide to silver nanoparticles[J].Central European Journal of Chemistry, 2011, 9(6): 982-989.
[36] RODRIGUEZ-TORRES M D, DIAZ-TORRES L A, SALAS P, et al. UV photochemical synthesis of heparin-coated gold nanoparticles[J].Gold Bulletin, 2014, 47(1-2): 21-31.
[37] KSHIRSAGAR P, SANGARU S S, MALVINDI M A, et al. Synthesis of highly stable silver nanoparticles by photoreduction and their size fractionation by phase transfer method[J].Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2011, 392(1): 264-270.
[38] DIETZ T G, DUNCAN M A, POWERS D E, et al. Laser production of supersonic metal cluster beams[J].Journal of Chemical Physics, 1981, 74(11): 6511-6512.
[39] MOHAMED K H, NASERI M G, SADROLHOSSEINI A R, et al. Silver nanoparticle fabrication by laser ablation inpolyvinyl alcohol solutions[J].Chinese Physics Letters, 2014, 31(7): 077803.
[40] ARUNACHALAM K D, ANNAMALAI S K, ARUNACHALAM A M, et al. Green synthesis of crystalline silver nanoparticles using indigofera aspalathoides-medicinal plant extract for wound healing applications[J].Asian Journal of Chemistry, 2013, 25(S): 311-314.
[41] SHARMA V K, YNGARD R A, LIN Y. Silver nanoparticles: Green synthesis and their antimicrobial activities[J].Advances in Colloid and Interface Science, 2009, 145(1-2): 83-96.
[42] AHMAD A, MUKHERJEE P, SENAPATI S, et al. Extracellular biosynthesis of silver nanoparticles using the fungus fusarium oxysporum[J].Colloids and Surfaces B-Biointerfaces, 2003, 28(4): 313-318.
[43] BFILAINSA K C, D’SOUZA S F. Extracellular biosynthesis of silver nanoparticles using the fungus aspergillus fumigatus[J].Colloids and Surfaces B-Biointerfaces, 2006, 47(2): 160-164.
[44] SINGH R, WAGH P, WADHWANI S, et al. Synthesis, optimization, and characterization of silver nanoparticles from acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics[J].International Journal of Nanomedicine, 2013, 8(1): 4277-4290.
[45] 李曼璐, 姜玥璐. 人工納米顆粒在水體中的行為及其對浮游植物的影響[J].環境科學, 2015, 36(1): 365-372. (LI Manlu, JIANG Yuelu. Behaviors of engineered nanoparticles in aquatic environments and impacts on marine phytoplankton[J].Environmental Science, 2015, 36(1): 365-372.
[46] NAGARAJAN R. Nanoparticles: Building Blocks for Nanotechnology[M].Springer: Plenum Publishers, 2004: 2-14.
[47] ARYABADIE S, SADEGHI-KIAKHANI M, ARAMI M. Antimicrobial and dyeing studies of treated cotton fabrics by prepared chitosan-PAMAM dendrimer/Ag nano-emulsion[J].Fibers and Polymers, 2016, 16(12): 2529-2537.
[48] GAO L, KOJIMA K, NAGASHIMA H. Transition metal nanoparticles stabilized by ammonium salts of hyperbranched polystyrene: Effect of metals on catalysis of the biphasic hydrogenation of alkenes and arenes[J].Tetrahedron, 2015, 71(37): 6414-6423.
[49] TANG Q, CHENG F, LOU X L, et al. Comparative study of thiol-free amphiphilic hyperbranched and linear polymers for the stabilization of large gold nanoparticles in organic solvent[J].Journal of Colloid and Interface Science, 2009, 337(2): 485-491.
[50] YU B, JIANG X, YIN J. Responsive hybrid nanosheets of hyperbranched poly(ether amine) as a 2D-platform for metal nanoparticles[J].Chemical Communications, 2013, 49(6): 603-605.
[51] 朱鵬飛, 吳明華, 李琰琦, 等. 超支化聚合物的改性及其在納米銀溶膠制備中的應用[J].紡織學報, 2015, 36(9): 55-60. (ZHU Pengfei, WU Minghua, LI Yanqi, et al. Modification of hyperbranched polymer and its application in preparation of nano-silver sol[J].Journal of Textile Research, 2015, 36(9): 55-60.)
[52] PERIGNON N, MINGOTAUD A F, MARTY J D, et al. Formation and stabilization in water of metal nanoparticles by a hyperbranched polymer chemically analogous to PAMAM dendrimers[J].Chemistry of Materials, 2004, 16(24): 4856-4858.
[53] KAVITHA M, PARIDA M R, PRASAD E, et al. Generation of Ag nanoparticles by PAMAM dendrimers and their size dependence on the aggregation behavior of dendrimers[J].Macromolecular Chemistry and Physics, 2009, 210(16): 1310-1318.
[54] HABA Y, KOJIMA C, HARADA A, et al. Preparation of poly(ethylene glycol)-modified poly(amido amine) dendrimers encapsulating gold nanoparticles and their heat-generating ability[J].Langmuir, 2007, 23(10): 5243-5246.
[55] PERIGNON N, MARTY J D, MINGOTAUD A F, et al. Hyperbranched polymers analogous to PAMAM dendrimers for the formation and stabilization of gold nanoparticles[J].Macromolecules, 2007, 40(9): 3034-3041.
[56] KAKATI N, MAHAPATRA S S, KARAK N. Silver nanoparticles in polyacrylamide and hyperbranched polyamine matrix[J].Journal of Macromolecular Science Part A-Pure and Applied Chemistry, 2008, 45(8): 658-663.
[57] KALBASI R J, ZAMANI F. Synthesis and characterization of Ni nanoparticles incorporated into hyperbranched polyamidoamine-polyvinylamine/SBA-15 catalyst for simple reduction of nitro aromatic compounds[J].Rsc Advances, 2014, 4(15): 7444-7453.
[58] WILMS D, STIRIBA S E, FREY H. Hyperbranched polyglycerols: From the controlled synthesis of biocompatible polyether polyols to multipurpose applications[J].Accounts of Chemical Research, 2010, 43(1): 129-141.
[59] CALDERON M, QUADIR M A, SHARMA S K, et al. Dendritic polyglycerols for biomedical applications[J].Advanced Materials, 2010, 22(2): 190-218.
[60] SUNDER A, HANSELMANN R, FREY H, et al. Controlled synthesis of hyperbranched polyglycerols by ring-opening multibranching polymerization[J].Macromolecules, 1999, 32(13): 4240-4246.
[61] WANG X L, CHEN J J, HONG L, et al. Synthesis and ionic conductivity of hyperbranched poly(glycidol)[J].Journal of Polymer Science Part B-Polymer Physics, 2001, 39(19): 2225-2230.
[62] YING H, HE G J, ZHANG L F, et al. Hyperbranched polyglycerol/poly(acrylic acid) hydrogel for the efficient removalof methyl violet from aqueous solutions[J].Journal of Applied Polymer Science, 2016, 133(5): 42951.
[63] CHENG H X, WANG S G, YANG J T, et al. Synthesis and self-assembly of amphiphilic hyperbranched polyglycerols modified with palmitoyl chloride[J].Journal of Colloid and Interface Science, 2009, 337(1): 278-284.
[64] SLAGT M Q, STIRIBA S E, KAUTZ H, et al.Optically active hyperbranched polyglycerol as scaffold for covalent and noncovalent immobilization of platinum(II) NCN-pincer complexes. Catalytic application and recovery[J].Organometallics, 2004, 23(7): 1525-1532.
[65] LI H, JO J K, ZHANG L D, et al. Hyperbranched polyglycidol assisted green synthetic protocols for the preparation of multifunctional metal nanoparticles[J].Langmuir, 2010, 26(23): 18442-18453.
[66] SLAGT M Q, STIRIBA S-E, KLEIN GEBBINK R J M, et al. Encapsulation of hydrophilic pincer—Platinum(Ⅱ) complexes in amphiphilic hyperbranched polyglycerol nanocapsules[J].Macromolecules, 2002, 35(15): 5734-5737.
[67] SKARIA S, THOMANN R, GOMEZ-GARCIA C J, et al. A convenient approach to amphiphilic hyperbranched polymers with thioether shell for the preparation and stabilization of coinage metal (Cu, Ag, Au) nanoparticles[J].Journal of Polymer Science Part A-Polymer Chemistry, 2014, 52(10): 1369-1375.
[68] WAN D C, FU Q, HUANG J L. Synthesis of amphiphilic hyperbranched polyglycerol polymers and their application as template for size control of gold nanoparticles[J].Journal of Applied Polymer Science, 2006, 101(1): 509-514.
[69] TANG Q, CHENG F, LOU X L, et al. Comparative study of thiol-free amphiphilic hyperbranched and linear polymers for the stabilization of large gold nanoparticles in organic solvent[J].Journal of Colloid and Interface Science, 2009, 337(2): 485-491.
[70] LIU Y, XU L, LIU X Y, et al. Hybrids of gold nanoparticles with core-shell hyperbranched polymers: Synthesis, characterization, and their high catalytic activity for reduction of 4-nitrophenol[J].Catalysts, 2016, 6(1): 3-17.
[71] AYMONIER C, SCHLOTTERBECK U, ANTONIETTI L, et al. Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties[J].Chemical Communications, 2002, 24(24): 3018-3019.
[72] 劉訓勇, 劉華姬, 李文剛, 等. 基于超支化溫敏聚合物制備溫敏金納米粒子[J].高分子通報, 2010, (6): 67-70. (LIU Xunyong, LIU Huaji, LI Wengang, et al. Thermoresponsive gold nanoparticles based on the hyperbranched thermoresponsive polymers[J].Polymer Bulletin, 2010, (6): 67-70.)
[73] KOTH A, TIERSCH B, APPELHANS D, et al. Synthesis of core-shell gold nanoparticles with maltose-modified poly(ethyleneimine)[J].Journal of Dispersion Science and Technology, 2012, 33(1-3): 52-60.
[74] ZHU Z D, KAI L, WANG Y C. Synthesis and applications of hyperbranched polyesters-preparation and characterization of crystalline silver nanoparticles[J].Materials Chemistry and Physics, 2006, 96(2-3): 447-453.
[75] ALAM M, SHAIK M R, ALANDIS N M. Vegetable-oil-based hyperbranched polyester-styrene copolymer containing silver nanoparticle as antimicrobial and corrosion-resistant coating materials[J].Journal of Chemistry, 2013, Article ID 962316, 11 pages.
[76] GAO L, KOJIMA K, NAGASHIMA H. Transition metal nanoparticles stabilized by ammonium salts of hyperbranched polystyrene: Effect of metals on catalysis of the biphasic hydrogenation of alkenes and arenes[J].Tetrahedron, 2015, 71(37): 6414-6423.
[77] KOJIMA K, CHIKAMA K, ISHIKAWA M, et al. Hydrophobicity/hydrophilicity tunable hyperbranched polystyrenes as novel supports for transition-metal nanoparticles[J].Chemical Communications, 2012, 48(86): 10666-10668.
[78] YU B, JIANG X S, YIN J.Responsive hybrid nanosheets of hyperbranched poly(ether amine) as a 2D-platform for metal nanoparticles[J].Chemical Communications, 2013, 49(6): 603-605.
The Progress of Hyperbranched Polymers as Stabilizers for Metal Nanoparticles
SHEN Yanyu, HE Guijin, GUO Yongsheng, FANG Wenjun
(DepartmentofChemistry,ZhejiangUniversity,Hangzhou310058,China)
Several kinds of hyperbranched polymers including hyperbranched poly(amido-amine) (HPAM), hyperbranched polyglycerol (HPG), and hyperbranched polyethylene imine (HPEI), as metal nanoparticle stabilizers are summarized in this work. HPAM is a good candidate as a plugging agent and a chemical oil displacement agent. It can serve as both reductant and dispersant, which can not only stabilize the dispersion of metal nanoparticles but also improve the reproducibility of nanocomposites. With a large amount of hydroxyl groups, HPG can be modified to be amphiphilic nanocapsules, which has good biocompatibility and can be used as high-quality crude oil demulsifier. Furthermore, the size of metal nanoparticles can be controlled by the relative molecular mass of HPG.HPEI owns a large number of amine functional groups, which provides the ideal coordination sites for metal ions. As an example, the HPEI-coated metal nanoparticles have been found as potential thermo-sensitive materials. With the combination of the structural controllability of hyperbranched polymer and excellent catalytic activity of metal nanoparticles, metalized hyperbranched polymers show great promises in the petrochemical industry.
hyperbranched polymer; metal nanoparticle; stabilizer
2016-12-30
國家自然科學基金項目(91441109)資助
沈燕宇,女,碩士研究生,從事航空航天推進劑化學研究;E-mail:mlhkdzxsyy@163.com
方文軍,教授,博士,主要從事航空航天推進劑化學研究;E-mail:fwjun@zju.edu.cn
1001-8719(2017)04-0605-14
O63
A
10.3969/j.issn.1001-8719.2017.04.002