999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Empirical Likelihood Statistical Inference for Partially Linear Model with Restricted Condition

2017-09-03 10:13:32-,-
關(guān)鍵詞:經(jīng)驗(yàn)模型

-, -

(Department of Mathematics and Physics, Henan University of Urban Construction, Pingdingshan 467000, China)

Empirical Likelihood Statistical Inference for Partially Linear Model with Restricted Condition

LIUChang-sheng*,LIYong-xian

(DepartmentofMathematicsandPhysics,HenanUniversityofUrbanConstruction,Pingdingshan467000,China)

Inthispaper,weapplytheempiricallikelihoodmethodtopartiallylinearmodelwithparameterlinearrestrictedhypothesis.Forthesakeoftestinghypothesis,anempiricallog-likelihoodratioteststatisticbasedonthedifferenceofthenullandalternativehypothesesisconstructed.Furthermore,thelimitingdistributionoftheteststatisticsisprovedtobeastandardChi-squareddistribution.Numericalsimulationconfirmstheadvantageoftheproposedmethod.

empiricallikelihood;restrictedcondition;partiallylinearmodel;hypothesistest;Chi-squaredistribution

1 Empirical likelihood estimation on parameter

For the need of constructing the test statistic, we first develop estimating approach for model (1) under the null hypothesis in this section. That is, we estimate the unknown quantities in model (1) with the restricted condition Aβ=b.Thenmodel(1)canbewrittenas

(3)

whereKh(·) =K(·/h)/h,K(·) is a kernel function andh=hnis a sequence of positive numbers tending to zero, called bandwidth. Simple calculation yields that

(4)

For 1≤i≤n, let

In order to construct the empirical likelihood ratio function, we now introduce one auxiliary random vectorZi(β),

(5)

1.1 Empirical likelihood estimation on parameter without restriction

Next we discuss profile empirical likelihood estimation without restriction conditionsAβ=b. Whenβis true parameter,E(Zi(β))=0. Thus, by the idea of Owen[1], an empirical likelihood-ratio forβcan similarly be defined as follows:

(6)

wherep=(p1,…,pn) is a probability vector.

Ifβis true parameter, a unique maximum forpin (6) exists. By the Lagrange multiplier method, the supremum occurs at

(7)

whereλ(β) is the solution to

(8)

By (6) and (7), we can get

(9)

In the following, we define the profile empirical likelihood estimator without any restriction conditions

(10)

whereZi(β) andλ(β) satisfy (5) and (8), respectively.

1.2 Empirical likelihood estimation on parameter with restrictionAβ=b

(11)

whereηis ak×1 vector that contains the Lagrange multipliers. By differentiating functionF(β,η) with respect toβandη, we obtain the following equations:

(12)

and

(13)

2 Test statistic and its properties

In order to formulate the main results, we need the following assumptions. These assumptions are quite mild and can be easily satisfied.

Lethj(Ti)=E(Xij|Ti),Vi=Xi-E(Xi|Ti), 1≤i≤n, 1≤j≤p.

Assumption1 E(e|X,T)=0andE(|e|4|X,T)<∞.

Assumption3 g(·)andhj(·)areofoneorderLipschitzcontinuousfunctions.

Assumption 5 The kernel functionK(·) is a bounded symmetric density function with compact support and satisfies ∫K(u)du=1,∫uK(u)du=0 and ∫u2K(u)du<∞.

Assumption 6 The density functionsf(t) ofTis bounded away from zero and have bounded continuous second partial derivatives. Namely, 0

Under the above assumptions, we can get the following result, proved in Section 4.

Theorem3Underthenullhypothesisoftestingproblem(1.2)andtheassumptions1-6,wehave

3 Simulation studies

In this section, we present the result of some simulations to illustrate our methods. In our simulations, the data are generated from the following model:

yi=xi1β1+xi2β2+g(ti)+εi,i=1,…,n,

(14)

Tab.1 The rejection frequencies for H0:β1-β2=0?H1:β1-β1=c with α=0.05

We summarize our findings as follows. When the null hypothesis is true (that is,c=0), the rejection frequencies (estimated sizes) of both our proposed test basedTnand the restricted least-squares approach test basedWnare quite good and close to their nominal levels 0.05 under different error distributions. Under the alternative hypothesis, the rejection rate seems very robust to the variation of the type of error distribution. With the increasing ofc, the test power of our proposed test is slightly better than the test based on the residual sum of squares.

4 Proof of the main results

In the sequel, letCdenote positive constant whose value may vary at each occurrence.

Lemma 1 Suppose that Assumptions 1-6 hold.

whereG0(·)=g(·) andGl(·)=hl(·)(j=1,…,p).

ProofTheproofissimilartoLemmaA.1inLiang[9]etal.

Lemma2SupposethatAssumptions1-6hold.Wecanobtain

ProofTheproofissimilartoLemmaA.2inLiang[9]etal.

Lemma3SupposethatAssumptions1-6hold.ifβ0istruevalueofβ, We can obtain

ProofFromthedefinitionofZi(β), we have

Lemma4SupposethatAssumptions1-6hold.Ifβ0istruevalueofβ,Wehavemax1≤i≤n‖Zi(β0)‖=op(n1/2).

ProofAsimilarproofcanbefoundinLiang[10]etal.

Lemma5SupposethatAssumptions1-6hold.Ifβ0isthetruevalueofβinmodel(3),satisfying(7)and(8),thenwehave

ProofApplyingtheTaylorexpansion,from(8)andLemma1~4,weobtainthat

(15)

In view of Lemma 1~4, we have

This completes the proof.

TheproofofTheorem1

(16)

(17)

(18)

where

(19)

We can also get

(20)

This completes the proof.

TheproofofTheorem2issimilarasthatofTheorem1andthusisleftforthereaders.

TheproofofTheorem3

ProofBy(10)andapplyingtheTaylorexpansion,wehave

(21)

where

Similarly, we can also get

(22)

with |r2n|=op(1).

From (21) and (22), we can get

I1+I2+op(1).

Op(n-1)·Op(n1/2)·op(n1/2)=op(1).

(23)

[1]OWENAB.Empiricallikelihoodratioconfidenceintervalsforasinglefunctional[J].Biometrika,1988,75(2):237-249.

[2]OWENAB.Empiricallikelihoodratioconfidenceregions[J].AnnStat, 1990,18(1):90-120.

[3]SHIJ,LAUTS.Empiricallikelihoodforpartiallylinearmodels[J].JMultivAnal, 2000,72(1):132-148.

[4]WANGQH,JINGBY.Empiricallikelihoodforpartiallinearmodelswithfixeddesigns[J].StatProbLett, 1999,41(4):425-433.

[5]WANGQH,JINGBY.Empiricallikelihoodforpartiallylinearmodels[J].AnnInstStatMath, 2003,55(3):585-595.

[6]FANJ.Locallinearregressionsmoothersandtheirminimaxefficiencies[J].AnnStat, 1993,21(1):196-216.

[7]FANJ,GIJBELSI.Localpolynomialmodellinganditsapplications[M].NewTork:Chapman&HallPress, 1996.

[8]WEIC,WANGQ.Statisticalinferenceonrestrictedpartiallylinearadditiveerrors-in-variablesmodels[J].Test, 2012,21(4):757-774.

[9]LIANGH,HRDLEW,CARROLLRJ.Estimationinasemiparametricpartiallylinearerrors-in-variablesmodel[J].AnnStat, 1999,27(5):1519-1535.

[10] LIANG H, THURSTON S W, RUPPERT D,etal. Additive partial linear models with measurement errors[J].Biometrika, 2008,95(3):667-678.

[11] LIANG H Y, JING B Y. Asymptotic normality in partial linear models based on dependent errors[J].J Stat Plan Infer, 2009,139(4):1357-1371.

[12] 洪圣巖. 一類(lèi)半?yún)?shù)回歸模型的估計(jì)理論[J]. 中國(guó)科學(xué):A 輯, 1991,34(12):1258-1272.

[13] 孫耀東. 分歧泊松自回歸模型的馬爾可夫性[J]. 湖南師范大學(xué)自然科學(xué)學(xué)報(bào), 2011,34(4):18-20.

[14] WU C. Some algorithmic aspects of the empirical likelihood method in survey sampling[J]. Stat Sin, 2004,14(4):1057-1068.

[15] XUE L G, ZHU L X. Empirical likelihood for a varying coefficient model with longitudinal data[J]. J Am Stat Assoc, 2007,102(478):642-654.

[16] ZHU L, XUE L. Empirical likelihood confidence regions in a partially linear single-index model[J].J Royal Stat Soc: Ser B, 2006,68(3):549-570.

(編輯 HWJ)

2016-03-27

河南省科技計(jì)劃項(xiàng)目資助(112300410191)

O

A

1000-2537(2017)04-0075-08

具有限制條件的部分線(xiàn)性模型的經(jīng)驗(yàn)似然推斷

劉常勝*,李永獻(xiàn)

(河南城建學(xué)院數(shù)理系, 中國(guó) 平頂山 467000)

本文將經(jīng)驗(yàn)似然方法應(yīng)用到具有限制假設(shè)條件的部分線(xiàn)性模型中. 為了檢驗(yàn)假設(shè)條件, 構(gòu)造基于零假設(shè)和對(duì)立假設(shè)條件下的極大經(jīng)驗(yàn)對(duì)數(shù)似然比估計(jì)值的差值統(tǒng)計(jì)量. 而且在零假設(shè)下證明該統(tǒng)計(jì)量的極限分布為標(biāo)準(zhǔn)的χ2分布. 數(shù)值模擬表明所提出的檢驗(yàn)統(tǒng)計(jì)量的優(yōu)勢(shì).

經(jīng)驗(yàn)似然; 限制條件; 部分線(xiàn)性模型; 假設(shè)檢驗(yàn); χ2分布

10.7612/j.issn.1000-2537.2017.04.013

*通訊作者,E-mail:csliu@hncj.edu.cn

猜你喜歡
經(jīng)驗(yàn)模型
一半模型
2021年第20期“最值得推廣的經(jīng)驗(yàn)”評(píng)選
黨課參考(2021年20期)2021-11-04 09:39:46
重要模型『一線(xiàn)三等角』
重尾非線(xiàn)性自回歸模型自加權(quán)M-估計(jì)的漸近分布
經(jīng)驗(yàn)
2018年第20期“最值得推廣的經(jīng)驗(yàn)”評(píng)選
黨課參考(2018年20期)2018-11-09 08:52:36
小經(jīng)驗(yàn)試試看
3D打印中的模型分割與打包
FLUKA幾何模型到CAD幾何模型轉(zhuǎn)換方法初步研究
當(dāng)你遇見(jiàn)了“零經(jīng)驗(yàn)”的他
都市麗人(2015年4期)2015-03-20 13:33:22
主站蜘蛛池模板: 一级毛片高清| www亚洲精品| 国产理论精品| 国产人免费人成免费视频| 国产大片黄在线观看| 欧美 国产 人人视频| 日韩毛片基地| 亚洲色欲色欲www在线观看| 国产精品不卡片视频免费观看| 中文字幕在线看| 国产欧美视频综合二区| 欧美专区在线观看| 亚洲精品久综合蜜| 欧美www在线观看| 成人一级黄色毛片| 成人亚洲视频| 91伊人国产| 2019年国产精品自拍不卡| 极品性荡少妇一区二区色欲 | 波多野结衣第一页| 亚洲无码高清一区| 日韩精品一区二区三区免费在线观看| 97在线免费视频| 一级看片免费视频| 黄色片中文字幕| 女人一级毛片| 永久免费AⅤ无码网站在线观看| 永久免费无码日韩视频| 午夜性爽视频男人的天堂| 国产凹凸视频在线观看| 亚洲熟女中文字幕男人总站| 亚洲精品国产成人7777| 亚洲欧美另类久久久精品播放的| 欧美天天干| 97人人模人人爽人人喊小说| 亚洲a级在线观看| 日韩精品毛片| 毛片免费视频| 国产精品自拍露脸视频| 中文国产成人精品久久| 国产成人凹凸视频在线| 成人福利在线免费观看| a毛片免费观看| 免费Aⅴ片在线观看蜜芽Tⅴ| 亚洲精品视频在线观看视频| 国产菊爆视频在线观看| 中文成人无码国产亚洲| 亚洲中文在线视频| 久青草免费在线视频| 制服丝袜亚洲| lhav亚洲精品| 国产在线97| 黄色免费在线网址| 午夜日b视频| 国内精品一区二区在线观看| 亚洲免费黄色网| 日韩国产黄色网站| 国产素人在线| 久久无码av三级| 精品国产一二三区| 日本成人精品视频| 亚洲男人天堂2018| 亚洲制服丝袜第一页| 日韩色图区| 91外围女在线观看| 8090午夜无码专区| 国产精品三级专区| 欧美精品亚洲精品日韩专区va| 国产情侣一区二区三区| 精品成人一区二区| 日韩毛片免费| 国产日本欧美亚洲精品视| 欧美日韩在线亚洲国产人| 欧美成一级| 久久永久精品免费视频| 色综合天天综合| 日韩欧美高清视频| 毛片在线播放a| 99精品国产电影| 亚洲激情区| AV老司机AV天堂| 精品国产成人a在线观看|