999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

A CLASS OF PROJECTIVELY FLAT SPHERICALLY SYMMETRIC FINSLER METRICS

2017-09-15 05:56:03CHENYaliSONGWeidong
數(shù)學(xué)雜志 2017年5期

CHEN Ya-li,SONG Wei-dong

(1.School of Environmental Science and Engineering,Anhui Normal University,Wuhu 241000,China)

(2.School of Mathematics and Computer Science,Anhui Normal University,Wuhu 241000,China)

A CLASS OF PROJECTIVELY FLAT SPHERICALLY SYMMETRIC FINSLER METRICS

CHEN Ya-li1,SONG Wei-dong2

(1.School of Environmental Science and Engineering,Anhui Normal University,Wuhu 241000,China)

(2.School of Mathematics and Computer Science,Anhui Normal University,Wuhu 241000,China)

In this paper,we investigate the construction of projectively f l at Finsler metrics. By analysing the solution of the spherically symmetric projectively f l at equation,we construct new examples of projectively f l at Finsler metrics,and obtain the projective factor and f l ag curvature of spherically symmetric Finsler metrics to be projectively f l at.

projectively f l at;Finsler metric;spherically symmetric;projective factor;f l ag curvature

1 Introduction

It is an important problem in Finsler geometry to study and characterize projectively fl at Finsler metrics on an open domain in Rm.Hilbert’s 4th problem is to characterize the distance functions on an open subset in Rmsuch that straight lines are geodesics[5]. Regular distance functions with straight geodesics are projectively fl at Finsler metrics.A Finsler metric F=F(x,y)on an open subset U?Rmis projectively fl at if and only if it satis fi es the following equation

In Finsler geometry,the fl ag curvature K(P,y)is an analogue of the sectional curvature in Riemannian geometry.It is known that every projective Finsler metric is of scalar curvature,namely,the fl ag curvature K(P,y)=K(y)is a scalar function of tangent vectors y.Shen discussed the classi fi cation problem on projective Finsler metrics of constant fl ag curvature[14].The second author provided the projective factor of a class of projectively fl at general(α,β)-metrics[12]and studied a necessary and sufficient condition for a class of Finsler metric to be projectively fl at[13].Li proved the locally projectively fl at Finsler metrics with constant fl ag curvature K are totally determined by their behaviors at theorigin by solving some nonlinear PDEs.The classif i cations when K=0,K=-1,K=1 are given in an algebraic way[15].

For a Finsler metric F=F(x,y)on a manifold M,the geodesics c=c(t)of F in local coordinates(xi)are characterized by

where(xi(t))are the coordinates of c(t)and Gi=Gi(x,y)are def i ned by

For a tangent plane P?TpM and a non-zero vector y∈TpM,the f l ag curvature K(P,y)is def i ned by

where P=span{y,u}.It is known that if F is projectively f l at,the spray coefficients of F are in the form Gi=Pyiwhere

then F is of scalar curvature with f l ag curvature

On the other hand,the study of spherically symmetric Finsler metrics attracted a lot of attention.Many known Finsler metrics are spherically symmetric[1,4,7,14,15,17].A Finsler metric F is said to be spherically symmetric(orthogonally invariant in an alternative terminology in[6])if F satisf i es

for all A∈O(m),equivalently,if the orthogonal group O(m)acts as isometrics of F.Such metrics were f i rst introduced by Rutz[16].

It was pointed out in[6]that a Finsler metric F on Bm(μ)is a spherically symmetric if and only if there is a function φ:[0,μ)×R→R such that

where(x,y)∈TRm(μ){0}.The spherically symmetric Finsler metric of form(1.3)can be rewritten as the following form[8]

Spherically symmetric Finsler metrics are the simplest and most important general (α,β)-metrics[4].Mo,Zhou and Zhu classif i ed the projective spherically symmetric Finsler metrics with constant f l ag curvature in[2,9,10].A lot of spherically symmetric Finsler metrics with nice curvature properties were investigated by Mo,Huang and et al.[3,6-11].

An important example of projectively f l at Finsler metric was given by Berwald.It can be written as

on the unit ball?Rm,where y∈TxBm?Rm.It could also be expressed as

where

Inspired by the Berwald metric,we try to f i nd the solution of the projectively f l at eq.(1.1) in the following forms

where

Through caculations,we have the following conclusions.

Theorem 1.1 Let φ(t,s)be a function def i ned by

and f0(t)is a dif f erentiable function which satisf i es

where b,C1,C2are constants and φ1is an any continuous function,φ0is a polynomial function of N degree wheredenotes the j-order derivative for φ0(t),φ(t,s)needs to satisfy φ-sφs>0,when m=2.Moreover,the additional equality holds

when m≥3.Then the following spherically symmetric Finsler metric on Bm(μ)

is projectively fl at.

and its f l ag curvature K is given by

2 The Solutions of the Hamel Equation

In this section,we will construct a lot of projectively fl at Finsler metrics which contains the Berwald metric.From[8],we know that

Consider the spherically symmetric Finsler metricwhere φ=φ(t,s)is given by φ(t,s)=By a direct caculation,we get

Plugging(2.2),(2.3),(2.4)into(2.1),the following equation is deduced,

It is equivalent to

When j=0,from the f i rst equation of(2.7),we get

Similarity,taking j=1 and j=2,we obtain

If k=j+2,the f i rst equation of(2.7)is equivalent to

It is easy to see the recurrence fomula on φk(t)and φ′k(t),

If k=odd,k≥3,then by(2.11),

If k=even,k≥4,we have

Case 1 k=odd≥5,setting l=2n+1,by the second equation of(2.7),

then it follows from(2.1),(2.12),(2.13),(2.14),

Case 2 k=even≥4,setting l=2n+2,by the second equation of(2.7),

then it follows from(2.1),(2.12),(2.13),(2.16),

The case l∈{1,2,3}is similar.Through the above analysis,we obtain the following.

Multiplying g-ron the both sides of(2.24),then

From(2.25),we obtain the following equationsSubstituting the fourth equation of(2.34)into the third equation of it,we have f4(t)=0. From(2.30),we obtain

Dif f erentiating(2.35),we get

Substituting(2.35),(2.36)into the f i rst equation of(2.34),we obtain that f0(t)satisf i es

Solving(2.37),we have

Plugging(2.39)into(2.32),we obtain

If r=4,f′0(t)=0,from(2.30),

Thus f0(t)and f2(t)can’t be constants at the same time,so in this case,r 6=4,together with(2.39),(2.40),(2.41),we know that f2(t)needs to satisfy the following

Through(2.42),we get that f0(t)needs to satisfy

From the f i rst equation of(2.43),

where C1is a constant.But the f0(t)in(2.44)doesn’t satisfy the second equation of(2.43) only if r=1,thus we can get the following proposition.

and f0(t)=C1(-1+2t),where b,C1are constants.

Case 3 r 6=2,f4(t)6=0.In this case,from the f i rst equation of(2.30),

Dif f erentiating(2.45),we have

From(2.32),we get

Dif f erentiating(2.48),we obtain

Plugging(2.33)into(2.31),we have

Thus from(2.50),no matter r=1 or not,

Combining the fourth equation of(2.33)and(2.51),we obtain that f0(t)satisf i es

Solving the f i rst equation of(2.52),we get

Solving the second equation of(2.52),we know

If r=1,C3=C6=0,two equations of(2.52)have the same solutions.Thus we have the following proposition.

and f0(t)=are constants.

3 Proof of Theorems

φ(t,s)in Propositions 2.2,2.3,2.4 can’t ensure that F=|y|is a Finsler metric.In order to obtain projectively fl at Finsler metric,φ(t,s)in Propositions 2.2-2.4 needs to satisfy the necessary and sufficient condition for Fto be a Finsler metric for any α and β with kβxkα<b0given by Yu and Zhu[4].In particular,considering F=|y|=|y|φ(t,s),then F is a Finsler metric if and only if the positive function φ satis fi es

when m≥3 or

when m=2.

Proof of Theorem 1.1 Combine Proposition 2.2,(3.1),(3.2)and the fundamental property of the projectively f l at equation(2.1).

Proof of Theorem 1.2 Combine Proposition 2.3,(3.1),(3.2)and the fundamental property of the projectively f l at equation(2.1).

Proof of Theorem 1.3 Combine Proposition 2.4,(3.1),(3.2)and the fundamental property of the projectively f l at equation(2.1).

Proof of Theorem 1.4 Suppose that

Direct computations yield that

where we use of(3.3).By(3.3),(3.4),we get the following lemma.

Lemma 3.1 Let f=f(r,t,s)be a function on a domain U?R3.Then

Note that siand riare positively homogeneous of degree 0 and 1.Hence

and we get

Thus from(3.7),(3.8),we have F0=Fxiyi=r2(φs+sφt),

Dif f erentiating(3.9),we know

From(3.7),(3.10),we obtain

Thus using(3.9),(3.11),we have

Theorem 1.4 can be achieved.

[1]Chern S S,Shen Z M.Riemann-Finsler geometry[M].Hackensack,NJ:World Sci.Publ.Co.Pvt. Ltd.,2005.

[2]Mo Xiaohuan,Zhou Linfeng.The curvatures of spherically symmetric Finsler metrics in Rn[J]. Trans.Res.Board 91st Ann.Meet.,2012,139:94-103.

[3]Huang Libing,Mo Xiaohuan.On spherically symmetric Finsler metrics of scalar curvature[J].J. Geom.Phy.,2012,62(11):2279-2287.

[4]Yu Changtao,Zhu Hongmei.On a new class of Finsler metrics[J].Dif f.Geom.Appl.,2011,29(2):244-254.

[5]Hilert D.Mathematical problems[J].Bull.Amer.Math.Soc.,2001,37:407-436.Reprinted from Bull.Amer.Math.Soc.,1902,8:437-439.

[6]Huang Libing,Mo Xiaohuan.Projectively f l at Finsler metrics with orthogonal invariance[J].Ann. Polon.Math.,2013,107:259-270.

[7]Yu Changtao.On dually f l at Randers metrics[J].Nonl.Anal.:The.Meth.Appl.,2014,95:146-155.

[8]Huang Libing,Mo Xiaohuan.On some explicit constructions of dually f l at Finsler metrics[J].J. Math.Anal.Appl.,2013,405(2):565-573.

[9]Zhou Linfeng.Projective spherically symmetric Finsler metrics with constant f l ag curvature in Rn[J]. Geom.Dedicata,2012,158(1):353-364.

[10]Mo Xiaohuan,Zhu Hongmei.On a class of projectively f l at Finsler metrics of negative constant f l ag curvature[J].Intern.J.Math.,2012,23(8):84-85.

[11]Guo Enli,Liu Huaifu,Mo Xiaohuan.On spherically symmetric Finsler metrics with isotropic Berwald curvature[J].Intern.J.Geom.Meth.Modern Phy.,2013,10(10):603-610.

[12]Song Weidong,Wang Xingshang.A new class of Finsler metrics with scalar f l ag curvature[J].J. Math.Res.Appl.,2012,32(4):485-492.

[13]Song Weidong,Zhu Jingyong.A class of projectively f l at Finsler metrics[J].J.Math.Res.Appl., 2013,33(6):737-744.

[14]Shen Zhongmin.Projectively f l at Finsler metrics of constant f l ag curvature[J].Trans.Amer.Math. Soc.,2003,355(4):1713-1728.

[15]Li Benling.On the classif i cation of projectively f l at Finsler metrics with constant f l ag curvature[J]. Adv.Math.,2014,257(2):266-284.

[16]Rutz S.Symmetry in Finsler spaces[J].Contem.Math.,1996,196:289-300.

[17]Chen Yali,Song Weidong.A class of dually f l at spherically symmetric Finsler metrics[J/OL].J. Math.,http://www.cnki.net/kcms/detail/42.1163.O1.20150409.1408.002.html.

一類射影平坦的球?qū)ΨQ的芬斯勒度量

陳亞力1,宋衛(wèi)東2

(1.安徽師范大學(xué)環(huán)境科學(xué)與工程學(xué)院,安徽蕪湖241000)
(2.安徽師范大學(xué)數(shù)學(xué)計算機(jī)科學(xué)學(xué)院,安徽蕪湖241000)

本文研究了射影平坦芬斯勒度量的構(gòu)造問題.通過分析射影平坦的球?qū)ΨQ的芬斯勒度量的方程的解,構(gòu)造了一類新的射影平坦的芬斯勒度量,并得到了射影平坦的球?qū)ΨQ的芬斯勒度量的射影因子和旗曲率.

射影平坦;芬斯勒度量;球?qū)ΨQ;射影因子;旗曲率

O186.1

A

0255-7797(2017)05-0932-13

?Received date:2015-04-21Accepted date:2015-12-09

Supported by the National Natural Science Foundation of China(11071005); the Research Culture Funds of Anhui Normal University(2016XJJ017).

Biography:Chen Yali(1990-),femal,born at Wuhu,Anhui,master,major in dif f erential geometry and its applications.

2010 MR Subject Classif i cation:53B40;53C60;58B20

主站蜘蛛池模板: 国产区网址| 中国国产高清免费AV片| 欧美一区二区自偷自拍视频| 强乱中文字幕在线播放不卡| 高清国产va日韩亚洲免费午夜电影| a亚洲视频| 综合社区亚洲熟妇p| 国产亚洲一区二区三区在线| 国产精品视频999| 国产91在线|日本| 午夜精品福利影院| 波多野结衣一二三| 久久国产精品77777| 国产综合精品一区二区| 久久免费精品琪琪| 亚瑟天堂久久一区二区影院| swag国产精品| 青青操视频在线| 99精品免费在线| 免费一级全黄少妇性色生活片| 青青草a国产免费观看| 中文字幕亚洲综久久2021| av在线手机播放| 久久精品娱乐亚洲领先| a在线观看免费| 亚洲系列中文字幕一区二区| 毛片基地视频| 91在线精品麻豆欧美在线| 亚洲人成人伊人成综合网无码| 国产精品主播| 中文纯内无码H| 日本欧美成人免费| 久久婷婷五月综合色一区二区| 亚洲国产午夜精华无码福利| 亚洲AⅤ无码日韩AV无码网站| 老色鬼久久亚洲AV综合| 狠狠ⅴ日韩v欧美v天堂| 国产激情无码一区二区免费 | 亚洲三级a| 国产原创自拍不卡第一页| 亚洲精选高清无码| 老司国产精品视频91| 亚洲美女一级毛片| 亚洲免费黄色网| 日本少妇又色又爽又高潮| 偷拍久久网| 最新无码专区超级碰碰碰| 国产第一页亚洲| 欧美激情,国产精品| 美女免费黄网站| 国产精彩视频在线观看| 黑人巨大精品欧美一区二区区| 精品无码日韩国产不卡av| 久久香蕉欧美精品| 国产一区二区丝袜高跟鞋| 免费观看男人免费桶女人视频| 日韩大片免费观看视频播放| 欧美 亚洲 日韩 国产| 久久情精品国产品免费| 日本欧美视频在线观看| 亚洲国产欧美国产综合久久| 欧美全免费aaaaaa特黄在线| 免费人成网站在线观看欧美| 国产精品成人一区二区| 狠狠色丁婷婷综合久久| 91精品啪在线观看国产60岁 | 丁香六月激情综合| 久精品色妇丰满人妻| 欧美激情伊人| 午夜毛片福利| 成人中文在线| 国产精品流白浆在线观看| 青青草原国产一区二区| 国产免费一级精品视频| 在线一级毛片| 成人国产小视频| 精品视频一区在线观看| 欧美日韩va| 香蕉国产精品视频| 欧美激情二区三区| 国产色爱av资源综合区| 波多野结衣二区|