999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

COMPLETE CONVERGENCE FOR ARRAYS OF ROWWISE M-NSD RANDOM VARIABLES

2017-09-15 05:55:57FENGFengxiangWANGDingchengWUQunying
數學雜志 2017年5期

FENG Feng-xiang,WANG Ding-cheng,WU Qun-ying

(1.School of Mathematical Science,University of Electronic Science and Technology of China, Chengdu 611731,China)

(2.College of Science,Guilin University of Technology,Guilin 541004,China)

COMPLETE CONVERGENCE FOR ARRAYS OF ROWWISE M-NSD RANDOM VARIABLES

FENG Feng-xiang1,2,WANG Ding-cheng1,WU Qun-ying2

(1.School of Mathematical Science,University of Electronic Science and Technology of China, Chengdu 611731,China)

(2.College of Science,Guilin University of Technology,Guilin 541004,China)

In this article,we study complete convergence theorems for arrays of rowwise m-negatively superadditive-dependent(m-NSD)random variables.By using Kolmogorov-type exponential inequality for m-NSD random variables,we obtain complete convergence theorems for arrays of rowwise m-NSD random variables,which generalize those on complete convergence theorem previously obtained by Hu et al.(1998)and Sung et al.(2005)from independent distributed case to m-NSD arrays.Our results also extend the corresponding results of Chen et al.(2008),Hu et al.(2009),Qiu et al.(2011)and Wang et al.(2014).

Kolmogorov-type exponential inequality;complete convergence;m-NSD random variables

1 Introduction

We f i rst introduce some concepts of dependent random variables.The concept of negatively associated(abbreviated to NA in the following)random variables was introduced by Joag-Dev and Proschan[1].

Def i nition 1.1A f i nite family of random variables{Xi;1≤i≤n}is said to be NA if for every pair of disjoint subsets A,B?{1,2,···,n},

whenever f and g are coordinatewise nondecreasing functions such that this covariance exists. An inf i nite family of random variables is NA if every f i nite subfamily is NA.

Def i nition 1.2(see[2])A function φ:Rn→R is called superadditive if φ(x∨y)+ φ(x∧y)≥φ(x)+φ(y)for all x,y∈Rn,where∨is for componentwise maximum and∧is for componentwise minimum.

The concept of negatively superadditive-dependent(abbreviated to NSD in the following)random variables was introduced by Hu[3]as follows.

Def i nition 1.3A random vector X=(X1,X2,···,Xn)is said to be NSD if

Hu[3]gave an example illustrating that NSD does not imply NA.Christof i des and Vaggelatou[4]indicated that NA implies NSD.

Hu et al.[5]introduced the concept of m-negatively associated random variables as follows.

Def i nition 1.4 Let m≥1 be a f i xed integer.A sequence of random variables{Xn;n≥1}is said to be m-negatively associated(abbreviated to m-NA in the following)if for any n≥2 and i1,···,insuch thatm for all 1≤k 6=j≤n,we have that Xi1,···,Xinare NA.

The concept of m-NA random variables is a natural extension from NA random variables (wherein m=1).

Similarly,we can def i ne m-NSD random variables.

Def i nition 1.5Let m≥1 be a f i xed integer.A sequence of random variables {Xn;n≥1}is said to be m-negatively superadditive-dependent(abbreviated to m-NSD in the following)if for any n≥2 and i1,···,insuch that|ik-ij|≥m for all 1≤k 6=j≤n, we have that(Xi1,···,Xin)is NSD.

Hsu and Robbins[6]introduced the concept of complete convergence of a sequence of random variables.Hu et al.[7]proposed the following general complete convergence of rowwise independent arrays of random variables.

Theorem ALet{Xni;1≤i≤kn,n≥1}be an array of rowwise independent random variables and{cn}be a sequence of positive real numbers.Suppose that for every ε>0 and some δ>0,

The proof of Hu et al.[7]is mistakenly based on the fact that the assumptions of Theorem A imply convergence in probability of the corresponding partial sums.Hu and Volodin[8]and Hu et al.[9]presented counterexamples to this proof.They mentioned that whether Theorem A was true remained open.Since then many authors attempted to solve this problem.Hu et al.[9]and Kuczmaszewska[10]gave partial solution to this question. Sung et al.[11]completely solved this problem by using a symmetrization procedure and Kruglov et al.[12]obtained the complete convergence for maximum partial sums by using a submartingale approach.

Recently,Chen et al.[13]extended Theorem A to the case of arrays of rowwise NA random variables and obtained the complete convergence for maximum partial sums.Hu et al.[5]obtained complete convergence for maximum partial sums similar to Theorem A for arrays of rowwise m-NA random variables.Qiu et al.[14]obtained similar result for arrays of rowwise ND random variables.Wand et al.[15]extended and improved Theorem A for NSD arrays.Qiu[16]obtained similar result for weighted sums of NA random variables. The main purpose of this article is to generalize and improve Theorem A for the case of arrays of rowwise m-NSD random variables.

2 Main Results

Theorem 2.1Let{Xni;1≤i≤kn,n≥1}be an array of rowwise m-NSD random variables and{cn}be a sequence of positive real numbers.Assume that for every ε>0 and some δ>0,

From Theorem 2.1,we can obviously obtain the following corollary.

Corollary 2.1Let{Xni;1≤i≤kn,n≥1}be an array of rowwise m-NSD random variables.If conditions(i)and(ii)of Theorem 2.1 and

Theorem 2.2Let{Xni;1≤i≤kn,n≥1}be an array of rowwise m-NSD random variables with EXni=0 and EX2ni<∞for 1≤i≤kn,n≥1.Let{cn}be a sequence of positive real numbers.Assume that for every ε>0 and some δ>0,

Remark 1Corollary 2.1 shows that the main results of Hu et al.[7]and Sung et al. [11]remain true for m-NSD random variables.We generalize the corresponding complete convergence theorems from the independent case to m-NSD arrays without adding any extra conditions.

Remark 2In Theorem 2.2,we only need conditions(i)and(ii)of Corollary 2.1. Condition(iii)of Corollary 2.1 is not needed.Therefore Theorem 2.2 extends and improves the corresponding results of Hu et al.[7]and Sung et al.[11].In addition,our results also extend the corresponding results of Chen et al.[13],Hu et al.[5],Qiu et al.[14]and Wang et al.[15].When m=1,from Theorem 2.1 and Theorem 2.2,we can obtain the results of Theorem 3.3 and Theorem 3.2 of Wand et al.[15],respectively.We mention that Theorem 2.1 of this paper not only extends the results of Wand et al.[15]but also we have a simpler proof.More precisely,we only divide the sum into two parts in our proof instead of into four parts as was in the paper of Wand et al.[15].

Throughout this paper,C denotes a positive constant which may dif f er from one place to another.

3 Proofs of Main Results

In order to prove our results,we need the following lemmas.

Lemma 3.1(cf.Wand et al.[15],Lemma 2.4)Let{Xn;n≥1}be a sequence of NSD random variables with EXn=0 and EX2n<∞,n≥1.Let

Then for all x>0,a>0,

Lemma 3.2 Let{Xn;n≥1}be a sequence of m-NSD random variables with EXn=0 and EX2n<∞,n≥1.LetTherefore by Lemma 3.2,the conclusion holds.

Proof of Theorem 2.1Let Yni=δI{Xni>δ}+XniI{|Xni|≤δ}-δI{Xni<-δ} and Y′ni=δI{Xni>δ}-δI{Xni<-δ}and 1≤i≤kn,n≥1.{Yni,1≤i≤kn,n≥1} is an array of rowwise m-NSD random variables.Note that

[1]Joag-Dev K,Proschan F.Negative association of random variables with applications[J].Ann.Stat., 1983,11:286-295.

[2]Kemperman J H B.On the FKG-inequalities for measures on a partially ordered space[J].Proc. Akad.Wetenschappen,Ser.A.,1997,80:313-331.

[3]Hu T Z.Negatively superadditive dependence of random variables with applications[J].Chinese J. Appl.Prob.Stat.,2000,16:133-144.

[4]Christof i des T C,Vaggelatou E.A connection between supermodular ordering and positive/negative association[J].J.Multi.Anal.,2004,88:138-151.

[5]Hu T C,Chiang C Y,Taylor R L.On complete convergence for arrays of rowwise m-negatively associated random variables[J].Nonl.Anal.,2009,71:1075-1081.

[6]Hsu P,Robbins H.Complete convergence and the law of large numbers[J].Proc.Natl.Acad.Sci. USA.,1947,33:25-31.

[7]Hu T C,Szynal D,Volodin A.A note on complete convergence for arrays[J].Stat.Prob.Lett.,1998, 38:27-31.

[8]Hu T C,Volodin A.Addendum to“A note on complete convergence for arrays”[J].Stat.Prob. Lett.,2000,47:209-211.

[9]Hu T C,Ord′o?nez Cabrera M,Sung S H,Volodin A.Complete convergence for arrays of rowwise independent random variables[J].Commun.Korean Math.Soc.,2003,18:375-383.

[10]Kuczmaszewska A.On some conditions for complete convergence for arrays[J].Stat.Prob.Lett., 2004,66:399-405.

[11]Sung S H,Hu T C,Volodin A I.More on complete convergence for arrays[J].Stat.Prob.Lett., 2005,71:303-311.

[12]Kruglov V M,Volodin A I,Hu T C.On complete convergence for arrays[J].Stat.Prob.Lett.,2006, 76:1631-1640.

[13]Chen PY,Hu T C,Liu X,Volodin A.On complete convergence for arrays of row-wise negatively associated random variables[J].The.Prob.Appl.,2008,52(2):323-328.

[14]Qiu Dehua,Chang Kuangchao,Antonini R G,Volodin A.On the strong rates of convergence for arrays of rowwise negatively dependent random variables[J].Stoch.Anal.Appl.,2011,29:375-385.

[15]Wang Xuejun,Deng Xin,Zheng Lulu,Hu Shuhe.Complete convergence for arrays of rowwise negatively superadditive-dependent random variables and its applications[J].Stat.J.Theo.Appl. Stat.,2014,48(4):834-850.

[16]Qiu Dehua.Complete convergence for arrays of rowwise NA random variables[J].J.Math.,2013, 33(1):138-146.

行m-NSD隨機變量陣列的完全收斂性

馮鳳香1,2,王定成1,吳群英2

(1.電子科技大學數學科學學院,四川成都611731)
(2.桂林理工大學理學院,廣西桂林541004)

本文研究了行m-NSD隨機變量陣列的完全收斂性問題.主要利用m-NSD隨機變量的Kolmogorov型指數不等式,獲得了行m-NSD隨機變量陣列的完全收斂性定理,將Hu等(1998)and Sung等(2005)的結果從獨立情形推廣到了m-NSD隨機變量陣列.本文的結論同樣推廣了Chen等(2008), Hu等(2009),Qiu等(2011)和Wang等(2014)的結果.

Kolmogorov型指數不等式;完全收斂性;m-NSD隨機變量

O211.4

A

0255-7797(2017)05-0889-09

?Received date:2015-08-11Accepted date:2016-04-08

Supported by National Natural Science Foundation of China(71271042; 11361019);Research Project of Guangxi High Institution(YB2014150).

Biography:Feng Fengxiang(1975-),female,born at Guilin,Guangxi,associate professor,major in probability and statistics.

2010 MR Subject Classif i cation:60F15;60E05

主站蜘蛛池模板: 午夜精品福利影院| 精品国产三级在线观看| 国产无码高清视频不卡| 日韩毛片免费视频| 久久国产精品电影| 精品国产91爱| 欧美性久久久久| 国产超碰一区二区三区| 亚洲av色吊丝无码| 黄片一区二区三区| 亚洲首页在线观看| 精品91自产拍在线| 欧美精品色视频| 亚洲精品国产综合99久久夜夜嗨| 欧美日韩亚洲国产主播第一区| 青青草原国产精品啪啪视频| 在线a网站| 免费无遮挡AV| 一区二区日韩国产精久久| 18禁影院亚洲专区| 九色在线观看视频| 久久亚洲国产最新网站| 亚洲AV成人一区国产精品| 国内精品九九久久久精品| 99精品免费欧美成人小视频| 一级不卡毛片| 亚洲AⅤ无码国产精品| 国产午夜无码专区喷水| 2020国产精品视频| 久久国产免费观看| 日韩在线永久免费播放| 色综合久久无码网| a毛片在线播放| 97影院午夜在线观看视频| 99精品在线看| 亚洲丝袜中文字幕| 91精品啪在线观看国产91| av无码一区二区三区在线| 亚洲av日韩av制服丝袜| 99久久国产综合精品2020| 精品国产免费人成在线观看| 精品国产欧美精品v| 亚亚洲乱码一二三四区| 99久久精品无码专区免费| 露脸真实国语乱在线观看| 无码免费视频| 99久久精品国产自免费| 亚洲综合九九| 激情六月丁香婷婷四房播| 99精品视频播放| 日本欧美精品| 激情无码字幕综合| 99久久人妻精品免费二区| 国产日本欧美亚洲精品视| 日本免费精品| 久久精品丝袜高跟鞋| 国产日韩欧美中文| 欧美成人手机在线观看网址| 天天视频在线91频| 91成人在线免费视频| 2020国产精品视频| 色网在线视频| 久久国产av麻豆| 欧美 国产 人人视频| 婷婷色婷婷| 4虎影视国产在线观看精品| 亚洲天堂色色人体| 亚洲欧美日韩视频一区| 在线欧美一区| 久久婷婷综合色一区二区| 精品丝袜美腿国产一区| 91极品美女高潮叫床在线观看| 在线播放精品一区二区啪视频| 福利片91| 青青青国产免费线在| 女人爽到高潮免费视频大全| 波多野一区| 青青草欧美| 四虎国产在线观看| av午夜福利一片免费看| 亚洲精品第一页不卡| 亚洲精品日产AⅤ|