999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Studies on the Volterra Integral Equation with Linear Delay

2017-09-03 10:13:32-
湖南師范大學自然科學學報 2017年4期

-

(Colloge of Mathematics and Statistics, Hanshan Normal University, Chaozhou 521041, China)

Studies on the Volterra Integral Equation with Linear Delay

ZHENGWei-shan*

(Colloge of Mathematics and Statistics, Hanshan Normal University, Chaozhou 521041, China)

This paper is concerned about the Volterra integral equation with linear delay. First we transfer the integral interval [0,T] into interval [-1, 1] through the conversion of variables. Then we use the Gauss quadrature formula to get the approximate solutions. After that the Chebyshev spectral-collocation method is proposed to solve the equation. With the help of Gronwall inequality and some other lemmas, a rigorous error analysis is provided for the proposed method, which shows that the numerical error decay exponentially in the innity norm and the Chebyshev weighted Hilbert space norms. In the end, numerical example is given to confirm the theoretical results.

Chebyshev spectral-collocation method; linear delay; Volterra integral equations; error analysis

The Volterra integral equation with linear delay is as follow:

(1)

where the unknown functiony(τ) is defined on [0,T],T<+∞ andqis constant with 0

Equations of this type arise as models in many fields, such as the Mechanical problems of physics, the movement of celestial bodies problems of astronomy and the problem of biological population original state changes. They are also applied to network reservoir, storage system, material accumulation, different fields of industrial process etc, and solve a lot problems from mathematical models of population statistics, viscoelastic materials and insurance abstracted. The Volterra integral equation with linear delay is one of the important type of Volterra integral equations with great significance in both theory and applications. There are many methods to solve Volterra integral equations, such as Legendre spectral-collocation method[1], Jacobi spectral-collocation method[2], spectral Galerkin method[3-4], Chebyshev spectral-collocation method[5]and so on. In this paper, inspired by[5] and [6], we use a Chebyshev spectral-collocation method to solve Volterra integral equations with linear delay.

1 Chebyshev spectral-collocation method

(2)

Then equation (1) becomes

and the above equation can be rewritten as follows.

(3)

Obviously, the above equations hold atximentioned above,xi∈[-1,1]. Thus, we have

(4)

Using aN+1-point Legendre quadrature formula (2), corresponding weightwk, we can obtain that

(5)

2 Convergence analysis

2.1ConvergenceanalysisinL∞(-1,1)space

Theorem1Supposeu(x)istheexactsolutiontoequations(3)anduN(x)istheapproximatesolutionobtainedbyusingtheChebyshevspectralcollocationmethod.ThenforNsufficientlylarge,weget

(6)

where

ProofMinusing(4)by(5)gives

Notee(x)=u(x)-uN(x), then we have

(7)

By Theorem 4.3, 4.7 and 4.10 in [7], we get

|J1(x)|≤CN-m|K(x,·)|Hm,N(-1,1)‖uN(sx(·))‖L2(-1,1).

(8)

u-uN+INu-u=e(x)+INu-u.

(9)

Now we are in the position to estimate the above inequality term by term. Firstly the second conclusion in Theorem 1.8.4 in [8] shows that

(10)

For the estimation of ‖INJ1‖L∞(-1,1), firstly using the first inequality in (8), we obtain

CN-mK*(‖e‖L∞(-1,1)+‖u‖L∞(-1,1)).

Then, due to Theorem 3.3 in [9], we have

‖INJ1(x)‖L∞(-1,1)≤‖IN‖L∞(-1,1)‖J1(x)‖L∞(-1,1)≤

CN-m(logN)K*(‖e‖L∞(-1,1)+‖u‖L∞(-1,1)).

For ‖J3(x)‖L∞(-1,1), applying (7) and lettingm=1, we get

From what discussed above, we can see

Since

This completes the proof of this theorem.

Theorem2Supposeu(x)istheexactsolutiontoequation(3)anduN(x)istheapproximatesolutionobtainedbytheChebyshevspectralcollocationmethodwhichdefinedin(5).ThenforNsufficientlylarge,weget

ProofAsthesameprocedureinthedeductionfrom(7)to(9)inTheorem1,wecanderivethefollowinginequality

Further more applying the generalized Hardy’s inequality with weights[10], we get

Now we estimate each item from left to right for the above inequality. ForJ0(x), the first conclusion in Theorem 1.8.4 in [8] shows that

(11)

By Theorem 1 in [11] and (8), we get

Due to the conclusion in Theorem 1, we get

(12)

3 Algorithm implementation and numerical experiment

The corresponding exact solution is given byu(x)=e4x,x∈ [-1,1].

a.The errors u-uN in L∞ and norms. b.The comparison between approximate solution uN and the exact solution u.Fig.1 Numerical results

N68101214L∞?error0.0300419.0557×10-42.4424×10-55.6363×10-79.5384×10-9L2ωc?error0.0287919.2524×10-42.4507×10-55.2913×10-78.6576×10-9N1618202224L∞?error1.2083×10-101.1866×10-122.1316×10-141.4211×10-147.1054×10-15L2ωc?error1.0916×10-101.1034×10-128.6652×10-148.3351×10-149.2255×10-15

[1] TANG T, XU X, CHENG J. On Spectral methods for Volterra integral equation and the convergence analysis[J]. J Comput Math, 2008,26(6):825-837.

[2] CHEN Y, TANG T. Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equation with a weakly singular kernel[J]. Math Comput, 2010,79(269):147-167.

[3] WAN Z, CHEN Y, HUANG Y. Legendre spectral Galerkin method for second-kind Volterra integral equations[J]. Front Math China, 2009,4(1):181-193.

[4] XIE Z, LI X, TANG T. Convergence analysis of spectral galerkin methods for Volterra type integral equations[J]. J Sci Comput, 2012,53(2):414-434.

[5] GU Z, CHEN Y. Chebyshev spectral collocation method for Volterra integral equations[J]. Contem Math, 2013,586:163-170.

[6] LI J, ZHENG W, WU J. Volterra integral equations with vanishing delay[J]. Appl Comput Math, 2015,4(3):152-161.

[7] CANUTO C, HUSSAINI M, QUARTERONI A,etal. Spectral method fundamentals in single domains[M]. New York: Spring-Verlag, 2006.

[8] SHEN J, TANG T. Spectral and high-order methods with applications[M]. Beijing: Science Press, 2006.

[9] MASTROIANNI G, OCCORSIO D. Optional system od nodes for Lagrange interpolation on bounded intervals[J]. J Comput Appl Math, 2001,134(1-2):325-341.

[10] KUFNER A, PERSSON L. Weighted inequality of Hardy’s Type[M]. New York: World Scientific, 2003.

[11] NEVAI P. Mean convergence of Lagrange interpolation[J]. Trans Amer Math Soc, 1984,282:669-698.

(編輯 HWJ)

2016-10-29

國家自然科學基金資助項目(11626074);韓山師范學院創新強校項目(Z16027);中山大學廣東省計算科學重點實驗室開放基金資助項目(2016011);韓山師范學院扶持項目(201404)

O242.2

A

1000-2537(2017)04-0083-06

帶線性延遲項的Volterra積分方程研究

鄭偉珊*

(韓山師范學院數學與統計學院, 中國 潮州 521041)

Chebyshev譜配置方法; 線性延遲項; Volterra型積分方程; 誤差分析

10.7612/j.issn.1000-2537.2017.04.014

*通訊作者,E-mail:weishanzheng@yeah.net

主站蜘蛛池模板: 另类欧美日韩| 国产精品无码一区二区桃花视频| 亚洲国产无码有码| 久久精品这里只有精99品| 在线观看免费黄色网址| 精品国产一区二区三区在线观看| 欧美日韩精品在线播放| 国产成人h在线观看网站站| 欧美国产视频| 999国产精品永久免费视频精品久久 | 国产成人a毛片在线| 97久久精品人人做人人爽| 久久亚洲国产最新网站| 亚洲AV无码乱码在线观看裸奔 | 亚洲午夜福利精品无码不卡| 麻豆精选在线| 伊在人亚洲香蕉精品播放| 一本色道久久88亚洲综合| 91久久偷偷做嫩草影院免费看 | 久久鸭综合久久国产| 国产美女一级毛片| www.youjizz.com久久| 黄色一级视频欧美| 亚洲熟女偷拍| 天堂av综合网| 国产精品无码久久久久久| 亚洲精品国产综合99| 欧美在线观看不卡| 亚洲高清在线天堂精品| 国产日韩欧美在线播放| 99re在线观看视频| 天天躁日日躁狠狠躁中文字幕| 亚洲精品国产首次亮相| 国产精品19p| 日本国产在线| 91午夜福利在线观看| 欧美精品在线免费| 国产一区二区人大臿蕉香蕉| 国产在线视频导航| 永久免费精品视频| 国产Av无码精品色午夜| 麻豆国产在线观看一区二区 | 欧美亚洲另类在线观看| 午夜福利无码一区二区| 青青草原国产| 国产视频久久久久| 亚洲青涩在线| 国产青青操| 真人高潮娇喘嗯啊在线观看| 91视频首页| 色婷婷国产精品视频| 亚洲成人高清无码| 国产成人a在线观看视频| 国产精品13页| 欧美在线黄| 日本不卡在线播放| 99久久99这里只有免费的精品| 99精品国产自在现线观看| 黄色不卡视频| 宅男噜噜噜66国产在线观看| 久久久久久久蜜桃| 国产欧美专区在线观看| 久久青草热| 伊人AV天堂| 国产精品免费入口视频| h视频在线观看网站| 国产美女无遮挡免费视频| 18禁黄无遮挡网站| 五月天丁香婷婷综合久久| 国产成人精品亚洲77美色| 天天综合网在线| 国产精品区视频中文字幕| 免费国产福利| 99这里只有精品在线| 五月天久久综合| 国产精品手机在线观看你懂的| 精品一区二区三区水蜜桃| 亚洲欧美成人在线视频| 亚洲二区视频| 亚洲综合专区| 97国产精品视频人人做人人爱| 亚洲二区视频|