999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

COMPLETE CONVERGENCE FOR ARRAYS OF ROWWISE M-NSD RANDOM VARIABLES

2017-09-15 05:55:57FENGFengxiangWANGDingchengWUQunying
數學雜志 2017年5期

FENG Feng-xiang,WANG Ding-cheng,WU Qun-ying

(1.School of Mathematical Science,University of Electronic Science and Technology of China, Chengdu 611731,China)

(2.College of Science,Guilin University of Technology,Guilin 541004,China)

COMPLETE CONVERGENCE FOR ARRAYS OF ROWWISE M-NSD RANDOM VARIABLES

FENG Feng-xiang1,2,WANG Ding-cheng1,WU Qun-ying2

(1.School of Mathematical Science,University of Electronic Science and Technology of China, Chengdu 611731,China)

(2.College of Science,Guilin University of Technology,Guilin 541004,China)

In this article,we study complete convergence theorems for arrays of rowwise m-negatively superadditive-dependent(m-NSD)random variables.By using Kolmogorov-type exponential inequality for m-NSD random variables,we obtain complete convergence theorems for arrays of rowwise m-NSD random variables,which generalize those on complete convergence theorem previously obtained by Hu et al.(1998)and Sung et al.(2005)from independent distributed case to m-NSD arrays.Our results also extend the corresponding results of Chen et al.(2008),Hu et al.(2009),Qiu et al.(2011)and Wang et al.(2014).

Kolmogorov-type exponential inequality;complete convergence;m-NSD random variables

1 Introduction

We f i rst introduce some concepts of dependent random variables.The concept of negatively associated(abbreviated to NA in the following)random variables was introduced by Joag-Dev and Proschan[1].

Def i nition 1.1A f i nite family of random variables{Xi;1≤i≤n}is said to be NA if for every pair of disjoint subsets A,B?{1,2,···,n},

whenever f and g are coordinatewise nondecreasing functions such that this covariance exists. An inf i nite family of random variables is NA if every f i nite subfamily is NA.

Def i nition 1.2(see[2])A function φ:Rn→R is called superadditive if φ(x∨y)+ φ(x∧y)≥φ(x)+φ(y)for all x,y∈Rn,where∨is for componentwise maximum and∧is for componentwise minimum.

The concept of negatively superadditive-dependent(abbreviated to NSD in the following)random variables was introduced by Hu[3]as follows.

Def i nition 1.3A random vector X=(X1,X2,···,Xn)is said to be NSD if

Hu[3]gave an example illustrating that NSD does not imply NA.Christof i des and Vaggelatou[4]indicated that NA implies NSD.

Hu et al.[5]introduced the concept of m-negatively associated random variables as follows.

Def i nition 1.4 Let m≥1 be a f i xed integer.A sequence of random variables{Xn;n≥1}is said to be m-negatively associated(abbreviated to m-NA in the following)if for any n≥2 and i1,···,insuch thatm for all 1≤k 6=j≤n,we have that Xi1,···,Xinare NA.

The concept of m-NA random variables is a natural extension from NA random variables (wherein m=1).

Similarly,we can def i ne m-NSD random variables.

Def i nition 1.5Let m≥1 be a f i xed integer.A sequence of random variables {Xn;n≥1}is said to be m-negatively superadditive-dependent(abbreviated to m-NSD in the following)if for any n≥2 and i1,···,insuch that|ik-ij|≥m for all 1≤k 6=j≤n, we have that(Xi1,···,Xin)is NSD.

Hsu and Robbins[6]introduced the concept of complete convergence of a sequence of random variables.Hu et al.[7]proposed the following general complete convergence of rowwise independent arrays of random variables.

Theorem ALet{Xni;1≤i≤kn,n≥1}be an array of rowwise independent random variables and{cn}be a sequence of positive real numbers.Suppose that for every ε>0 and some δ>0,

The proof of Hu et al.[7]is mistakenly based on the fact that the assumptions of Theorem A imply convergence in probability of the corresponding partial sums.Hu and Volodin[8]and Hu et al.[9]presented counterexamples to this proof.They mentioned that whether Theorem A was true remained open.Since then many authors attempted to solve this problem.Hu et al.[9]and Kuczmaszewska[10]gave partial solution to this question. Sung et al.[11]completely solved this problem by using a symmetrization procedure and Kruglov et al.[12]obtained the complete convergence for maximum partial sums by using a submartingale approach.

Recently,Chen et al.[13]extended Theorem A to the case of arrays of rowwise NA random variables and obtained the complete convergence for maximum partial sums.Hu et al.[5]obtained complete convergence for maximum partial sums similar to Theorem A for arrays of rowwise m-NA random variables.Qiu et al.[14]obtained similar result for arrays of rowwise ND random variables.Wand et al.[15]extended and improved Theorem A for NSD arrays.Qiu[16]obtained similar result for weighted sums of NA random variables. The main purpose of this article is to generalize and improve Theorem A for the case of arrays of rowwise m-NSD random variables.

2 Main Results

Theorem 2.1Let{Xni;1≤i≤kn,n≥1}be an array of rowwise m-NSD random variables and{cn}be a sequence of positive real numbers.Assume that for every ε>0 and some δ>0,

From Theorem 2.1,we can obviously obtain the following corollary.

Corollary 2.1Let{Xni;1≤i≤kn,n≥1}be an array of rowwise m-NSD random variables.If conditions(i)and(ii)of Theorem 2.1 and

Theorem 2.2Let{Xni;1≤i≤kn,n≥1}be an array of rowwise m-NSD random variables with EXni=0 and EX2ni<∞for 1≤i≤kn,n≥1.Let{cn}be a sequence of positive real numbers.Assume that for every ε>0 and some δ>0,

Remark 1Corollary 2.1 shows that the main results of Hu et al.[7]and Sung et al. [11]remain true for m-NSD random variables.We generalize the corresponding complete convergence theorems from the independent case to m-NSD arrays without adding any extra conditions.

Remark 2In Theorem 2.2,we only need conditions(i)and(ii)of Corollary 2.1. Condition(iii)of Corollary 2.1 is not needed.Therefore Theorem 2.2 extends and improves the corresponding results of Hu et al.[7]and Sung et al.[11].In addition,our results also extend the corresponding results of Chen et al.[13],Hu et al.[5],Qiu et al.[14]and Wang et al.[15].When m=1,from Theorem 2.1 and Theorem 2.2,we can obtain the results of Theorem 3.3 and Theorem 3.2 of Wand et al.[15],respectively.We mention that Theorem 2.1 of this paper not only extends the results of Wand et al.[15]but also we have a simpler proof.More precisely,we only divide the sum into two parts in our proof instead of into four parts as was in the paper of Wand et al.[15].

Throughout this paper,C denotes a positive constant which may dif f er from one place to another.

3 Proofs of Main Results

In order to prove our results,we need the following lemmas.

Lemma 3.1(cf.Wand et al.[15],Lemma 2.4)Let{Xn;n≥1}be a sequence of NSD random variables with EXn=0 and EX2n<∞,n≥1.Let

Then for all x>0,a>0,

Lemma 3.2 Let{Xn;n≥1}be a sequence of m-NSD random variables with EXn=0 and EX2n<∞,n≥1.LetTherefore by Lemma 3.2,the conclusion holds.

Proof of Theorem 2.1Let Yni=δI{Xni>δ}+XniI{|Xni|≤δ}-δI{Xni<-δ} and Y′ni=δI{Xni>δ}-δI{Xni<-δ}and 1≤i≤kn,n≥1.{Yni,1≤i≤kn,n≥1} is an array of rowwise m-NSD random variables.Note that

[1]Joag-Dev K,Proschan F.Negative association of random variables with applications[J].Ann.Stat., 1983,11:286-295.

[2]Kemperman J H B.On the FKG-inequalities for measures on a partially ordered space[J].Proc. Akad.Wetenschappen,Ser.A.,1997,80:313-331.

[3]Hu T Z.Negatively superadditive dependence of random variables with applications[J].Chinese J. Appl.Prob.Stat.,2000,16:133-144.

[4]Christof i des T C,Vaggelatou E.A connection between supermodular ordering and positive/negative association[J].J.Multi.Anal.,2004,88:138-151.

[5]Hu T C,Chiang C Y,Taylor R L.On complete convergence for arrays of rowwise m-negatively associated random variables[J].Nonl.Anal.,2009,71:1075-1081.

[6]Hsu P,Robbins H.Complete convergence and the law of large numbers[J].Proc.Natl.Acad.Sci. USA.,1947,33:25-31.

[7]Hu T C,Szynal D,Volodin A.A note on complete convergence for arrays[J].Stat.Prob.Lett.,1998, 38:27-31.

[8]Hu T C,Volodin A.Addendum to“A note on complete convergence for arrays”[J].Stat.Prob. Lett.,2000,47:209-211.

[9]Hu T C,Ord′o?nez Cabrera M,Sung S H,Volodin A.Complete convergence for arrays of rowwise independent random variables[J].Commun.Korean Math.Soc.,2003,18:375-383.

[10]Kuczmaszewska A.On some conditions for complete convergence for arrays[J].Stat.Prob.Lett., 2004,66:399-405.

[11]Sung S H,Hu T C,Volodin A I.More on complete convergence for arrays[J].Stat.Prob.Lett., 2005,71:303-311.

[12]Kruglov V M,Volodin A I,Hu T C.On complete convergence for arrays[J].Stat.Prob.Lett.,2006, 76:1631-1640.

[13]Chen PY,Hu T C,Liu X,Volodin A.On complete convergence for arrays of row-wise negatively associated random variables[J].The.Prob.Appl.,2008,52(2):323-328.

[14]Qiu Dehua,Chang Kuangchao,Antonini R G,Volodin A.On the strong rates of convergence for arrays of rowwise negatively dependent random variables[J].Stoch.Anal.Appl.,2011,29:375-385.

[15]Wang Xuejun,Deng Xin,Zheng Lulu,Hu Shuhe.Complete convergence for arrays of rowwise negatively superadditive-dependent random variables and its applications[J].Stat.J.Theo.Appl. Stat.,2014,48(4):834-850.

[16]Qiu Dehua.Complete convergence for arrays of rowwise NA random variables[J].J.Math.,2013, 33(1):138-146.

行m-NSD隨機變量陣列的完全收斂性

馮鳳香1,2,王定成1,吳群英2

(1.電子科技大學數學科學學院,四川成都611731)
(2.桂林理工大學理學院,廣西桂林541004)

本文研究了行m-NSD隨機變量陣列的完全收斂性問題.主要利用m-NSD隨機變量的Kolmogorov型指數不等式,獲得了行m-NSD隨機變量陣列的完全收斂性定理,將Hu等(1998)and Sung等(2005)的結果從獨立情形推廣到了m-NSD隨機變量陣列.本文的結論同樣推廣了Chen等(2008), Hu等(2009),Qiu等(2011)和Wang等(2014)的結果.

Kolmogorov型指數不等式;完全收斂性;m-NSD隨機變量

O211.4

A

0255-7797(2017)05-0889-09

?Received date:2015-08-11Accepted date:2016-04-08

Supported by National Natural Science Foundation of China(71271042; 11361019);Research Project of Guangxi High Institution(YB2014150).

Biography:Feng Fengxiang(1975-),female,born at Guilin,Guangxi,associate professor,major in probability and statistics.

2010 MR Subject Classif i cation:60F15;60E05

主站蜘蛛池模板: 欧美一区二区福利视频| 国产精品免费久久久久影院无码| 亚洲成在人线av品善网好看| 欧美啪啪网| 国产丝袜第一页| 亚洲另类色| 九九久久精品免费观看| 国产精品亚洲а∨天堂免下载| 国产成人精品三级| 啪啪永久免费av| 亚洲国产天堂久久九九九| 亚洲日韩精品欧美中文字幕| 毛片免费高清免费| 日韩福利视频导航| 波多野结衣国产精品| 中文字幕 欧美日韩| 国产精品理论片| 亚洲av无码成人专区| 久久精品嫩草研究院| 欧美不卡视频在线观看| 久久中文字幕不卡一二区| 97成人在线视频| 又黄又湿又爽的视频| 亚洲美女AV免费一区| 福利姬国产精品一区在线| 国模私拍一区二区 | 91视频日本| 福利视频一区| 国产激爽大片在线播放| 亚洲国产天堂久久综合226114 | 日本精品影院| 成年女人18毛片毛片免费| 免费jjzz在在线播放国产| 性做久久久久久久免费看| 国产成人高清精品免费| 精品国产免费第一区二区三区日韩| 在线毛片网站| 在线中文字幕日韩| 亚洲日韩精品综合在线一区二区| 色婷婷狠狠干| 日韩a级毛片| 一级毛片在线播放免费| 国产91丝袜在线播放动漫| 久热re国产手机在线观看| 国产原创演绎剧情有字幕的| 亚洲国产成人综合精品2020| 美女免费精品高清毛片在线视| 无码精品国产VA在线观看DVD| 久久99国产视频| 六月婷婷综合| 91亚瑟视频| 国产精品三级av及在线观看| 91视频99| 热久久综合这里只有精品电影| 精品国产成人三级在线观看| 国产精品亚洲一区二区三区z| 国产又大又粗又猛又爽的视频| 亚洲无线视频| 欧美国产在线看| 国产永久免费视频m3u8| 国产簧片免费在线播放| 少妇精品在线| 国产成人禁片在线观看| 黄色一级视频欧美| 91网址在线播放| 在线日韩日本国产亚洲| 久久青青草原亚洲av无码| 日韩欧美91| 国内精品自在自线视频香蕉| 91精品专区| 国产成人精品第一区二区| 一级毛片基地| 亚洲欧美人成人让影院| 国产真实自在自线免费精品| 国产欧美日韩另类| 亚洲最大福利视频网| 国产精品永久免费嫩草研究院| 色婷婷亚洲十月十月色天| 六月婷婷激情综合| 久久青草视频| 国产欧美日韩91| 欧美日韩综合网|