郭燕榮,董常峰,林浩銘,張新宇,溫慧瑩,沈圓圓,汪天富,陳思平,劉映霞,陳 昕*
(1.深圳大學生物醫學工程學院 醫學超聲關鍵技術國家地方聯合工程實驗室 廣東省生物醫學信息檢測與超聲成像重點實驗室,廣東 深圳 518060;2.深圳市第三人民醫院超聲科,3.感染科,廣東 深圳 518060)
聲輻射力脈沖彈性成像技術評估大鼠非酒精性脂肪肝及肝纖維化
郭燕榮1,董常峰2,林浩銘1,張新宇1,溫慧瑩1,沈圓圓1,汪天富1,陳思平1,劉映霞3,陳 昕1*
(1.深圳大學生物醫學工程學院 醫學超聲關鍵技術國家地方聯合工程實驗室 廣東省生物醫學信息檢測與超聲成像重點實驗室,廣東 深圳 518060;2.深圳市第三人民醫院超聲科,3.感染科,廣東 深圳 518060)
目的探討利用聲輻射力脈沖成像(ARFI)技術評估大鼠肝臟非酒精性脂肪肝(NAFLD)及肝纖維化的價值。方法通過喂養高脂食物建立不同階段NAFLD大鼠模型。解剖大鼠,取右葉肝臟嵌入明膠仿體內用于ARFI檢查,測量大鼠肝臟剪切波速度(SWV),將其余肝組織用于組織學評估,并根據NAFLD活動性評分(NAS),將大鼠分為正常組(NAS=0),單純性脂肪肝(SS)組(1≤NAS≤2),邊界組(3≤NAS≤4)、非酒精性脂肪性肝炎(NASH)組(NAS≥5)。通過ROC曲線分析評估ARFI判斷不同程度NAFLD及肝纖維化的能力。結果正常組、SS組、邊界組、NASH組間SWV值總體差異有統計學意義(F=31.53,P<0.001)。以SWV值≥2.54 m/s鑒別正常組與SS組、以SWV值≥2.90 m/s鑒別SS組與NASH組,對應的ROC曲線下面積(AUC)分別為0.922[95%CI(0.871,0.973),P<0.001]、0.882[95%CI(0.807,0.956),P<0.001],敏感度分別為93.5%、83.3%,特異度分別為100%、84.2%。以SWV值≥3.48 m/s診斷≥F2期肝纖維化、以SWV值≥3.61 m/s診斷≥F3期肝纖維化、以SWV值≥4.50 m/s診斷肝硬化(F4期)的AUC分別為0.963[95%CI(0.909,1.000),P<0.001]、0.997[95%CI(0.990,1.000),P<0.001]、0.993[95%CI(0.982,1.000),P<0.001],敏感度分別為92.9%、100%、100%,特異度分別為97.6%、98.9%、96.8%。結論ARFI技術測量的SWV值可有效評估NAFLD及含有NAFLD的肝纖維化程度。
聲輻射力脈沖;彈性成像技術;剪切波速度;肝硬化,實驗性;脂肪肝;大鼠
非酒精性脂肪肝(nonalcoholic fatty liver disease, NAFLD)患者無過量飲酒史,病變以肝實質細胞脂肪變性和脂肪儲積為特征,目前在歐美發達國家普通人群中發病比例達20%~30%[1]。其疾病譜包括非酒精性單純性脂肪肝(simple steatosis, SS)、非酒精性脂肪性肝炎(nonalcoholic steatohepatitis, NASH)及NASH相關肝硬化和肝細胞癌。其中,NASH為疾病進展的重要階段,除肝細胞脂肪變外,伴有肝細胞氣球樣變、壞死性炎癥及肝纖維化。其中NASH是NAFLD病程進展的關鍵環節,如NASH不能得到有效控制最終可發展成為肝硬化或肝癌[2]。因此,區分NASH與SS以及評估含有NAFLD的肝纖維化在臨床上具有重要意義。肝組織活檢是判斷NAFLD程度的金標準,但因其有創,不適用于NAFLD的大范圍篩查。本研究擬應用聲輻射力成像(acoustic radiation force impulse, ARFI)技術對大鼠NAFLD進行定量分析,以期為NAFLD的無創量化評估提供實驗數據支持。
1.1實驗動物與分組處理 健康雄性SD大鼠110只[由廣東省醫學動物實驗中心提供并批準使用,批號:SYXK(粵)2013-0002],體質量170~220 g,于恒溫(20~26°C)、恒濕(40%~70%)條件下分籠喂養。適應性喂養1周后,將大鼠隨機分為模型組A(n=57)和對照組A(n=12)、模型組B(n=13)和對照組B(n=3)、模型組C(n=22)和對照組C(n=3)。對模型組A大鼠喂養高脂食物(食物中包含20%豬油、10%膽固醇、2%膽酸鈉、0.5%丙賽優和30%果糖的高脂乳劑),每日劑量1 ml/100 g體質量,根據喂養時間不同分為2周 (n=15)、4周(n=13)、6周(n=14)和8周 (n=15)亞組;對模型組B大鼠(n=13)給予正常飲食,并進行每周2次四氯化碳灌胃,劑量 0.3 ml/100 g體質量,共4周;對模型組C大鼠(n=22)喂養高脂食物,每日劑量1 ml/100 g體質量,并進行每周2次四氯化碳灌胃,劑量0.3 ml/100 g體質量,共8周。對照組A、B、C均給予正常飲食,與相應模型組的飼養時間相同。
1.2血清生化指標檢測 對各模型組及對照組大鼠進行相應處理后,對其停飼、停飲12 h。自大鼠眼眶靜脈竇抽取1.5 ml血液樣本,離心取血清,于-80℃條件下保存。采用Hitachi 7020全自動生化分析儀檢測以下血清指標:總膽固醇(total cholesterol, TC)、甘油三酯(triglyceride, TG)、低密度脂蛋白(low density lipoprotein cholesterol, LDL-C)、高密度脂蛋白 (high density lipoprotein cholesterol, HDL-C)、丙氨酸轉氨酶 (alanine aminotransferase, ALT) 和天冬氨酸轉氨酶 (aspartate aminotransferase, AST)。
1.3離體肝組織取材 完成血清學檢測后,對大鼠進行解剖,取肝右葉用于ARFI實驗,將剩余肝組織用于組織學評估。
1.4ARFI測量 采用Siemens Acuson S2000彩色超聲診斷儀,8M線陣換能器,聲觸診組織量化(virtual touch tissue quantification, VTQ)模式,對嵌入G2500明膠仿體(Sigma公司,美國)容器(11 cm×11 cm×7 cm)中的大鼠肝右葉組織進行測量。于明膠仿體表面1.5~2.0 cm以下的肝組織中選擇ROI,放置ROI時注意避開大血管,其中ROI的大小為 10 mm×6 mm。測量肝臟剪切波速度(shear wave velocity, SWV)時,對每塊仿體均測量10次,取平均值作為大鼠肝臟SWV的最終測值。
1.5組織學評價及分組 將除肝右葉以外的離體大鼠肝臟組織浸泡于10%甲醛溶液中24 h后,行石蠟包埋、切片,油紅(Oil Red O, ORO)、蘇木精-伊紅(Hematoxylin-eosin, HE)和Masson染色(Masson's trichrome, MT)處理。采用Olympus BX41光學顯微鏡觀察大鼠肝臟病理組織學改變。參考Kleiner等[3]的方法分別對脂肪變性等級(S0~S3)、炎癥等級(S0~S3)、氣球樣變性等級(S0~S2)和肝纖維化等級(F0~F4)進行評價,并根據其提出的NAFLD活動性評分(NAFLD activity score, NAS)系統進行評分。根據NAS評分,將大鼠分為正常組(NAS=0),SS組(1≤NAS≤2),邊界組(3≤NAS≤4)和NASH組(NAS≥5)。
1.6統計學分析 采用SPSS 19.0統計分析軟件。計量資料以±s表示。以Pearson相關分析評價SWV與血清指標及病理指標間的相關性。采用單因素方差分析評估不同NAS評分等級(正常組、SS組、邊界組、NASH組)間SWV的差異,兩兩比較采用Tukey法。繪制ROC曲線,評價ARFI對NAFLD及肝纖維化的診斷能力,采用最大化Youden指數確定最佳截斷值。P<0.05為差異有統計學意義。
2.1病理及生化指標 各模型組及對照組大鼠肝臟脂肪變性、炎癥、氣球樣變性和肝纖維化分級見表1。根據NAS評分,最終110只大鼠中正常組18只(圖1A~1C),SS組39只(圖1D~1F),邊界組25只,NASH組28只(圖1G~1I),各組血清生化指標檢測結果見表2。SWV值與血清生化指標TC(r=0.344,P<0.001)、TG(r=-0.293,P=0.002)、LDL-C(r=0.500,P<0.001)、HDL-C(r=0.358,P<0.001)、ALT(r=0.744,P<0.001)、AST(r=0.648,P<0.001)均具有相關性。
2.2ARFI評估NAFLD 正常組SWV值為(1.86±0.43)m/s,SS組為(2.59±0.50)m/s,邊界組為 (2.84±0.36)m/s,NASH組為(4.12±1.31)m/s,見圖2;單因素方差分析結果顯示正常組、SS組、邊界組、NASH組間SWV值總體差異有統計學意義(F=31.53,P<0.001)。正常組與SS組間、正常組與邊界組間、正常組與NASH組間、SS組與NASH組間、邊界組與NASH組間SWV值差異均有統計學意義(P=0.042、0.032、<0.001、0.001、0.001),SS組與邊界組間SWV差異無統計學意義(P=0.836)。

表1 各模型組及對照組大鼠肝臟病理結果(只)
表2 不同NAS評分等級各組血清生化指標(±s)

表2 不同NAS評分等級各組血清生化指標(±s)
組別ALT(U/L)AST(U/L)TC(mmol/L)TG(mmol/L)HDL-C(mmol/L)LDL-C(mmol/L)SS組58.73±21.51145.06±39.1911.87±7.801.75±0.681.36±0.515.20±5.38邊界組105.43±49.56310.09±190.459.58±6.121.73±1.251.90±1.013.74±2.98NASH組199.22±78.59473.67±164.828.18±6.110.71±0.383.66±2.882.55±2.57正常組45.61±9.56125.61±18.604.61±3.101.42±0.650.94±0.380.86±0.90

圖1 大鼠肝臟典型組織病理圖 A~C.彌漫性脂肪變性(S0期,ORO,×200)、炎癥(S0期,HE,×100)、氣球樣變性及肝纖維化(F0期,MT,×100); D~F.彌漫性脂肪變性(S1期,ORO,×200)、炎癥(S1期,HE,×100)、氣球樣變性及肝纖維化(F0期,MT,×100); G~I.彌漫性脂肪變性(S3期,ORO,×200)、炎癥(S3期,HE,×100)、氣球樣變性(S1期)及及肝硬化(F4期,MT,×100)

圖2 不同NAS評分等級各組大鼠離體肝臟ARFI圖像 A.正常組,SWV值1.80 m/s; B.SS組,SWV值2.49 m/s; C.NASH組,SWV值5.41 m/s

圖3 SWV值判斷大鼠不同NAS評分等級的ROC曲線 圖4 SWV值判斷大鼠肝纖維化不同分期的ROC曲線
以SWV=2.54 m/s為截斷值,SWV≥2.54診斷為SS組,鑒別正常組與SS組的ROC曲線下面積(area under the curve, AUC)為0.922[95%CI(0.871,0.973),P<0.001],敏感度為93.5%,特異度為100%。以SWV=2.90 m/s為截斷值,SWV≥2.90診斷為NASH組,鑒別SS組與NASH組的AUC為0.882[95%CI(0.807,0.956),P<0.001],敏感度為83.3%,特異度為84.2%。見圖3。
2.3ARFI診斷肝纖維化 肝纖維化F0期大鼠肝臟SWV值為(2.56±0.57)m/s,F1期為(2.68±0.58)m/s,F2期為(3.36±0.85)m/s,F3期為(4.31±0.59)m/s,F4期為(5.42±0.68)m/s。以SWV值3.48 m/s為截斷值,診斷≥F2期肝纖維化的AUC為0.963[95%CI(0.909,1.000),P<0.001],敏感度為92.9%,特異度為97.6%;以SWV值3.61 m/s為截斷值,診斷≥F3期肝纖維化的AUC為0.997[95%CI(0.990,1.000),P<0.001],敏感度為100%,特異度為98.9%;以SWV值4.50 m/s為截斷值,診斷肝硬化(F4期)的AUC為0.993[95%CI(0.982,1.000),P<0.001],敏感度為100%,特異度為96.8%。見圖4。
NAFLD是一種復雜的肝臟疾病,涉及遺傳性、環境因素及諸多未知的生理病理因素等[4-6]。相對于復雜的人體環境,離體動物模型可克服這些復雜的因素影響,提高對疾病生理病理學的認識。
ARFI是新型超聲成像技術,其原理是利用聲輻射力聚焦于組織內部使其產生振動,據此測量出因組織形變而產生的橫向剪切波速度值,從而量化該組織或器官的硬度或彈性。常規的準靜態彈性成像在對肥胖受檢者進行檢查時存在較高的失敗率,而以ARFI技術檢測時的聲輻射力可有效穿透脂肪層和腹腔,更適用于檢測肥胖NAFLD患者[7-8]。
在NAFLD患者中,僅NASH患者可發展為嚴重肝硬化和末期肝臟疾病,因此臨床及早有效評估SS和NASH具有重要意義,對NAFLD動物模型的研究可為臨床提供相應的參考信息。本研究利用ARFI技術鑒別大鼠SS與NASH,實驗結果顯示,SS組SWV值為(2.59±0.50)m/s,NASH組SWV值為(4.12±1.31)m/s,二者間差異有統計學意義(P<0.001)。分析原因為NASH組中含有肝纖維化和肝硬化嚴重,使肝臟硬度增大,從而導致SWV值增大。Kang等[9]對56只NAFLD大鼠進行研究的結果也顯示NASH組的彈性值明顯高于SS組的彈性值(P<0.001)。Braticevici等[10]對64例NAFLD患者進行研究,發現ARFI技術可有效區分SS組和NASH組,ROC曲線的AUC為0.86。本實驗中ROC曲線分析顯示,以SWV值≥2.90 m/s鑒別SS組與NASH組的AUC為0.882[95%CI(0.807,0.956),P<0.001],敏感度為83.3%,特異度為84.2%。
既往研究[11-12]在采用ARFI技術評估肝纖維化的過程中,常忽視非酒精性脂肪肝疾病的存在,對含有NAFLD的肝纖維化研究報道較少。本研究采用ARFI技術評估NAFLD大鼠肝臟的纖維化程度,實驗結果顯示SWV值能夠對不同級別肝纖維化具有較高的診斷效能,與采用準靜態彈性成像方法、MR彈性成像方法的研究結果一致[13-14]。
本研究進行體外實驗,其優勢是可克服一些復雜的體內環境因素對ARFI測量結果的影響,如不同個體的體溫差異,脂肪厚度差異及邊界條件差異(血壓及器官間擠壓)等。同時由于外部環境穩定,使得測量的SWV值能更加真實地反映肝臟病理特性。但不足之處在于離體取肝臟制作成仿體的過程可能會造成組織器官的力學性能和生理特征的改變,進而影響測量結果[15]。
總之,通過ARFI彈性成像技術可有效區分NAFLD大鼠離體肝臟SS與NASH,同時可較為準確地評估肝纖維化程度。
[1] Starley BQ, Calcagno CJ, Harrison SA. Nonalcoholic fatty liver disease and hepatocellular carcinoma: A weighty connection. Hepatology, 2010,51(5):1820-1832.
[2] Castera L, Vilgrain V, Angulo P. Noninvasive evaluation of NAFLD. Nat Rev Gastroenterol Hepatol, 2013,10(11):666-675.
[3] Kleiner DE, Brunt EM, van Natta M, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology, 2005,41(6):1313-1321.
[4] Wehr A, Baeck C, Ulmer F, et al. Pharmacological inhibition of the chemokine CXCL16 diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury. PLoS One, 2014,9(11):e112327.
[5] Tosello-Trampont AC, Landes SG, Nguyen V, et al. Kuppfer cells trigger nonalcoholic steatohepatitis development in diet-induced mouse model through tumor necrosis factor-α production. J Biol Chem, 2012,287(48):40161-40172.
[6] 張光晨,吳長君,倪子龍.聲脈沖輻射力成像技術在肝臟疾病中的應用.中國醫學影像技術,2011,27(11):2357-2360.
[7] Yoneda M, Suzuki K, Kato S, et al. Nonalcoholic fatty liver disease: US-based acoustic radiation force impulse elastography. Radiology, 2010,256(2):640-647.
[8] Kwok R, Tse YK, Wong GH, et al. Systematic review with meta-analysis: Non-invasive assessment of non-alcoholic fatty liver disease-the role of transient elastography and plasma cytokeratin-18 fragments. Altment Pharm Ther, 2014,39(3):254-269.
[9] Kang BK, Lee SS, Cheong H, et al. Shear wave elastography for assessment of steatohepatitis and hepatic fibrosis in rat models of non-alcoholic fatty liver disease. Ultrasound Med Biol, 2015,41(12):3205-3215.
[10] Braticevici CF, Sporea I, Panaitescu E, et al. Value of acoustic radiation force impulse imaging elastography for non-invasive evaluation of patients with nonalcoholic fatty liver disease. Ultrasound Med Biol, 2013,39(11):1942-1950.
[11] Hannah WN, Harrison SA. Nonalcoholic fatty liver disease and elastography: Incremental advances but work still to be done. Hepatology, 2016,63(6):1762-1764.
[12] Machado MV, Cortez-Pinto H. Non-invasive diagnosis of non-alcoholic fatty liver disease: A critical appraisal. J Hepatol, 2013,58(5):1007-1019.
[13] Loomba R, Wolfson T, Ang B, et al. Magnetic resonance elastography predicts advanced fibrosis in patients with nonalcoholic fatty liver disease: A prospective study. Hepatology, 2014,60(6):1920-1928.
[14] Mahadeva S, Mahfudz AS, Vijayanathan A, et al. Performance of transient elastography (TE) and factors associated with discordance in non-alcoholic fatty liver disease. J Eigest Dis, 2013,14(11):604-610.
[15] Chatelin S, Oudry J, Périchon N, et al. In vivo liver tissue mechanical properties by transient elastography: Comparison with dynamic mechanical analysis. Biorheology, 2011,48(2):75-88.
Value of acoustic radiation force impulse elastography in evaluation of nonalcoholic fatty liver disease and hepatic fibrosis in rats
GUO Yanrong1, DONG Changfeng2, LIN Haoming1, ZHANG Xinyu1, WEN Huiying1, SHEN Yuanyuan1, WANG Tianfu1, CHEN Siping1, LIU Yingxia3, CHEN Xin1*
(1.School of Biomedical Engineering, Shenzhen University, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, China; 2.Department of Ultrasound, 3.Department of Infection, the Third People's Hospital of Shenzhen, Shenzhen 518060, China)
ObjectiveTo evaluate the value of acoustic radiation force impulse (ARFI) elastography in assessment of nonalcoholic fatty liver disease (NAFLD) and hepatic fibrosis in rats.MethodsModels with various degrees of NAFLD severity were conducted in 110 rats by feeding high fat emulsion. The right liver lobe of rat models were processed and embedded in a fabricated gelatin solution to measure the shear wave velocity (SWV) by ARFI. And the other liver lobes were used for histologic assessment. Based on NAFLD activity score (NAS), the final pathologic NAFLD diagnosis were considered as normal group (NAS=0), simple steatosis (SS) group (1≤NAS≤2), borderline (3≤NAS≤4) group and nonalcoholic steatohepatitis (NASH) group (NAS≥5). The diagnostic accuracy of the SWV parameters in evaluating NAFLD severity and fibrosis stages was studied using ROC curves.ResultsThe difference of SWV values among normal group, SS group, borderline group and NASH group was statistically significant (F=31.53,P<0.001). Taking SWV≥ 2.54 m/s as the diagnostic standard to differentiate normal rats from rats with SS, and SWV≥2.90 m/s to differentiate SS from NASH in rats, the area under ROC curve (AUC) was 0.922 (95%CI [0.871, 0.973],P<0.001) and 0.882 (95%CI [0.807, 0.956],P<0.001) respectively. The sensitivity and specificity were 93.5% and 100% for differentiating normal and SS groups, 83.3% and 84.2% for differentiating SS and NASH groups. Taking SWV≥3.48 m/s as cutoff to predict fibrosis (≥F2 stage), the AUC was 0.963 (95%CI [0.909, 1.000],P<0.001), the sensitivity was 92.9% and the specificity was 97.6%. Taking SWV≥3.61 m/s as cutoff to predict severe fibrosis (≥F3 stage), the AUC was 0.997 (95%CI [0.990, 1.000],P<0.001), sensitivity was 100% and specificity was 98.9%. The same high validity was maintained as in the prediction of cirrhosis (F4 stage) with the cutoff as SWV≥4.50 m/s, and the AUC was 0.993 (95%CI[0.982, 1.000],P<0.001), the sensitivity was 100% and the specificity was 96.8%.ConclusionARFI elastography is a promising method for differentiating the different severity of NAFLD and staging the degree of hepatic fibrosis with NAFLD in rat models.
Acoustic radiation force impulse; Elasticity imaging techniques; Shear wave velocity; Liver cirrhosis, experimental; Fatty liver; Rats
國家自然科學基金(81471735、81570552、61427806、61101025、61201041)、國家重點研發計劃(2016YFC0104700)、國家“十二五”科技支撐計劃課題項目(2015BAI01B02)、廣東省自然科學基金(2016A030310047)。
郭燕榮(1988—),男,河南南陽人,在讀博士。研究方向:醫學信號處理。E-mail: chacecrawford@163.com
陳昕,深圳大學生物醫學工程學院 醫學超聲關鍵技術國家地方聯合工程實驗室 廣東省生物醫學信息檢測與超聲成像重點實驗室,518060。E-mail: chenxin@szu.edu.com
2017-01-06 [
] 2017-07-05
10.13929/j.1003-3289.201701031
R-322; R445.1
A
1003-3289(2017)09-1315-06