999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

LIOUVILLE TYPE THEOREMS FOR A NONLINEAR ELLIPTIC EQUATION

2017-09-15 05:57:28XIANGNiCHENYong
數學雜志 2017年5期

XIANG Ni,CHEN Yong

(School of Mathematics and Statistics,Hubei University,Wuhan 430062,China)

LIOUVILLE TYPE THEOREMS FOR A NONLINEAR ELLIPTIC EQUATION

XIANG Ni,CHEN Yong

(School of Mathematics and Statistics,Hubei University,Wuhan 430062,China)

Let(Mn,g)be an n-dimensional complete noncompact Riemannian manifold.In this paper,we consider the Liouville type theorems for positive solutions to the following nonlinear elliptic equation:Δfu+aulogu=0,where a is a nonzero constant.By applying Bochner formula and the maximum principle,we obtain local gradient estimates of the Li-Yau type for positive solutions of the above equation on Riemannian manifolds with Bakry-Emery Ricci curvature bounded from below and some relevant Liouville type theorems,which improve some results of[7].

gradient estimate;nonlinear elliptic equation;Liouville-type theorem;maximum principle

1 Introduction

Let(Mn,g)be an n-dimensional complete Riemannian manifold.The drifting Laplacian is def i ned by Δf=Δ-?f?,where f is a smooth function on M.The N-Bakry-Emery Ricci tensor is def i ned by

for 0≤N<∞and N=0 if and only if f=0,where f is some smooth function on M,?2is the Hessian and Ric is the Ricci tensor.The∞-Bakry-Emery Ricci tensor is def i ned by

In particular,Ricf=λg is called a gradient Ricci soliton which is extensively studied in Ricci f l ow.

In this paper,we want to study positive solutions of the nonlinear elliptic equation with the drifting Laplacianon an n-dimensional complete Riemannian manifold(Mn,g),where a is a nonzero constant. When f=constant,the above equation(1.1)reduces to

Equation(1.2)is closely related to Ricci soliton[9]and the famous Gross Logarithmic Sobolev inequality[6].Ma[9]f i rst studied the positive solutions of equation(1.2)and derived a local gradient estimate for the case a<0.Then the gradient estimate for the case a>0 is obtained in[4]and[15]by studying the related heat equation of(1.2).More progress of this and related equations can be found in[2,8,10,13,14]and the references therein.Recently, inspired by the method used by Brighton in[1],Huang and Ma[7]derived local gradient estimates of the Li-Yau type for positive solutions of equations(1.2).These estimates are dif f erent from those in[4,9,15].Using these estimate,they can easily get some Liouville type theorems.We want to generalize their results to equation(1.1)and we obtain the following results

Theorem 1.1Let(Mn,g)be an n-dimensional complete Riemannian manifold with≥-K,where K is a nonnegative constant.Assuming that u is a positive solution of the nonlinear elliptic eq.(1.1).Then on Bp(R),we have the following inequalities

(1)If a>0,then

Let R→∞,we have the following gradient estimates on complete noncompact Riemannian manifolds.

Corollary 1.2Let(Mn,g)be an n-dimensional complete noncompact Riemannian manifold with-K,where K is a nonnegative constant.Assuming that u is a positive solution of the nonlinear elliptic eq.(1.1).Then the following inequalities hold

(1)if a>0,then

In particular,for a<0,if a≤-K,then max{0,a+K}=0.Thus,(1.5)implies |?u|≤0 whenever u is a bounded positive solution of the nonlinear elliptic(1.1).Hence u≡1.Therefore the following Liouville-type result follows.

Corollary 1.3Let(Mn,g)be an n-dimensional complete noncompact Riemannian manifold with RicNf≥-K,where K is a nonnegative constant.Assuming that u is a bounded positive solution of(1.1)with a<0.If a≤-K,then u≡1.

In particular,we have the following conclusion

Corollary 1.4Let(Mn,g)be an n-dimensional complete noncompact Riemannian manifold with RicNf≥0.Assuming that u is a bounded positive solution def i ned of(1.1) with a<0,then u≡1.

The above results are obtained under the assumption that RicNfis bounded by below. We can also obtain similar results under the assumption that Ricfis bounded by below.

Theorem 1.5Let(Mn,g)be an n-dimensional complete Riemannian manifold with Ricf(BP(2R))≥-(n-1)H,and|?f|≤K,where K and H is a nonnegative constant. Assuming that u is a positive solution of the nonlinear elliptic eq.(1.1)on Bp(2R).Then on Bp(R),the following inequalities hold

(1)if a>0,then

In particular,for a<0,if a≤-(n-1)H,then max{0,a+(n-1)H}=0.Thus,(1.10) implies|?u|≤0 whenever u is a bounded positive solution to(1.1).Hence,that u≡1. Therefore,the following Liouville-type result follows

Corollary 1.7Let(Mn,g)be an n-dimensional complete noncompact Riemannian manifold with Ricf≥-(n-1)H,and|?f|≤K,where K and H is a nonnegative constant. Assuming that u is a bounded positive solution of(1.1)with a<0.If a≤-(n-1)H,then u≡1.

In particular,we have the following conclusion.

Corollary 1.8Let(Mn,g)be an n-dimensional complete noncompact Riemannian manifold with Ricf≥0.Assuming that u is a bounded positive solution of(1.1)with a<0, then u≡1.

2 The Proof of Theorems

Now we are in the position to give the proof of Theorem 1.1.First we recall the following key lemma.

Lemma 2.1 Let(Mn,g)be an n-dimensional complete Riemannian manifold with RicNf(BP(2R))≥-K,where K is a nonnegative constant.Assuming that u is a positive solution to nonlinear elliptic eq.(1.1)on Bp(2R).Then on Bp(R),the following inequalities hold

(1)If a>0,then

Proof of Lemma 2.1 Let h=u?,where ? 6=0 is a constant to determined.Then we have

A simple calculation implies

Therefore we get

In order to obtain the bound of|?h|by applying the maximum principle to(2.7),it is sufficient to choose the coefficienis positive,that is

Now we begin to prove Theorem 1.1 which will follow by applying comparison theorems and Bochner formula to an appropriate function h.

Proof of Theorem 1.1 We f i rst prove the case of a>0.Let m be a cut-of ffunction such that m(r)=1 for r≤1,m(r)=0 for r≥2,0≤m(r)≤1,and

for positive constants c1and c2.Denote by ρ(x)=d(x,p)the distance between x and p in (Mn,g).Let

Making use of an argument of Calabi[3](see also Cheng and Yau[5]),we can assume without loss of generality that the function φ is smooth in Bp(2R).Then we have

It was shown by Qian[11]that

Hence we have

It follows that

Def i ne G=φ|?h|2,we will use the maximum principle for G on Bp(2R).Assume G achieves its maximum at the point x0∈Bp(2R)and assume G(x0)>0(otherwise this is obvious).Then at the point x0,it holds that

Using(2.1)in Lemma 2.1,we obtain

where the second inequality used(2.10).Multiplying both sides of(2.14)by,we obtain

Then using the Cauchy inequality,we have

So for x0∈Bp(R),we have

This shows

and

This concludes the proof of inequality(1.4)of Theorm 1.1.

Now we are in the position to give a brief proof of Theorem 1.5.

Skept of the Proof of Theorem 1.5 Noticing that we have the following Bochner formula to h with Ricf,

Moreover,the comparison theorem holds true in the following form(see Theorem 1.1 in [12]):if Ricf≥-K and|?f|≤K,we have

Noticing the above facts,the proof of Theorem 1.5 is the same to that of Theorem 1.1,so we omit it here.

[1]Brighton K.A Liouville-type theorem for smooth metric measure spaces[J].Geom.Anal.,2010, 23(2):562-570.

[2]Cao X,Ljungberg B F,Liu B.Dif f erential Harnack estimates for a nonlinear heat equation[J].Funct. Anal.,2013,265(10):2312-2330.

[3]Calabi E.An extension of E.Hopf’s maximum principle with a pplication to Riemannian geometry [J].Duke Math.,1958,25(1):45-56.

[4]Chen L,Chen W.Gradient estimates for a nonlinear parabolic equation on complete noncompact Riemannian manifolds[J].Ann.Glob.,Anal.Geom.,2009,35(4):397-404.

[5]Cheng S,Yau S.Dif f erential equations on Riemannian manifolds and their geometric applications[J]. Communn.Pure.,Appl.Math.,1975,28(3):333-354.

[6]Gross L.Logarithmic Sobolev inequality and contractivity properties of semigroups[J].Berlin:Springer,1993,61(2):318-322.

[7]Huang G,Ma B.Gradient estimates and Liouville type theorems for a nonlinear elliptic equation[J] Arch.Math.,2015,105(5):491-499.

[8]Huang G,Huang Z,Li H.Gradient estimates and dif f erential Hararck inequalities for a nonlinear parabolic equation on Riemannian manifolds[J].Ann.Glob.,Anal.Geom.,2013,43(3):209-232

[9]Ma L.Gradient estimates for a simple elliptic equation on complete noncompact Riemannian manifolds[J].Funct.Anal.,2006,241(1):374-382.

[10]Qian B.A uniform bound for the solutions to a simple nonlinear equation on Riemannian manifolds[J].Nonlinear Anal,2010,73(6):1538-1542.

[11]Qian Z.A comparison theorem for an elliptic operator[J].Potent.Anal.,1998,8(2):137-142.

[12]Wei G,Wylie W.Comparison geomtry for the Bakry-Emery Ricci tensor[J].Dif f.Geom.,2009, 83(2):377-405.

[13]Wu J Y.Li-Yau type estimates for a nonlinear parabolic equation on complete manifolds[J].Math. Anal.,2010,369(1):400-407.

[14]Yau S T.Harmonic functions on complete Riemannian manifolds[J].Comm.Pure.,Anal.Math., 1975,28(2):201-228.

[15]Yang Y.Gradient estimates for a nonlinear parabolic equation on Riemannian manifolds[J].Proc. Amer.,Math.Soc.,2008,136(11):4095-4102.

一類非線性橢圓方程的劉維爾型定理

向妮,陳勇

(湖北大學數學與統計學院,湖北武漢430062)

設(Mn,g)是一個n維非緊的完備黎曼流行.本文考慮有正解的非線性橢圓方程Δfu+ aulogu=0的劉維爾型定理,其中a是一個非零常數.利用Bochner公式和極大值原理,獲得了以上方程在Bakry-Emery里奇曲率有下界時正解的Li-Yau型梯度估計和某些有關的劉維爾理論,推廣了文獻[7]的結果.

梯度估計;非線性橢圓方程;劉維爾型定理;極大值原理

O175.25;O175.29

A

0255-7797(2017)05-0977-10

?Received date:2016-04-29Accepted date:2016-08-24

Supported by the National Natural Science Foundation of China(11201131); Hubei Key Laboratory of Applied Mathematics(Hubei University).

Biography:Xiang Ni(1981-),female,born at Chongqing,associate professor,major in fully nonlinear partial dif f erential equations.

2010 MR Subject Classif i cation:53C21;35J60

主站蜘蛛池模板: 日韩精品无码一级毛片免费| 欧美日韩高清| 日本精品视频一区二区| 国产在线精彩视频二区| 国产三级毛片| 国产在线精品网址你懂的| 国产精品视频观看裸模| 青青久久91| 亚洲另类国产欧美一区二区| 狼友视频一区二区三区| 97se亚洲综合在线韩国专区福利| 国产日韩欧美在线视频免费观看| 精品无码日韩国产不卡av| 欧美久久网| 久久这里只有精品66| 免费观看男人免费桶女人视频| 国产激情影院| 波多野结衣视频一区二区 | 国产人成在线观看| 精品视频第一页| 无码人中文字幕| 热久久综合这里只有精品电影| 日韩午夜福利在线观看| 国产精品久久国产精麻豆99网站| 99热线精品大全在线观看| 91区国产福利在线观看午夜| 亚洲一欧洲中文字幕在线| 久久免费精品琪琪| 国产原创演绎剧情有字幕的| 人妻免费无码不卡视频| 国产人妖视频一区在线观看| 午夜啪啪福利| 99一级毛片| 人妻出轨无码中文一区二区| 欧美日韩成人| 中文字幕有乳无码| 国产a网站| 五月激情综合网| 国产麻豆精品在线观看| 99在线观看视频免费| 国产一二三区视频| 亚洲V日韩V无码一区二区| 99久久国产自偷自偷免费一区| 亚洲侵犯无码网址在线观看| 国产精品视频公开费视频| 亚洲国产黄色| 欧美a在线视频| 啪啪免费视频一区二区| 91在线视频福利| 欧美久久网| 91免费国产高清观看| 国产对白刺激真实精品91| 亚洲最大看欧美片网站地址| 国产精品lululu在线观看| 婷五月综合| 91精品国产麻豆国产自产在线| 亚洲AV无码一区二区三区牲色| 国产精品乱偷免费视频| 在线va视频| 午夜精品久久久久久久无码软件| 一级毛片不卡片免费观看| 国产精品视频白浆免费视频| 综合色在线| 亚洲成aⅴ人片在线影院八| 一级全免费视频播放| 国产丝袜无码精品| 欧美a网站| 综合色区亚洲熟妇在线| 亚洲天堂精品在线| 国产精品无码一区二区桃花视频| 久久综合久久鬼| 狠狠色成人综合首页| 尤物成AV人片在线观看| 日韩中文精品亚洲第三区| 亚洲αv毛片| 青青久视频| 国产日本欧美亚洲精品视| 国产亚洲男人的天堂在线观看| 国产精品v欧美| 国产美女91视频| 国产成人精品亚洲日本对白优播| 宅男噜噜噜66国产在线观看|